Monotonically Decreasing Size Distributions for One-Dimensional Ga Rows on Si(100)

Thumbnail Image
Date
2005-07-01
Authors
Evans, M. M. R.
Nogami, J.
Zorn, Deborah
Gordon, Mark
Evans, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyMathematicsChemistry
Abstract

Deposition at room temperature of Ga on Si(100) produces single-atom-wide metal rows orthogonal to the Si-dimer rows. Detailed analysis using scanning tunneling microscopy reveals a monotonically decreasing size (i.e., length) distribution for these rows. This is unexpected for homogeneous nucleation without desorption, conditions which are operative in this system. Kinetic Monte Carlo simulation of an appropriate atomistic model indicates that this behavior is primarily a consequence of the feature that the capture of diffusing atoms is greatly inhibited in the Ga∕Si(100) system. The modeling also determines activation barriers for anisotropic terrace diffusion, and recovers the experimental distribution of metal rows. In addition, we analyze a variety of other generic deposition models and determine that the propensity for a large population of small islands in general reflects an enhanced nucleation rate relative to the aggregation rate.

Comments

This article is from Physical Review B 72 (2005): 035426, doi:10.1103/PhysRevB.72.035426. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 2005
Collections