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Abstract
Design by contract specification languages help programmers write their intentions for a piece of code in a
formal mathematical language. Most programming languages do not have built-in syntax for such
specifications, so many design by contract languages place specifications in comments. The Java Modeling
Language ( JML) is one such specification language for Java that uses comments to specify contracts.
However, starting with version 5, Java has introduced annotations, a syntactical structure to place metadata in
various places in the code. This thesis proposes an initial design to writing JML contracts in the Java 5
annotation syntax and evaluates several criteria in the areas of specification languages and Java language
design: whether these annotations are expressive enough to take advantage of annotation simplicity and tool
support, and whether the annotation syntax is expressive enough to support handling a large specification
language such as JML.
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ABSTRACT

Design by contract specification languages help programmers write their intentions for a piece of
code in a formal mathematical language. Most programming languages do not have built-in syntax for
such specifications, so many design by contract languages place specifications in comments. The Java
Modeling Language (JML) is one such specification language for Java that uses comments to specify
contracts. However, starting with version 5, Java has introduced annotations, a syntactical structure
to place metadata in various places in the code. This thesis proposes an initial design to writing JML
contracts in the Java 5 annotation syntax and evaluates several criteria in the areas of specification
languages and Java language design: whether these annotations are expressive enough to take advantage
of annotation simplicity and tool support, and whether the annotation syntax is expressive enough to
support handling a large specification language such as JML.
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CHAPTER 1. OVERVIEW

Much of programming language theory has a basis in higher mathematics, as many students of
computer science learn throughout their undergraduate career. Despite this, even writing a simple
mathematical function in any programming language may cause the programmer to lose sight of the
original goals of the function in the midst of assigning variables, defining classes, and optimizing the
code. Future readers of the code can become even more confused about the intentions of a piece of
code and misunderstand the requirements and assurances of a particular function.

This is where the concept of a design by contract specification language comes in, introduced by
Bertrand Meyer in his book Object-oriented Software Construction [22; 4]. Programmers express the
intentions of their code by specifying a contract, both what should be true before visiting a particular
piece of code and also what that piece of code guarantees after it runs. Since these contracts are in a
mathematical language, they act as executable documentation for the code, allowing programmers to
verify whether their code contracts work with the code contracts of a system already in place.

The Java Modeling Language (JML) is one such language and mathematical verifier. It provides a
mathematical language to write contracts, also known as assertions, specifically for Java code verifica-
tion. Because of restrictions on how the Java language is structured, JML uses Java comments to write
assertions throughout the body of the code. Starting with version 5 however, Java contains language
constructs called annotations to provide language metadata alongside the Java language [11]. In light
of this development, I suggested that we instead use the new Java 5 annotations as an alternate format
for JML assertions for two reasons: these annotations will be more familiar to first-time users of JML
than the custom JML comment syntax, and differentiating JML comments from regular Java comments
requires quite a bit of preprocessing. Thus, simplifying both the language and the processing are the
major motivations behind research into moving JML to this new syntax.

1.1 Introduction

A normal JML assertion on a method typically has what is known as a ”requires” and ”ensures”
clause. The requires clause states what is required to be true before entrance into the method. The
ensures clause states what the execution of the method will assert if the required prerequisites are true.
Figure 1.1 on the following page has an example deposit(..) method with an attached JML asser-
tion. It states that if amount > 0, then the method will assign to balance, and the sum of the initial
value of balance and amount is equal to the final value of balance. Otherwise, if amount <= 0,
then no variables change and the method signals an exception.

Note the form of the JML assertions. They must appear both in ”/*” comments and in ”@” delim-
iters to ensure processing in JML. Now, compare this with figure 1.2 on the next page.

This is the same assertion as in figure 1.1 on the following page but expressed in the new Java 5
annotations instead. The syntax of @Also and @SpecCase is defined not in a separate JML parser but
by separate Java annotation interfaces. This makes the annotations immediately accessible in the Java
abstract syntax tree, making it possible for an integrated development environment (IDE) to assist with
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/*@ public normal_behavior
@ requires amount > 0;
@ assignable balance;
@ ensures balance == \old(balance) + amount;
@ also
@ public exceptional_behavior
@ requires amount <= 0;
@ assignable \nothing;
@ signals (Exception) amount <= 0;
@*/

public void deposit(int amount);

Figure 1.1 JML2 Annotation Example

@Also({
@SpecCase(

header = "public normal_behavior"
requires = "amount > 0;",
assignable = "balance;",
ensures = "balance == #old(balance) + amount;"),

@SpecCase(
header = "public exceptional_behavior"
requires = "amount <= 0;",
assignable = "#nothing;",
signals = "(Exception) amount <= 0;")

})
public void deposit(int amount);

Figure 1.2 JML5 Annotation Example

annotation construction. In addition, the annotations separate the assertions from the comments as well
as other assertions from another specification language, since annotation types are resolved like classes
and interfaces. Thus, the JML compiler need only parse the JML expressions inside of the quoted
strings in the annotations.

I aim to answer two questions in this thesis:

• Is there a way to write JML Java 5 annotations such that they are consistent, readable, usable,
and extensible?

• What changes should be made to Java 5 annotations, if any, to make them more useful with JML?

The structure of this thesis covers previous work, initial design of the annotations, and the application
of the annotations. Chapter 2 covers the background of annotations and the related work to using
specification languages in annotations. Chapter 3 explains how the final syntax evolved from initial
ideas. Chapter 4 provides an overview of the techniques used to change the JML parser to handle the
new annotations. Chapter 5 analyzes how the annotations work in practice while chapter 6 analyzes
how the annotations work when used as a verification tool in web forms. Finally, chapter 7 discusses
and summarizes the results.
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CHAPTER 2. REVIEW OF LITERATURE

This chapter covers the background research leading up to the creation of Java 5 annotations and
reviews other related approaches to place assertions inside these annotations.

2.1 Background

Extensible programming, the idea that the programmer extends the language to match the appli-
cation, has existed for some time, most notably in Lisp. Similar to this idea is the macro found in C
and C++, which allows the programmer to write shorthand definitions and processors [18]. Van Wyk
notes that programmers have used macros extensively to translate a shorthand source language into the
larger target language designated for compilation and testing. He also states that using macros and
other extensions is part of a larger effort to implement intentional programming [28], a field originally
developed by Simonyi to enable programmers to extend programming languages to meet the needs of
a particular domain [39]. More recently, researchers have implemented translators in C# attributes, as
demonstrated by Ghezzi and Monga in research on mapping dependencies among classes [10].

Java Specification Request (JSR) 175 originally introduced annotations into Java 5, to address
the ”growing trend towards annotating fields, methods, and classes as having particular attributes that
indicate they should be processed in special ways by development tools, deployment tools, or run-time
libraries” [31]. Open source projects, such as Apache Tapestry 5 [2] and Hibernate [24], use these new
annotations as an alternative to XML-based configuration files, simplifying configuration down to a
single Java file instead of both a Java file and an XML file.

2.2 Related Work

Several techniques for integrating specification assertions in to programming languages currently
exist. Sjögren [29] highlights the five basic language integration techniques for contracts:

• Write textual descriptions in comments

• Parse an abstract syntax tree from formally structured comments

• Add to the existing language

• Write libraries with assertion methods

• Transform code from an established specification language to checking code in the existing lan-
guage

He later suggests using C# attributes to write assertions on classes and methods, allowing designers
to swap the native specification language (OCL) for a different specification language, since the asser-
tions are contained in parsable strings. eXtensible C# [25], C#AL [16], and nContract [13] all have
expressive annotation contracts for C#; however, none of these address specification concerns in Java.



4

Both JSR 305 [32] and JSR 308 [34] discuss the idea of simple Java annotation code checking
constructs, by suggesting such annotations as @NonNull, @Nullity, and @Pure. JSR 308 aims to
populate more areas in the code with annotations, and JSR 305 aims to create a standard set of annota-
tions to assist code checking tools. However, neither of these propose tools that would actually verify
the code; instead they aim for an extension of standard Java annotations.

XVP [27] uses Java 5 annotations to manage assertions in a declarative form. While it improves on
JML by representing assertions using reflection, it only defines two annotations (@Constraint and
@Pure). The authors explain that this is to allow for any constraint language to be substituted in place
of JML. However, this makes the constraints difficult to read; it is hard to find the starts and ends of
separate clauses without clear string formatting.

Contract4J [37] goes further by splitting the contracts into three annotations: @Pre (preconditions),
@Post (postconditions), and @Invar (invariants). However, its expression language is not as expres-
sive as JML, as there are no mechanisms to denote assignable, pure, or model constructs.

OVal with AspectJ [36] defines many annotations similar to JML, such as @NonNull and
@IsInvariant (known as pure in JML). It allows the user to select the expression language inside of
the annotations from five different expression languages (BeanShell, Groovy, JavaScript, MVEL, and
OGNL) and also comes with a translator from Enterprise JavaBeans 3.0 (EJB3) to OVal annotations,
allowing users to put constraints on database objects. Again, while the annotations and expressions as
a whole cover more than Contract4J, they are not as expressive as JML, leaving out full assignable
support and model constructs altogether.

Modern Jass [26] goes the furthest in using Java 5 annotations, introducing 13 separate annotations
and a much more complete expression language than previously listed works, based on the constraint
language Jass [3]. Since Modern Jass and JML have this much in common, I have collaborated with
Johannes Rieken, the creator of Modern Jass, to come up with a common set of Java 5 annotations
for use in both Modern Jass and JML. Still, JML’s language contains many more features than Jass or
Modern Jass, so the current design contains a superset of annotations out of which other languages,
such as Modern Jass, can choose a subset of features to support. The rest of the thesis explains this
language design in further detail.
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CHAPTER 3. LANGUAGE DESIGN

There are several ways to translate the comment-based JML syntax into Java 5 annotations. This
chapter reviews the different proposed approaches and describes the final approach.

3.1 Background

Consider the example in figure 3.1 inspired by one in the JML Reference Manual [19]:

public abstract class IntList {

//@ public model non_null int [] elements;

//@ ensures \result == elements.length;
public abstract /*@ pure @*/ int size();

//@ signals (IndexOutOfBoundsException e)
//@ index < 0 || index >= elements.length;
public abstract /*@ pure @*/ int elementAt(int index)

throws IndexOutOfBoundsException;

}

Figure 3.1 Base Example

This example can translate into Java 5 annotations in several ways, from a simple annotation with only
one field to a complex annotation with several fields. I consider several criteria when judging how
usable these annotations are to the users and designers:

Consistency Annotations appear in several places, and they must be written the same way in each
place.

Readability Annotations must appear without too much syntax around them so that readers can clearly
find and easily read the predicate.

Usability Annotations must be flexible in how they are used: intuitive and straightforward for new
users while being fully expressive for veteran users.

Extensibility Annotations must be able to be extended without disrupting the current syntax.

3.2 Three Approaches

Now I present three approaches to integrating JML into Java 5 annotations.
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3.2.1 The Single Annotation

One extreme technique is to just put all of the JML assertion inside one grand annotation. As
mentioned previously, XVP takes this approach by using the encompassing @Constraint annotation
to hold the entirety of a JML expression 1. An example is given in figure 3.2.

@JML("public model non_null int [] elements;")
public abstract class IntList {

@JML("ensures #result == elements.length;")
public abstract @JML("pure") int size();

@JML("signals (IndexOutOfBoundsException e)"
+ "index < 0 || index >= elements.length;")

public abstract @JML("pure") int elementAt(int index)
throws IndexOutOfBoundsException;

}

Figure 3.2 Single Annotation Example

3.2.2 The Parameter Annotation

The other extreme technique is to separate every single part of the annotation into its parts inside of
the annotation. This was the original design of the JML annotations, but later analysis will show that
going fully by this philosophy causes problems. The same example in the previous section is modified
for this approach in figure 3.3.

@Model(visibility = Visibility.PUBLIC, nonnull = true,
value = "int [] elements;")

public abstract class IntList {

@Ensures("#result == elements.length;")
public abstract @Pure int size();

@Signals(type = "IndexOutOfBoundsException", ident = "e",
value = "index < 0 || index >= elements.length;")

public abstract @Pure int elementAt(int index)
throws IndexOutOfBoundsException;

}

Figure 3.3 Parameter Annotation Example

1To avoid confusion with JML’s constraint keyword, this chapter will use @JML as a replacement for
@Constraint
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3.2.3 The Clausal Annotation

Since the two previous techniques are opposite of each other, it makes sense to try to compromise
between them. The driving design decision behind this approach is to give as much work to the current
parser as possible without losing the type of the assertion. This means that every clause that can occur
by itself has an annotation with that name and retains that structure throughout all expressions, even
within strings. Again, the same example in previous sections is modified for this approach in figure 3.4.

@Model("public @NonNull int [] elements;")
public abstract class IntList {

@Ensures("#result == elements.length;")
public abstract @Pure int size();

@Signals("(IndexOutOfBoundsException e)"
+ "index < 0 || index >= elements.length;")

public abstract @Pure int elementAt(int index)
throws IndexOutOfBoundsException;

}

Figure 3.4 Clausal Annotation Example

3.3 Discussion

Now I evaluate each approach based on the criteria stated above.

3.3.1 Consistency

The single annotation approach is the most consistent of the three, since the annotation encompasses
the entire grammar. This becomes slightly less consistent when using syntactic sugar like @Pure, since
there are now two ways of specifying a single pure assertion on a method. The clausal approach is
slightly less consistent than the single annotation approach, especially when it comes to using parame-
ters for a @SpecCase (see figure 1.1 on page 2). For example, in one area, a requires clause might
appear as

@Requires("amount > 0;")

but in the @SpecCase it would appear as

requires = "amount > 0;"

However, since this approach requires that the content inside the strings is the same and thus does not

split up assertions, it is much more consistent than the parameter approach.
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3.3.2 Readability

The clausal approach is the most readable of the three, since it strikes a compromise between the

two extreme approaches. The single annotation approach obfuscates the assertion meaning by forcing

the reader to read past @JML(..) to figure out the actual assertion type. The parameter approach

separates every component of the predicate into different pieces in the annotation, eliminating the

sentence-like structure of the JML expressions. The signals clause in the example illustrates this

point well, since a phrase like

//@ signals (IndexOutOfBoundsException e)
//@ index < 0 || index >= elements.length);

translates into

@Signals(type = "IndexOutOfBoundsException", ident = "e",
value = "index < 0 || index >= elements.length;")

This translation becomes even more complicated for modifiers that turn into their own language

constructs, such as model. This strategy transforms a statement like

//@ public model non_null int [] elements;

into

@Model(visibility = Visibility.PUBLIC, nonnull = true,
value = "int [] elements;")

It is unreasonable to create fields for all of the other modifiers that can attach to model. Even though

these modifiers are known (see JML Reference Manual, Appendix B), even slight language redesigns

would require changes in this annotation.

The clausal approach strikes a nice balance between the two, specifying the type of the assertion

while not splitting the predicate into pieces. In this approach signals becomes

@Signals("(IndexOutOfBoundsException e)"
+ "index < 0 || index >= elements.length;")

while model turns into

@Model("public @NonNull int [] elements;")

a much shorter and more compact annotation.
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3.3.3 Usability

The single annotation approach may be more usable by JML veterans, but it does not guide new

users on the different elements of the annotations. The parameter approach is the most usable, as it lists

in its specification the elements of the annotation, their types, and whether or not they are required.

For example, the @Signals clause shows the user that while merely a type of exception is required,

the user can also specify an identifier and a predicate. The clausal approach only specifies the type

of the annotation and nothing about the inner syntax, so it is only slightly more usable than the single

annotation approach.

3.3.4 Extensibility

The single annotation and clausal approaches are the most extensible, since most or all of the

language extensions are handled by the parser. Thus, the parser continues to be responsible for the

error checking, while the hand-written code only checks the type of the annotation and feeds all relevant

information back to the parser. In the parameter approach, a language change requires adding a new

annotation component as well as new hand-written code to feed it to the parser, increasing the workload

for the tool programmers and the possibility for errors.

3.3.5 Summary

Using these criteria, I conclude that the single annotation approach is not helpful to new users and

that the parameter annotation approach is too complicated. This leaves the clausal annotation approach

as the best compromise. In addition, since the clausal annotation forwards much of the work to the

parser, it allows different projects, such as the Modern Jass project, to use the basic JML language

while implementing their own language enhancements and expression grammars. Since I see this as

the best approach, the rest of this chapter focuses on translating various JML language constructs into

clausal annotations.
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3.4 Use Cases

The running example in the previous sections does not cover many of the other JML use cases,

so this section covers other cases, discussed while reviewing this technique, that have contributed to

overall design decisions.

3.4.1 Specification Definition Modifiers versus Specification Clauses

The biggest problem has been dealing with class-level specification definition modifiers (like model)

verses class-level specification clauses (like invariant). To see this difference, look at the example

in figure 3.5 in the regular JML syntax:

public abstract class IntList {

//@ public model non_null int [] elements;
//@ public invariant elements.length < 10;

}

Figure 3.5 Model and Invariant Base Example

Now look at the original clausal proposal in figure 3.6.

@Model(header = "public @NonNull", value = "int [] elements;")
@Invariant(header = "public", value = "elements.length < 10;")
public abstract class IntList {}

Figure 3.6 Model and Invariant Clausal Example

It is a very difficult syntax to work with, specifically because of having to explicitly specify the

modifiers in the header field. It would be easier to express the model field as

@Model("public @NonNull int [] elements")

However, using this approach consistently with invariant would look like

@Invariant("public elements.length < 10")

This looks strange to anyone familiar to Java since it attempts to assign a visibility attribute to an

expression. However, since these are classifying two different JML constructs, it would not violate
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consistency to treat them differently. Thus, it would be acceptable to write the model field as above

while writing the invariant specification as

@Invariant(header = "public", value = "elements.length < 10;")

since type specifications can only be modified with public, protected, private, instance,

or static. While it would be easier to use an enumerated type for the modifiers, there is a possibility

that any specification could use two of these modifiers together (when using instance or static).

From a semantic point of view, the visibility modifiers are not of the same type as the instance or

static modifier, making it unreasonable to create a single enumerated type and too complicated to

make two types. Thus, the modifiers exist as simple parsed strings.

3.4.2 Model Methods

Another advantage of the previous approach is that it makes it easier to specify model methods.

Compare the model method in the original syntax in figure 3.7 to the proposed clausal syntax in

figure 3.8 on the next page. The @ModelDefinitions annotation allows more than one @Model

annotation to attach to the class since Java syntax does not allow for more than one type of annotation

to attach to any Java construct. While this is cumbersome, adhering to pure Java 5 syntax allows syntax

checkers in IDEs to signal an error if the array or string is malformed, something not available with the

current JML syntax.

public abstract class IntList {

//@ public model non_null int [] elements;

/*@ public model int average() {
@ int total = 0;
@ for (int i = 0; i < elements.length; i++) {
@ total += elements[i];
@ }
@ return total / elements.length;
@ }
@ */

}

Figure 3.7 Model Method Base Example
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@ModelDefinitions({
@Model("public @NonNull int [] elements;"),
@Model("public int average() {"

+ " int total = 0;"
+ " for (int i = 0; i < elements.length; i++) {"
+ " total += elements[i];"
+ " }"
+ " return total / elements.length;"
+ "}")

})
public abstract class IntList {}

Figure 3.8 Model Method Clausal Example

3.4.3 Specification Cases

Finally, a major component of heavyweight JML specifications is the specification case. Figure 3.9

contains a simple example in the regular syntax while figure 3.10 on the next page shows the example

in the originally proposed clausal syntax. It would be shorter to specify the @SpecCase annotations as

constructs like @NormalBehavior or @ExceptionalBehavior that inherit from a common annota-

tion @SpecCase, but this is not possible since Java does not allow annotation inheritance.

public abstract class IntList {

//@ public model non_null int [] elements;

/*@ public normal_behavior
@ requires 0 <= index && index < elements.length;
@ ensures \result == elements[index];
@ also
@ public exceptional_behavior
@ requires index < 0 || index >= elements.length;
@ signals (ArrayIndexOutOfBoundsException e)
@ index < 0 || index >= elements.length;
@*/

public abstract /*@ pure @*/ int elementAt(int index)
throws ArrayIndexOutOfBoundsException;

}

Figure 3.9 Specification Case Base Example

To shorten this annotation, I use the header field technique from the model and invariant cases

instead, as shown in figure 3.11 on the following page. This reduces the number of fields in the
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@Model("public @NonNull int [] elements;")
public abstract class IntList {

@Also({
@SpecCase(visibility = Visibility.PUBLIC,

specCaseType = SpecCaseType.NORMAL_BEHAVIOR,
requires = "0 <= index && index < elements.length;",
ensures = "#result == elements[index];"),

@SpecCase(visibility = Visibility.PUBLIC,
specCaseType = SpecCaseType.EXCEPTIONAL_BEHAVIOR,
requires = "index < 0 || index >= elements.length;",
signals = "(ArrayIndexOutOfBoundsException e)"

+ "index < 0 || index >= elements.length;")
})
public abstract @Pure int elementAt(int index)

throws ArrayIndexOutOfBoundsException;

}

Figure 3.10 Specification Case Clausal Example

@SpecCase, making it easier to specify and read.

@Model("public @NonNull int [] elements;")
public abstract class IntList {

@Also({
@SpecCase(header = "public normal_behavior",

requires = "0 <= index && index < elements.length;",
ensures = "#result == elements[index];")

@SpecCase(header = "public exceptional_behavior",
requires = "index < 0 || index >= elements.length;",
signals = "(ArrayIndexOutOfBoundsException e)"

+ "index < 0 || index >= elements.length;")
})
public abstract @Pure int elementAt(int index)

throws ArrayIndexOutOfBoundsException;

}

Figure 3.11 Specification Case Clausal Example (with strings)
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CHAPTER 4. IMPLEMENTATION

Other than language design, the majority of the work took place in the compiler. This section covers
adapting the JML compiler to parse Java 5 annotations, adding the additional compiler pass to process
the JML annotations, and translating the annotations for insertion into the JML abstract syntax tree1.

4.1 Prework

Current versions of the JML compiler only handle Java 2 syntax and do not fully support Java 5
constructs like annotations or generics. The first stage of work involved changing the compiler syntax
to include Java 5 annotations and changing the bytecode reader and writer to allow for the new format.

4.1.1 Resolving Syntax Tree Issues

The current implementation of JML defines its grammar using the ANTLR parser-generator [23]
and is based off of a public-domain Java 2 grammar found on ANTLR’s website. In order to start
the move up to Java 5, David Cok used an updated version of the same public-domain grammar and
integrated JML constructs into the existing syntax. However, since Cok’s compiler did not include the
JML runtime assertion checker (necessary for processing such assertions as requires), it could not
be used to implement this project, so I used the existing JML2 compiler instead.

For the most part, this integration was smooth. Only one problem persisted which I ignored in
order to advance the work. In order to allow users to declare an annotation definition, the Java 5
language requires this definition to be prefaced by @interface. Since all other annotations can also
appear in exactly the same place as this annotation, ANTLR throws a nondeterminism warning between
@interface and @ identifier. Other parser implementations took care of this by adding looka-
head in this location, but adding a lookahead statement to the JML compiler caused token source code
locations to be incorrect. Since JML unit tests make sure that error messages point to the correct token
in errors, adding the lookahead made tests fail. I left this problem unresolved since it would be easier
to design a new compiler from scratch than try to figure out the source of this problem. Revamping the
compiler is out of the scope of this thesis.

4.1.2 Writing Bytecode

The other major error that came up was in importing classes compiled in Java 5 into the modified
JML2 compiler. The compiler complained that it found an unknown symbol ’e’ in the bytecode. Ac-
cording to a revision of the second edition of the Java Virtual Machine Specification, the symbol ’e’
stands for an enumeration type [35]. Integrating it into the bytecode reader took care of the problem.

1Some of the code segments in this chapter are shortened from the actual implementation for clarity
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4.2 Adding an Additional Compiler Pass

The next stage of the work involved processing the strings inside of the annotations, which required
an extra compiler pass.

4.2.1 Resolving Annotation Types

In practice, not all annotations in a Java class would be JML annotations. To distinguish JML an-
notations from other annotations with the same simple name, the compiler must resolve an annotation’s
full package name before processing the annotations. Since the first pass of the JML compiler takes
care of this, the new compiler pass must occur after this pass. However, once the compiler adds all of
the new additions to its syntax tree, it needs to run the annotations through the first pass as well, requir-
ing it to backup and reprocess. Instead of doing this, the added compiler pass additionally resolves the
annotation packages before continuing its processing, as shown in figure 4.1.

Set annotations = self.annotations();
for (Iterator iter = annotations.iterator(); iter.hasNext(); ) {
JAnnotation annotation = (JAnnotation) iter.next();
annotation.checkType(context);

}

Figure 4.1 Partial Package Resolution

This piece of code gets the annotations from the code construct being processed (say a method or
class) and calls annotation.checkType(context) to tell each annotation to check and store its
full package name, according to the context created and stored by the compiler. This allows future
methods to filter annotations by their package names and only process JML annotations.

4.2.2 Walking the Abstract Syntax Tree

The JML compiler regularly uses the visitor pattern [9] in order to walk the syntax tree, so it is
necessary to include only one class to perform this weaving. The class takes the compilation unit as
an argument, brakes it up into its separate parts, and calls the appropriate visitors. The visitor pattern
makes this process much easier since the visitors are already included in all necessary classes. All
that had to be added in some places were some public accessors so that the visitor could access the
different constructs. One such example of this is in the class JMethodDeclaration, which stores the
annotations from the parser and allows indirect access them by way of an unmodifiable Set, as shown
in figure 4.2. Thus, any other class with an instance of this class can access the annotations but not
have the ability to change them.

public Set annotations() {
return Collections.unmodifiableSet(annotations);

}

Figure 4.2 Annotation Accessor in JMethodDeclaration.java
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4.3 Translating the Annotations

The final stage of work involved reading the annotations and integrating them into the abstract
syntax tree.

4.3.1 Writing the Parser

The current compiler parses the entire compilation unit, both the Java syntax and the JML syntax
included in comments. While using the new annotations requires parsing all of the Java expression
grammar plus the added JML expression grammar, it is necessary to start parsing using arbitrary meth-
ods from the parser, based on the type of annotation being processed. For example, when parsing
a @Requires annotation, the program calls jmlRequiresClause[..] in the parser, shown in fig-
ure 4.3. It parses the specific type of predicates that can appear inside of a requires clause (such as
jmlPredicate[] or #not_specified) and returns an instance of JmlRequiresClause contain-
ing the partial abstract syntax tree.

jmlRequiresClause [TokenReference sourceRef, boolean redundantly]
returns [JmlRequiresClause self = null]
{ JmlPredicate predicate = null; }
:
( predicate = jmlPredicate[] | "#not_specified" )
SEMI
{ self = new JmlRequiresClause(sourceRef, redundantly, predicate); }
;

Figure 4.3 Grammar for jmlRequiresClause[]

I originally thought I could extend the original Jml.g grammar with the new Jml5.g grammar, but
this caused nondeterminism errors. Specifically, figure 4.4 shows an abbreviated version of the original
JML grammar

jmlSpecClause[] : (jmlRequiresClause[] | jmlEnsuresClause[] | ...) ;

jmlRequiresClause[] : "requires" jmlPredicate[] SEMI ;

jmlEnsuresClause[] : "ensures" jmlPredicate[] SEMI ;

Figure 4.4 Partial JML Grammar

while figure 4.5 shows what the abbreviated JML5 grammar would look like when overridden.

jmlSpecClause[] : (jmlRequiresClause[] | jmlEnsuresClause[] | ...) ;

jmlRequiresClause[] : jmlPredicate[] SEMI ;

jmlEnsuresClause[] : jmlPredicate[] SEMI ;

Figure 4.5 Partial JML5 Grammar
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The problem is with jmlSpecClause[]. In the original JML grammar, the "requires" and
"ensures" clauses keep the parser from having to guess which production to jump to. In JML5, these
are moved to @Requires and @Ensures and eliminated from the parsing grammar. However, the
parser no longer can differentiate between the two productions because of the same starting produc-
tion, jmlPredicate[]. I solved this problem by taking jmlSpecClause[] completely out of the
grammar by rewriting Jml5.g to not extend Jml.g.

An alternate way to approach this problem is to simply call jmlPredicate[] for all of the an-
notations that need it. However, this approach is very complicated when considering parsing a more
complicated expression, such as jmlRepresentsClause[] in figure 4.6. Parsing through syntax like
(ASSIGN | L_ARROW) is much more suited for a parser-generator than it is for handwritten code, so
it is easier and more consistent to call only one entry parser method per annotation.

jmlRepresentsClause [..] :
jmlStoreRefExpression[]
( (ASSIGN | L_ARROW) jmlSpecExpression[] | "#such_that" jmlPredicate[] )
SEMI
;

Figure 4.6 Grammar for jmlRepresentsClause[]

4.3.2 Integrating the Parsed Elements

At the beginning of the compilation pass, the visitor class walks through the abstract syntax tree,
calling various helper methods that use the parser to construct the partial abstract syntax tree for the
JML expressions. A single method contains the call to the parser, relying on method names and reflec-
tion to call the appropriate parser method, as shown in figure 4.7.

private Object parse(TokenReference token, String inputString,
String method, Object[] arguments, Class[] parameterTypes) {
...
try {

parser = new Jml5Parser(..);
Method rule

= parser.getClass().getDeclaredMethod(method, parameterTypes);
return rule.invoke(parser, arguments);

} catch(Exception e) {
compiler.reportTrouble(e);

}
return null;

}

Figure 4.7 Parser Method

This method was the fastest and most general way to construct the parser, but it has its problems.
This technique is so general that in the event of an error, it can only return null since it has no
knowledge of the type of class in the abstract syntax tree it should be returning. Also, the compiler does
not halt at this point since it is collecting errors to display to the user at the end of the full compilation.
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The more type-safe way would be to construct a parser method for each call into the parser, since
each method called in the parser returns a specific type to place into the abstract syntax tree. While
factory methods could be used to construct the parser, each parser method needs the same boilerplate
error handling code, so placing these calls into separate methods requires a lot of code duplication.
Neither the template nor strategy design patterns work here because each method returns a different
type. The only solution that might work would be to use generics, which would allow each parser
method to exist in a separate class which replaces a generic type T with the return type of the parser
method. However, at the time of this writing, there is no full Java 5 support in the JML2 parser and
thus no full generics support.

The rest of the methods in the visitor class are helper methods, designed to parse each annotation
separately, based on its structure. Most of the code here involves parsing through the actual annotation
structure, and while there are tools to assist with this process, they are specifically designed for Java-
only syntax trees. JML uses wrapper classes around each of the classes representing Java types, making
it necessary to build a separate annotation walker. For example, methods are represented initially in the
class JMethodDeclaration, shown in figure 4.8, with its accessors.

public class JMethodDeclaration extends JMemberDeclaration {

public long modifiers() {
return modifiers;

}

public Set annotations() {
return Collections.unmodifiableSet(annotations);

}

public void setModifiers(long modifiers) {
this.modifiers = modifiers;

}

}

Figure 4.8 JMethodDeclaration.java

Since JML adds a lot more features to the Java language, such as a JmlMethodSpecification,
wrapper classes like JmlMethodDeclaration must contain accessors to both the method specifica-
tion and the delegee class JMethodDeclaration, as shown in figure 4.9 on the next page.

When the visitor visits an instance of JmlMethodDeclaration, as shown in figure 4.10 on
page 20, it uses the filterAnnotations(..) method to preprocess the annotations, placing the
JML-only annotations into a Map using the annotation name as its key. Then, it calls methods like
translateModifierAnnotation(..) and translateSpec(..) to determine the necessary in-
formation to parse inside the annotation and use that information to call the parser and return the
resulting partial abstract syntax tree. Then the visitor can use the accessors to add the partial abstract
syntax tree to the existing one.
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public class JmlMethodDeclaration extends JmlMemberDeclaration {

public long modifiers() {
return delegee.modifiers();

}

public Set annotations() {
return delegee.annotations();

}

public void setModifiers(long modifiers) {
delegee.setModifiers(modifiers);

}

public JmlMethodSpecification methodSpecification() {
return methodSpec;

}

public void setMethodSpecification(JmlMethodSpecification methodSpec) {
this.methodSpec = methodSpec;

}

}

Figure 4.9 JmlMethodDeclaration.java

4.4 Conclusion

This technique requires a lot of repetitive code, since each helper method returns a different type,
based on the annotation it processes. Building a separate annotation walker would have assisted in
reducing the code in this process, but since this is a prototype, it is easier and faster to just copy and
paste new sections of code. However, it does eliminate the complicated comment parsing involved in
the normal JML2 parser, since the final Jml5.g grammar does not inherit from the original grammar.
Also, this technique would be much simpler when basing the JML compiler off of an existing compiler
with better abstract syntax tree access. This would eliminate lot of the helper code in JML involved in
parsing through annotations in the syntax tree since it would be delegated to the existing compiler.
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public void visitJmlMethodDeclaration(JmlMethodDeclaration self) {
Map jmlAnnotations = filterAnnotations(self.annotations());

long modifiers = translateModifierAnnotations(jmlAnnotations);
if (modifiers != 0) {

self.setModifiers(self.modifiers() | modifiers);
}

JmlSpecification spec = translateSpec(jmlAnnotations);
if (spec != null) {

self.setMethodSpecification(spec);
}

}

Figure 4.10 Visiting a JmlMethodDeclaration
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CHAPTER 5. CASE STUDIES

To explore the initial use of the new JML annotations, I placed them inside of several test cases,
designed to both check how they looked and how the parser performed.

5.1 Two Small Test Cases

The marker and single element annotations were the easiest to program and thus were the first to
have test cases designed for them. I compared each of these test cases to how they should report errors
with the current JML parser.

The first class, MarkerAnnotations, tests specifically the @Pure annotation, as seen in figure 5.1.

package org.jmlspecs.checker.testcase.syntax.annotations;

import org.jmlspecs.annotations.*;

public class MarkerAnnotations {

private @SpecPublic int variable;
private @SpecPublic int variable2;

public @Pure int getVariable() {
return variable;

}

public @Pure void setVariable(int variable2) {
this.variable2 = variable2;

}

}

Figure 5.1 MarkerAnnotations.java

The first method, getVariable(), is pure as marked, but the second method, setVariable(..),
is not pure as marked since it has the side effect of assigning to variable2. The new JML checker
correctly alerts the user to this fact.

The second class, SingleElementAnnotations, tests the @Requires and Ensures clauses,
since they are the most common clauses to contain parsible predicates, as seen in figure 5.2 on the
following page.

In the same way, the first method, increment1(), has a correct specification, but the second
method, increment2(), does not increment test2 as specified. When compiled with the runtime
assertion checker and run, the program correctly throws a postcondition error for increment2().
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package org.jmlspecs.checker.testcase.syntax.annotations;

import org.jmlspecs.annotations.*;

public class SingleElementAnnotations {

private @SpecPublic int test1 = 0;
private @SpecPublic int test2 = 0;

@Requires("test1 >= 0;")
@Ensures("test1 >= 1;")
public int increment1() {

return test1++;
}

@Requires("test2 >= 0;")
@Ensures("test2 >= 1;")
public int increment2() {

return test2;
}

}

Figure 5.2 SingleElementAnnotations.java

5.2 One Large Test Case

Finally, a large class, AAList, tests some of the features used by the advanced specification cases,
as shown in figure 5.3 on the next page. This is a fairly simple array-type class, adapted from some
of the specifications of other Java collection classes, but it does effectively demonstrate the different
normal and exceptional behavior specification cases, as well as displaying some of the non-Java math-
ematical expressions JML is capable of, such as the two-way implication (<==>).

The specification here is correct, but a good test to see whether the runtime assertion checker
is working is removing the check for a negative initialSize from one of the constructors, as in
figure 5.4 on page 24, leaving the specification incorrect.

Then, initializing the class with a negative initialSize and compiling it with the runtime asser-
tion checker throws an exceptional postcondition error, since the check for the negative initialSize
is absent.

The next chapter will go into more detail about how these annotations can be used in actual appli-
cations.
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package org.jmlspecs.checker.testcase.syntax.annotations;

import org.jmlspecs.annotations.*;
import org.jmlspecs.models.*;

public class AAList {

private @SpecPublic Object[] array;
private @SpecPublic int size;

@Also({
@SpecCase(
header = "public normal_behavior",
requires = "0 <= initialSize;",
assignable = "array, size;",
ensures = "array != null && array.length == initialSize"

+ "&& this.isEmpty();"),
@SpecCase(

header = "public exceptional_behavior",
requires = "initialSize < 0;",
assignable = "#nothing;",
signalsOnly = "IllegalArgumentException;",
signals = "(IllegalArgumentException) initialSize < 0;")

})
public AAList(int initialSize) {

if (initialSize < 0) {
throw new IllegalArgumentException("Illegal initial size: "

+ initialSize);
}
array = new Object[initialSize];
size = 0;

}

@Assignable("array, size;")
@Ensures("array.length == 10 && size == 0 && this.isEmpty();")
public AAList() {

array = new Object[10];
size = 0;

}

@Ensures("#result == size && #result >= 0;")
public @Pure int size() {

return size;
}

@Ensures("#result <==> (size == 0);")
public @Pure boolean isEmpty() {

return size() == 0;
}

}

Figure 5.3 AAList.java



24

@Also({
@SpecCase(

header = "public normal_behavior",
requires = "0 <= initialSize;",
assignable = "array, size;",
ensures = "array != null && array.length == initialSize"

+ "&& this.isEmpty();"),
@SpecCase(

header = "public exceptional_behavior",
requires = "initialSize < 0;",
assignable = "#nothing;",
signalsOnly = "IllegalArgumentException;",
signals = "(IllegalArgumentException) initialSize < 0;")

})
public AAList(int initialSize) {

array = new Object[initialSize];
size = 0;

}

Figure 5.4 AAList Incorrect Constructor
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CHAPTER 6. USING JML ANNOTATIONS FOR VERIFICATION OF
WEB-BASED DATA ENTRY

Modified from a paper to be submitted to a venue to be determined1

Kristina B. Taylor

6.1 Abstract

In the last several years, collaborations in the scientific and medical fields have expanded to include
members from around the world, making distributed web-based data entry forms increasingly popular.
Data entered in these forms is safety-critical because of its applications in scientific databases, military
vehicles, and medical therapy devices. Such safety-critical systems require data type and number range
verification on entry to detect errors early and prevent accidents by allowing immediate replacement of
error-prone or incorrect data with safe and correct data.

This paper demonstrates the integration of language constructs from the Java Modeling Language
(JML), a Java code specification language, with Apache Tapestry-based web forms. Currently, JML
tools cannot copy errors found in code specifications to web forms. This new approach allows program-
mers to write JML specifications for the web form using Java 5 annotations, automatically producing
error checking code that highlights entered data not meeting the requirements specification.

6.2 Introduction

Since the Internet has gained popularity as an information medium, companies and organizations
have used the web to host services such as online stores, digital libraries, and information search en-
gines. Each one of these services relies on the accurate recording and submission of entered data, but
they are not safety-critical since their failure does not lead to accidents. It is not until these compa-
nies use data entry forms for safety-critical applications that data validation requires further research.
Several incidents, such as the USS Yorktown failure [30] and the Therac-25 deaths [20], make it clear
that data entry and validation is just as important to safety-critical systems as the testing of the system
itself.

This paper focuses on one such way to perform input data validation, by marrying web form design
with programming language specification languages, such as the Java Modeling Language (JML) [19].

6.3 Significance

To explain the necessity of validating input data, this paper highlights two separate user interface-
related accidents. These accidents cover separate areas of input data validation and inspire two scenar-

1An early version of this section was written as a class project for Computer Science 515
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ios covered later in the paper.
A software glitch caused the first accident, which stranded the USS Yorktown in September 1997.

According to Slabodkin, ”the Yorktown lost control of its propulsion system because its computers
were unable to divide by the number zero.” The system administrator entered a zero in an input field,
causing a database overflow and subsequent system crash. But most disturbing is that Atlantic Fleet
officials stated that ”program administrators are trained to bypass a bad data field and change the value
if such a problem occurs again” [30].

Bad user interface design caused the second accident when, between June 1985 and January 1987,
a radiation therapy machine called the Therac-25 fatally overdosed six people. The device had two
modes (x-ray and electron), and the operator was responsible for both selecting one of the modes and
entering the radiation dosage. Once it received its instructions from the interface, the machine normally
reconfigured its physical configuration based on the entry mode in order to deliver the correct dose and
protect the patient from overdose. Because the operator often entered data faster than the designers
expected, the machine sometimes operated while the set mode of the device did not correspond to the
physical configuration of the system, causing a massive overdose [20].

6.4 Related Work

Form data verification has existed since programmers needed to check the integrity of data intended
for use by a database or service, but as demonstrated by the previous examples, this process has been
largely ad-hoc. Faulkner and Storey state that while programmers have often used logic and good
engineering techniques to double check these data attributes, these techniques are largely omitted from
systems. In addition, they note that data-driven systems often need to manipulate and transform entered
data, so data verification at the source is essential to the safety of the system. Finally, they assert that the
”use of data entry validation is sufficient to demonstrate that adequate data integrity has been attained”
[8]. The authors offer many ideas about data entry and transformation verification but do not offer any
concrete techniques or data validation software.

Knight, Strunk, Greenwell, and Wasson take data verification one step further, illustrating a tech-
nique they used in the Minimum Safe Altitude Warning (MSAW) system, a data-driven safety system
used by the U.S. Federal Aviation Administration. They create a data specification to identify places
where the data may be malformed or wrong. The specification includes three aspects (data syntax,
data context, and data semantics), which identify where errors can propagate in data-driven systems.
One advantage the authors notice about data verification was that it has the ”potential to mechanically
show properties of interest” to inspectors and regulators [17]. Since this specification is designed for
extremely complex real-time systems, it does not apply to validating data entered into simple web
forms.

Maret, Beney, and Rubel do study entering information into web forms for remote medical systems.
They describe a system that takes certain data from the context of the local information system and
assists users in filling out forms. Since it depends on local data to assist form completion, it assures
that the form data is consistent with already available data [21]. While this helps web form completion,
it does not introduce a definitive system for web form validation.

Several web frameworks introduce their own flavor of form validation, but they are all different.
Java Server Faces has minimum/maximum value and String length validators, but does not provide
parsing for arbitrary Java expressions [33]. Apache Struts requires the user to place form validation in
XML files, use a Struts-specific expression language, and generate the error messages manually [1].
While the latter allows message flexibility, using a Struts-specific expression language separated into
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XML files makes it hard for the user to both learn and use. The Spring Framework goes a step further by
allowing Java expressions, but it still requires setup in XML files, which separates the validation from
the code [14]. Apache Tapestry, the web framework used in this paper, has form validation capabilities
as well, but these do not parse Java expressions [2].

Even though data validation does not have a platform on the web, it does have a platform for regular
programming languages in the form of a specification language. The specification language used in this
paper, JML, combines several aspects from other specification languages such as Eiffel [22], the Larch
language family [12], and VDM [15], and follows in the design by contract tradition [4]. At least one
group has used JML for web service verification [7], but they focus on verifying the entire system flow
and not on data entry validation. Thus, data entry validation using specification languages requires
more research to find out whether it is a valid model.

6.5 Approach

This paper bases its proposed approach on the approach taken in JML’s runtime assertion checker
(RAC). The RAC translates JML into executable methods and inserts them in appropriate places in the
code with the help of a bytecode writer. When the user runs the code, these methods check the runtime
values expressed in the assertions and alerts the user if any of the assertions fail [5]. While the RAC
does this for normal Java code, it does not yet have the capability to write its error-checking code into
HTML web forms.

However, some web frameworks, like Apache Tapestry [2] used in this paper, use pure Java classes
to implement form logic inside of an HTML form. Tapestry uses two structures to represent a full
web page: an HTML template, as in figure 6.1 and a corresponding Java class, as in figure 6.2 on the
following page.

<html xmlns:t="http://tapestry.apache.org/schema/tapestry_5_0_0.xsd">
<head><title>Login</title></head>
<body>

<t:form t:id="login">
<t:label for="name"/>
<input t:type="TextField" t:id="name"/><br/>
<t:label for="password"/>
<input t:type="TextField" t:id="password"/><br/>
<button type="submit">Submit</button>

</t:form>
</body>

</html>

Figure 6.1 Tapestry Template Example

Notice how all of the names of the fields in the template match up with those in the Java class. The
only exception is the form field, which does not have any direct mapping to the template. Tapestry
takes care of this by using the @Component(id = "login"), where the id field name must match
the form id name. This allows insertion of JML code straight into the Java classes in order to record
data input errors.

The JML syntax used in this paper differs from the existing JML syntax, which is normally stored
in comments. Some design by contract languages, such as Contract4J [37] and Modern Jass [26], use
the code annotations introduced in Java 5, which attach textual metadata to code constructs. The author
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public class Login {

private Form form;
private String name, password;

@Component(id = "login")
public Form getForm() { return form; }

public String getName() { return name; }

public void setName(String name) { this.name = name; }

public String getPassword() { return password; }

public void setPassword(String password) { this.password = password; }

}

Figure 6.2 Tapestry Java Example

has worked with the creator of Modern Jass to come up with a common set of Java 5 annotations for
use in both Modern Jass and JML.

For prototype purposes, the easiest way to insert the assertion code into the Tapestry page class is
to use a bytecode writer like Javassist [6], since it allows the programmer to insert bytecode into a class
while typing it in normal Java syntax. Javassist understands Java 5 annotations, so it is a good choice
for this approach.

6.6 Results

The following sections demonstrate how this approach deals with two separate scenarios. The first
scenario involves just checking the bounds on a single field in a form; the second scenario involves
checking the bounds based on the interaction of multiple fields in the form.

6.6.1 Checking Individual Properties

This first scenario closely relates to the Yorktown accident, since it deals with data entry in a single
field. In addition, the author currently works with scientists to come up with web forms for entering
scientific data, so the following example is similar to the code used in that project. Consider a web
form for entering a new element into a database. The Tapestry Java code for programming that web
form appears as in figure 6.3 on the next page (abbreviated for space).

This example introduces the JML language constructs @Requires and @Ensures. For the method
setMass(..), @Requires("mass > 0") states that, before the method executes, the formal param-
eter mass must be non-zero positive, and @Ensures("this.mass == mass") states that, after the
method executes, the class variable mass is equal to the same value as the formal argument mass.
Web forms are only concerned about the value being set, so looking at the @Requires clause is suffi-
cient. In order to record an error, Tapestry allows the class to declare a variable form (see figure 6.2),
which represents the containing form, and record the error on it. This is where the bytecode writer
comes into play; it changes the implementation of setMass(..) directly in the Java class compiled
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public class NewElement {

@Requires("name.length > 0")
@Ensures("this.name == name")
public void setName(String name) { this.name = name; }

@Requires("number > 0")
@Ensures("this.number == number")
public void setNumber(int number) { this.number = number; }

@Requires("mass > 0")
@Ensures("this.mass == mass")
public void setMass(int mass) { this.mass = mass; }

}

Figure 6.3 Tapestry Web Form Example

from figure 6.3 to include the code to record the error with the form. Figure 6.4 shows the Java code
representation of the modified bytecode.

@Requires("mass > 0")
@Ensures("this.mass == mass")
public void setMass(int mass) {

if (!(mass > 0)) {
form.recordError("Form requires that mass > 0");

}
this.mass = mass;

}

Figure 6.4 Transformed setMass(..) Method

Since the assertion inside of the if block comes directly from the @Requires annotation, the pro-
gram should automatically insert the entire block into the bytecode itself. At this point the program uses
the Javassist library to automatically find loaded classes and, based on several criteria, add additional
Java constructs to the method without user interaction. Given a method of type CtMethod, Javassist
inserts any String at the beginning of the method by using the CtMethod.insertBefore(..)
method. This transforms the methods in the client class shown in figure 6.3 into the bytecode version
of the example in figure 6.4. After the program makes this change to the class files, Tapestry loads
these as page classes and transforms them into a dynamic webpage.

If a user now enters data into the form and forgets to enter the mass data, leaving the value at 0, on
submission of the form, the webpage will throw an error, both telling the user where the error is and
what values the form will accept. Figure 6.5 on the next page shows what the form looks like after the
user inputs an incorrect value.

6.6.2 Checking Properties on Form Submit

This second scenario relates to the Therac-25 accidents, since it deals with mode selection on a user
interface. Consider the case when multiple fields on a form must agree before the data is valid. In this
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Figure 6.5 Tapestry Error Form

case, the user must set a certain mode in order for other entered value to be valid. In this case, two of
the modes are two chemicals: chemical X and chemical Y. The safe human dosage for chemical X is
less than 5 cc; the safe dosage for chemical Y is between 10 and 15 cc. If the user can enter both types
of dosage on the same form, then the user must first select the correct chemical and then type in the
correct dosage based on the selected chemical.

The approach used in the first scenario does not work here since it assumes that all data fields are
independent of each other. However, a valid assumption for this new case is that all data is final when
the user submits the form. The program can instead check all values when the user submits the form
and throw an error when the check does not succeed. Again, the Tapestry code appears as in figure 6.6.

This time, the method onSubmitFromNewDose() needs to change in order to check its @Requires
conditions before it executes the println(..) statement. Thus, the bytecode for the new version of
onSubmitFromNewDose() looks like figure 6.7 on page 32.

When the user enters data into the form, then the numbers entered depend on the mode that the user
has set. If the user types in 12 cc but forgets to switch the mode to chemical Y, then the form alerts the
user of the mistake, as in figure 6.8 on page 32.

6.7 Evaluation

As it is a prototype, this implementation is primitive and needs work. First, the programmer must
run a separate program to modify and upload the class files before starting Tapestry. This program
must know exactly which file to modify and which form to submit the errors to, both of which are
bad assumptions to make. Integrating the program as a service in Tapestry can solve these problems,
since Tapestry natively makes several assumptions about where the programmer places files and how
the programmer denotes specific fields on the pages. Tapestry loads all page classes from a specified
package and requires that all fields representing forms in the page classes are either named exactly as
they are in the corresponding page template or have a @Component(id = "..") annotation mapping.
Implementing both of these features requires much more research into how Tapestry starts up, for this
program must run before Tapestry takes over and starts its own class modification.

Second, the user alert messages are just based on the text in the @Requires annotation and do
not assist the user much in correcting the error. The normal JML implies syntax is not currently
available to this new annotation syntax, so the programmer must manually translate the statement
@Requires("isModeX() ==>dosage < 5") to its Java-readable logical equivalent. Also, Javas-
sist’s documentation states that it does not handle Java 5 enumerations yet, so the programmer must
use helper methods like isModeX() in place of mode.equals(Mode.CHEMICAL_X), which is much
more readable.
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public class NewDose {

public enum Mode { CHEMICAL_X, CHEMICAL_Y };

@Requires("mode != null")
@Ensures("this.mode == mode")
public void setMode(Mode mode) { this.mode = mode; }

@Requires("dosage >= 0")
@Ensures("this.dosage == dosage")
public void setDosage(int dosage) { this.dosage = dosage; }

@Requires("(!isModeX() || dosage < 5)" +
"&& (!isModeY() || (10 < dosage && dosage < 15))")

public void onSubmitFromNewDose() {
System.out.println("success");

}

private boolean isModeX() {
return mode.equals(Mode.CHEMICAL_X);

}

private boolean isModeY() {
return mode.equals(Mode.CHEMICAL_Y);

}

}

Figure 6.6 Multiple Property Web Form

One unanswered question is whether running JML’s static analysis tools on the form will find
other errors during the programming process. For example, there are @Pure annotations on the getter
methods, which imply that the method only returns the requested value and has no side effects. JML
can check for purity and alert the programmer whether the method is really pure or not. This prevents
unwanted side effects, such as writing to a database during a call to a getter method instead of waiting
until the program has verified all values. Other JML constructs could assist in similar ways, making
the form behave exactly like the specifications, but this is a topic for future research.

The most obvious disadvantage is that this technique only currently works with the Tapestry frame-
work. Other web frameworks that are not based on Tapestry have different ways of viewing pages
and executable code, so using JML on them may not work at all. Each framework would require a
separate tool to mixin JML to its web structure. Thus, one possible area of future work is to design a
common tool that allows JML error-checking to integrate into the validation code of any arbitrary web
framework.

6.8 Conclusion

These two scenarios demonstrate that this method is promising and that further research is nec-
essary for using JML constructs in web forms. Form validation is necessary to protect the end users
of the entered data, and this is only possible when the validation is formalized enough to take advan-



32

@Requires("(!isModeX() || dosage < 5)" +
"&& (!isModeY() || (10 < dosage && dosage < 15))")

public void onSubmitFromNewDose() {
if (!((!isModeX() || dosage < 5)

&& (!isModeY() || (10 < dosage && dosage < 15)))) {
form.recordError("Form requires that " +

"(!isModeX() || dosage < 5)" +
"&& (!isModeY() || (10 < dosage && dosage < 15))");

}
System.out.println("success");

}

Figure 6.7 Transformed onSubmitFromNewDose(..) Method

Figure 6.8 Tapestry Error Form

tage of specification checkers like JML. Writing web forms in this way makes sure that programmers
write according to the specification and that the program automatically alerts the user to data entry
inconsistencies.
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CHAPTER 7. DISCUSSION AND SUMMARY

Finally, to conclude, I answer the evaluation questions introduced in the introduction and make my
conclusions based on these criteria.

7.1 Discussion

In the introduction, I introduced two questions which my thesis would hopefully answer:

• Is there a way to write JML Java 5 annotations such that they are consistent, readable, usable,
and extensible?

• What changes should be made to Java 5 annotations, if any, to make them more useful with JML?

The next two sections answer these in light of the discoveries in this thesis.

7.1.1 Annotations as JML

Table 7.1 on the following page shows various comparisons between the current implementation
(JML2) and the proposed Java 5 annotation implementation (JML5). Several criteria (such as method
of expression, code placement, and parsing method) have already been covered in previous sections of
this thesis, but other portions of the table need more explanation. Familiarity refers to how much of
the syntax a newcomer to JML would be expected to know; the familiar annotation syntax for JML5
makes it easier for newcomers to write in JML and not confuse @-delimited JML2 comments with Java
5 annotations. Native Java parsing refers to how much of the JML syntax is added to the Java syntax
tree when using a pure Java parser. When the JML syntax is defined in Java 5 annotations, more of
the JML syntax is in the Java syntax tree. This makes it easier to fulfill the native IDE support criteria,
or the amount of content assistance an IDE can supply when writing the JML assertions. While there
is no complete native IDE support for JML expressions, since they are included in strings, the support
is much better than it is with comments. Multiple assertions refers to whether multiple clauses of the
same type can be placed on a single language construct. This is possible in JML2 since it is expressed
in comments, but the only way to accomplish this in JML5 is to use separate array types. Finally, JML2
expressions are not expressed in strings while JML5 expressions are, possibly causing problems down
the road when having to delimit strings appearing in the assertions themselves.

In addition, the examples throughout the thesis show that while certain annotations in JML5 (@Pure)
are shorter then their JML2 counterparts (/*@ pure @*/), the bigger annotations in JML5 (like
@SpecCase) are slightly longer than equivalent JML2 listings, simply because of the added com-
plication of the array types for containing multiple annotations of the same type.

Thus, even though chapter 3 showed that there is a consistent, readable, usable, and extensible
way to place JML inside of Java 5 annotations, there is no clear cut yes-or-no answer to the question
on whether Java 5 annotations should be used to replace the comments in the current JML syntax.
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Table 7.1 JML2 vs. JML5

Criteria JML2 JML5

Method of expression Comments Java 5 annotations
Code placement Everywhere Any declaration (not on statements)
Parsing method Pure ANTLR parser Hybrid ANTLR parser and annotation walker
Familiarity Comment syntax Fully-typed annotation syntax
Native Java parsing Comments Annotation types
Native IDE support None Annotation type resolution
Multiple assertions Yes Only with annotation array types
Reliance on strings No Yes, with delimiters

There are definite advantages to placing more of the JML syntax into the Java parser; the annotation
syntax eliminates the complicated comment parsing technique, stores JML in a more structured form
in the Java abstract syntax tree, takes advantage of commonly-known Java syntax, and includes partial
native IDE support. However, difficulty writing multiple assertions and relying on strings are big
disadvantages to the technique. While there is a temptation to ”get on the annotation bandwagon” as
others have, my recommendation is to support both formats until the community decides which one is
superior.

7.1.2 Annotations as Java Syntax

The major complaint about the Java 5 annotation syntax is with its lack of flexibility. Since Java
does not allow more than one annotation type attached to any language construct, the new syntax must
use separate annotations containing an array of a certain type of annotation. There is no inheritance ei-
ther with annotations, so it is not possible to have a single container annotation for multiple annotations
in a specification case. Having either of these features would the design shorter and easier to use. Even
though JSR 308 does not attempt to solve this problem, its proposal includes two possible solutions for
the multiple annotation problem: desugaring multiple annotations into a normal container annotations
and adding new methods to access multiple annotations [34]. Since C# allows multiple attributes to be
attached to any language construct [38], the implementation of C# attributes is slightly better than the
current implementation of Java 5 annotations. Making Java 5 on par with the implementation of C#
would make defining JML assertions via Java 5 annotations much easier.

7.2 Summary

This thesis has shown that since the inception of annotations in Java 5, groups have created small to
medium-size design by contract libraries and checkers using these annotations. The goal of this thesis
was to determine whether these annotations could effectively express the larger design by contract
language of JML and determine what features, if any, needed to be added to Java to make this process
simpler. It explained the reasoning behind the final proposed design, evaluating it using four criteria:
consistency, readability, usability, and extensibility. It highlighted the procedures used to implement
the design into the parser, and it also evaluated the design by testing it both on several small Java classes
and on a larger web-form verification test case.
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I have concluded that the grammar overviewed in the thesis is the best way to express JML inside
of Java 5 annotations, but the actual syntax support in Java 5 has a long way to go before it makes
the actual process of writing JML in annotations significantly better than using comments. Even so,
if Java finally allows multiple annotations, it would tip the balance in strong favor of using these new
annotations. Further work and full evaluation by the community of the prototype constructed for this
thesis is required before deciding on one technique over another.
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APPENDIX. ANNOTATION SYNTAX

Many descriptions listed here are paraphrased from the JML Reference Manual [19]. Special thanks
to Johannes Rieken for the ideas for formatting this section.

@Accessible

Description
Specifies what locations a method can read during its execution

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@Also

Description
Contains a list of specification cases

Arguments

• value: @SpecCase[] – default {}

@Assignable

Description
Specifies what locations a method can assign to before it finishes its execution

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@Axiom

Description
States that a theorem prover should assume the given predicate is true

Arguments

• value: String – default None (required)
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@AxiomDefinitions

Description
Contains a list of @Axiom annotations

Arguments

• value: @Axiom[] – default {}

@Callable

Description
Specifies what methods may be called by the current method

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@Captures

Description
Specifies which references may be stored by the method after it returns

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@Constraint

Description
Describes how values should change over time

Arguments

• header: String – default ""
• redundantly: boolean – default false
• value: String – default None (required)

@ConstraintDefinitions

Description
Contains a list of @Constraint annotations

Arguments

• value: @Constraint[] – default {}
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@Diverges

Description
Specifies when a method may loop forever

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@Duration

Description
Specifies the maximum processing time for a method for a specific specification case

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@Ensures

Description
Specifies that the method that it is attached to guarantees value after its execution

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@ForAll

Description
States that the following specification case must hold for all possible values of the given list
of variables

Arguments

• value: String – default None (required)

@Ghost

Description
Declares a specification-only field whose value is declared in its initialization

Arguments

• value: String – default None (required)

@GhostDefinitions

Description
Contains a list of @Ghost annotations

Arguments

• value: @Ghost[] – default {}
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@Helper

Description
Used on a private method or constructor, stating that it is not in any invariants or history
constraints

Arguments
None

@In

Description
Specifies that the declared field should belong in the given data group(s)

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@InDefinitions

Description
Contains a list of @In annotations

Arguments

• value: @In[] – default {}

@Initially

Description
States that each non-helper constructor for each concrete subtype of the enclosing type
(including that type itself, if it is concrete) must establish the given predicate

Arguments

• header: String – default ""
• value: String – default None (required)

@InitiallyDefinitions

Description
Contains a list of @Initially annotations

Arguments

• value: @Initially[] – default {}
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@Invariant

Description
States that the given predicate is true for every visible state

Arguments

• header: String – default ""
• redundantly: boolean – default false
• value: String – default None (required)

@InvariantDefinitions

Description
Contains a list of @Invariant annotations

Arguments

• value: @Invariant[] – default {}

@Maps

Description
Describes elements of a data group that are determined dynamically, through a field refer-
ence or an array index, or a field of an array index

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@MapsDefinitions

Description
Contains a list of @Maps annotations

Arguments

• value: @Maps[] – default {}

@Model

Description
Declares a specification-only field or method whose value can be changed by a @Represents
clause

Arguments

• value: String – default None (required)

@ModelDefinitions

Description
Contains a list of @Model annotations

Arguments

• value: @Model[] – default {}
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@Monitored

Description
States that a thread must hold the lock on the field before it executes a read or write

Arguments
None

@MonitorsFor

Description
States that a thread must hold the lock on all objects in the given list before it executes a
read or write on the given field

Arguments

• header: String – default ""
• value: String – default None (required)

@MonitorsForDefinitions

Description
Contains a list of @MonitorsFor annotations

Arguments

• value: @MonitorsFor[] – default {}

@NonNull

Description
Specifies that the field cannot ever be set to null

Arguments
None

@NonNullByDefault

Description
Specifies that, by default, the field cannot ever be set to null

Arguments
None

@Nullable

Description
Explicitly states that the field can be set to null

Arguments
None
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@NullableByDefault

Description
Implicitly states that the field can be set to null

Arguments
None

@Old

Description
Allows for the given variables to stand for their initial values in the specification case

Arguments

• value: String – default None (required)

@Pure

Description
Specifies that the method cannot perform any side effects in its operation

Arguments
None

@Readable

Description
States that a given predicate must be true before a given field can be read

Arguments

• header: String – default ""
• value: String – default None (required)

@ReadableDefinitions

Description
Contains a list of @Readable annotations

Arguments

• value: @Readable[] – default {}

@Represents

Description
Assigns a value to a given @Model field, subject to optional restrictions

Arguments

• header: String – default ""
• redundantly: boolean – default false
• value: String – default None (required)
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@RepresentsDefinitions

Description
Contains a list of @Represents annotations

Arguments

• value: @Represents[] – default {}

@Requires

Description
Specifies that the method needs value to be true before the entry into the method

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@Signals

Description
Specifies the exceptional or abnormal postconditions

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@SignalsOnly

Description
Specifies the exceptional or abnormal postconditions and what exceptions may only be
thrown

Arguments

• redundantly: boolean – default false
• value: String – default None (required)



44

@SpecCase

Description
Defines a single specification case

Arguments

• header: String – default ""
• forall: String – default "#not specified"

• old: String – default "#not specified"

• requires: String – default "#not specified"

• requiresRedundantly: String – default "#not specified"

• ensures: String – default "#not specified"

• ensuresRedundantly: String – default "#not specified"

• signals: String – default "#not specified"

• signalsRedundantly: String – default "#not specified"

• signalsOnly: String – default "#not specified"

• signalsOnlyRedundantly: String – default "#not specified"

• diverges: String – default "#not specified"

• divergesRedundantly: String – default "#not specified"

• when: String – default "#not specified"

• whenRedundantly: String – default "#not specified"

• assignable: String – default "#not specified"

• assignableRedundantly: String – default "#not specified"

• accessible: String – default "#not specified"

• accessibleRedundantly: String – default "#not specified"

• callable: String – default "#not specified"

• callableRedundantly: String – default "#not specified"

• measuredBy: String – default "#not specified"

• measuredByRedundantly: String – default "#not specified"

• captured: String – default "#not specified"

• capturedRedundantly: String – default "#not specified"

• workingSpace: String – default "#not specified"

• workingSpaceRedundantly: String – default "#not specified"

• duration: String – default "#not specified"

• durationRedundantly: String – default "#not specified"

@SpecProtected

Description
Specifies that this feature is protected for specification purposes

Arguments
None
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@SpecPublic

Description
Specifies that this feature is public for specification purposes

Arguments
None

@Uninitialized

Description
Specifies that this feature is to be considered uninitialized

Arguments
None

@WorkingSpace

Description
Specifies maximum amount of heap space used by a method

Arguments

• redundantly: boolean – default false
• value: String – default None (required)

@Writable

Description
States that a given predicate must be true before a given field can be written to

Arguments

• header: String – default ""
• value: String – default None (required)

@WritableDefinitions

Description
Contains a list of @Writable annotations

Arguments

• value: @Writable[] – default {}
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