Biochemical and molecular genetic studies of the metabolic role of methylcrotonyl-CoA carboxylase

Ping Che
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Biochemistry Commons, and the Molecular Biology Commons

Recommended Citation
Che, Ping, "Biochemical and molecular genetic studies of the metabolic role of methylcrotonyl-CoA carboxylase " (2000). Retrospective Theses and Dissertations. 12387.
https://lib.dr.iastate.edu/rtd/12387

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI®
Biochemical and molecular genetic studies of the metabolic role of methylcrotonyl-CoA carboxylase

by

Ping Che

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Biochemistry

Major professor: Basil J. Nikolau

Iowa State University

Ames, Iowa

2000

Copyright © Ping Che, 2000. All rights reserved.
This is to certify that the Doctoral dissertation of

Ping Che

has met the dissertation requirements of Iowa State University

Signature was redacted for privacy.

Major Professor

Signature was redacted for privacy.

For the Major Program

Signature was redacted for privacy.

For the Graduate College
TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotin and Biotin Biochemistry</td>
<td>1</td>
</tr>
<tr>
<td>Biotin-Containing Enzymes</td>
<td>1</td>
</tr>
<tr>
<td>Plant Biotin-Containing Enzymes</td>
<td>5</td>
</tr>
<tr>
<td>Metabolic Control Gene Expression in Higher Plants</td>
<td>7</td>
</tr>
<tr>
<td>Thesis Organization</td>
<td>13</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>14</td>
</tr>
</tbody>
</table>

CHAPTER 2. 3-METHYLCROTONYL-CoA CARBOXYLASE IS A COMPONENT OF THE MITOCHONDRIAL LEUCINE CATABOLIC PATHWAY IN PLANTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>28</td>
</tr>
<tr>
<td>Introduction</td>
<td>29</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>31</td>
</tr>
<tr>
<td>Results</td>
<td>39</td>
</tr>
<tr>
<td>Discussion</td>
<td>45</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>50</td>
</tr>
</tbody>
</table>

CHAPTER 3. DEVELOPMENTAL AND ENVIRONMENTAL REGULATION OF 3-METHYLCROTONYL-CoA CARBOXYLASE IN ARABIDOPSIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>71</td>
</tr>
<tr>
<td>Introduction</td>
<td>72</td>
</tr>
<tr>
<td>Results</td>
<td>74</td>
</tr>
<tr>
<td>Discussion</td>
<td>83</td>
</tr>
<tr>
<td>Material and Methods</td>
<td>87</td>
</tr>
<tr>
<td>References</td>
<td>93</td>
</tr>
</tbody>
</table>

CHAPTER 4. THE EFFECTS OF BIOTIN DEPLETION ON THE EXPRESSION OF BIOTIN-CONTAINING ENZYMES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>118</td>
</tr>
<tr>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>122</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>125</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>138</td>
</tr>
</tbody>
</table>

CHAPTER 5. CONCLUSIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>160</td>
</tr>
</tbody>
</table>

APPENDIX I. MCCase BIOTINYLATED SUBUNIT GENOMIC DNA SEQUENCE FROM ARABIDOPSIS THALIANA (COLUMBIA)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>162</td>
</tr>
</tbody>
</table>

APPENDIX II. DATA FOR FURTHER STUDY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>167</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
</tr>
</tbody>
</table>
CHAPTER 1. INTRODUCTION

Biotin and Biotin Biochemistry

Biotin (Figure 1), an essential water-soluble vitamin, is required by all living organisms for normal cellular functions and growth. It was first identified in 1901 as a growth factor in yeast and then isolated from egg yolk by Kögel and Tönms (1936). Kögel also reported the correct empirical formula $C_{17}H_{18}O_3N_2S$ for biotin methylester in 1937. There are in total of eight biotin isomers, but only D-biotin has been found to be biologically active (Gaudy and Ploux, 1992). Biotin is synthesized in plants, some fungi, and most bacteria. The biosynthetic pathway for biotin was first elucidated in *E. coli* and *Bacillus* species through the growth and chemical supplementation of auxotrophic mutants (Eisenberg, 1973; Pai, 1975). Enzymes required for biotin biosynthesis have been purified and characterized from *Bacillus sphaericus* (Izumi et al., 1981; Ploux and Marquet, 1992; Ploux et al., 1992; Alexeev et al., 1994; Huang et al., 1995). Eukaryotic plants share a very similar biotin biosynthetic pathway. This common pathway for biotin synthesis is shown in Figure 2. Although most reactions in this pathway have been well defined, questions remain concerning the details of the initial and final reactions. Namely, what is the immediate precursor of pimeloyl-CoA, and what is the sulfur donor required for biotin synthase? Recently, Cys has been considered to be the sulfur donor (Birch et al., 1995).

The cDNA and gene of biotin synthase (BIO2), which catalyzes the final reaction in biotin biosynthesis, have been cloned from *Arabidopsis* (Weaver et al., 1996; Patton et al., 1996). So far, this is the first plant biotin biosynthetic gene to be cloned.
Two biotin auxotrophic mutants have been reported in *Arabidopsis: biol* (Shellhammer and Meinke, 1990) and *bio2* (Patton et al., 1998). The *bio1* mutant seedlings can be rescued when grown in the presence of dethiobiotin, diaminopelargonic acid (DAPA) or biotin. The expression of *E. coli bioA* gene (encoding DAPA synthetase) in homozygous *bio1/bio1* plants eliminates the auxotrophic phenotype of *bio1* (Patton et al., 1996). These data indicate that the *bio1* gene of plants corresponds to the *bioA* gene of *E. coli* and that in the *bio1* mutant, biotin biosynthesis is blocked in the conversion of 7-keto-8-aminopelargonic acid to 7,8-diaminopelargonic acid (Fig. 2). The *bio2* mutant can only be rescued by biotin, but not by dethiobiotin. This indicates that the final step of biotin biosynthesis is blocked in the *bio2* mutants and the *bio2* gene corresponds to *bioB* gene (encoding biotin synthase) in *E. coli*.

Biotin is bound to specific proteins via an amide linkage between the biotin carboxyl group and a unique lysine amino group (Moss and Lane, 1971) (Figure 1). Usually the biotinylated lysine residue is near the carboxyl terminus of the protein. The amino acid sequence surrounding the biotinylated lysine residue is highly conserved among different biotin enzymes (i.e. Ala/Vala-Met-Lys-Met) in animals and bacteria.

![Figure 1. The structure of biotin and carboxyl-biotin-enzyme.](image-url)
Figure 2. Biotin biosynthetic pathway in plants and microorganisms. Letters correspond to cloned bio genes of E. coli. Numbers correspond to mutant bio genes of Arabidopsis.
Biotin acts as a small coenzyme and facilitates the transfer of CO₂ during carboxylation and decarboxylation reactions (Dakshinamurti and Bhagavan, 1985; Knowles, 1989).

The reactions catalyzed by biotin enzymes are involved in diverse metabolic processes including fatty acid biosynthesis, gluconeogenesis, and catabolism of branched-chain amino acids. Although each enzyme has distinct metabolic functions, the overall reactions catalyzed by biotin enzymes are in two similar steps. For carboxylases, the first step, an ATP and Mg²⁺ dependent reaction, involves the carboxylation of biotin by the biotin carboxylase (BC) domain of the enzyme. Then, the carboxyl group is transferred from carboxybiotinyl enzyme intermediate to an appropriated acceptor substrate (such as acetyl-CoA, 3-methylcrotonyl-CoA, propionyl-CoA or pyruvate). This reaction is catalyzed by the carboxyltransferase domain.

\[
\text{ENZ-BIOTIN} + \text{HCO}_3^- + \text{ATP} \rightarrow \text{ENZ-BIOTIN-CO}_2^- + \text{ADP} + \text{Pi} \quad [1]
\]
\[
\text{ENZ-BIOTIN-CO}_2^- + \text{ACCEPTOR} \rightarrow \text{ENZ-BIOTIN} + \text{ACCEPTOR-CO}_2^- \quad [2]
\]

\[
\text{HCO}_3^- + \text{ATP} + \text{ACCEPTOR} \rightarrow \text{ADP} + \text{Pi} + \text{ACCEPTOR-CO}_2^- \quad [3]
\]

Although the biological functions of biotin have been well recognized, little is known about its role in regulating gene expression and protein biosynthesis. Biotin operons (bio operons) from several prokaryotes have been sequenced and analyzed (Otsuka et al., 1988; Cronan, 1989; Gloeckler et al., 1990; Bower et al., 1996). Regulation of the \textit{E. coli} bio operon is the best understood example of transcriptional regulation by biotin. \textit{E. coli} contains only a single biotin-containing enzyme, the biotin carboxyl carrier protein (BCCP).
of acetyl-CoA carboxylase (ACCase). Biotin-protein ligase, BirA, which biotinylates BCCP in *E. coli*, is the repressor protein that regulates the transcription of the bio operon. Repression of the transcription of the bio operon occurs when the cellular supply of biotin is in excess of that needed to biotinylate apoBCCP. Under these conditions, the BirA-biotinyl-AMP complex, which is an intermediate of the biotinylation reaction, accumulates. This complex binds to the bio operator, and represses transcription. Another example of regulation of gene expression by biotin is that of the enhanced the transcription of glucokinase by biotin in the starved rats (Chauhan and Dakshinamurti, 1991). However, the physiology significance of this regulation is still unknown.

Biotin-Containing Enzymes

Different organisms contain a different set of biotin-containing proteins. *E. coli* contains only one such protein, the biotin carboxyl carrier subunit (BCCP) of ACCase. Other bacteria have one to three biotin-containing proteins, whereas eukaryotic cells contain four or five such proteins. So far, three biotin-containing enzymes have been reported in plants: ACCase (Sasaki et al., 1995; Ohlrogge et al., 1979; Stumpf, 1987; Harwood, 1988; Conn, 1981; Nikolau, et al., 1984), methylcrotonyl-CoA carboxylase (MCCase) (Alban et al., 1993; Chen et al., 1993; Diez et al., 1994; Song et al., 1994; Wang et al., 1994, Wurtele and Nikolau, 2000; Weaver *et al.*, 1995; McKean *et al.*, 2000) and geranyl-CoA carboxylase (GCCase) (Guan et al., 1999). However, there are indications that additional biotin-containing enzymes occur in the extracts from plants (Wurtele and Nikolau, 1990).

Biotin-containing enzymes can be divided into three classes: carboxylases, decarboxylases, and transcarboxylases (Moss *et al.*, 1971). All known eukaryotic biotin-
containing enzymes are carboxylases: ACCase, MCCase, pyruvate carboxylase (PCase), propionyl-CoA carboxylase (PCase), geranyl-CoA carboxylase and urea carboxylase. Biotin-dependent decarboxylases are found in anaerobic bacteria: oxaloacetate decarboxylase, methylmalonyl-CoA decarboxylase and glutaconyl-CoA decarboxylase. The only known transcarboxylase is found in Propionibacteria.

All biotin enzymes consist of three domains: biotin carboxylase domain (BC), biotin-carboxyl-carrier domain (BCC) and the carboxyltransferase domain (CT). Each of the three catalytic domains can be found either on different polypeptides or in combination on larger polypeptides. This has led to the classification of biotin-containing enzymes into three types:

1) **Heteromeric biotin-containing enzymes:** Each of the three domains (BC, BCC and CT) is located on separate, dissociable subunits. ACCase from *E. coli* (Guchhait et al., 1974; Kondo et al., 1991; Li and Cronan, 1992a; 1992b) and plant chloroplasts (Sasaki et al., 1993; Choi et al., 1995; Shorrosh et al., 1995, 1996; Sun et al., 1997; Ke et al., 2000) are examples of this type biotin-containing enzyme.

2) **“Intermediate” biotin-containing enzymes:** This group of enzymes combine BC and BCCP domains in one peptide and the CT domain in another. This type of enzyme includes PCCase from animals and bacteria (Gravel et al., 1980; Henrikson and Allen, 1982), MCCase from animals (Lau et al., 1980), bacteria (Schiele et al., 1975; Fall and Hector, 1977) and plants (Chen et al., 1993; Alban et al., 1993; Diez et al., 1994; Wang et al., 1994 Song et al., 1994; Weaver et al., 1995; McKean et al., 2000), PCase and GCCase from *Pseudomonas citronellolis* (Utter et al., 1975; Hector and Fall, 1976; Fall and Hector, 1977) and acetyl-CoA carboxylase from *Myxococcus xanthus* (Kimura et al., 2000).
3) **Homomeric biotin-containing enzymes**: This type of enzyme consists of only one large polypeptide that has all three catalytic domains. ACCase from animals, yeast (Lopez-Casillas et al., 1988; Takai et al., 1988; Walid et al., 1992) and plant cytosol (Egin-Buhler et al., 1980; Gornicki et al., 1993; Roesler et al., 1994; Schulte et al., 1994; Shorrosh et al., 1994; Yanai et al., 1995) and urea carboxylase from yeast (Sumrada and Cooper, 1982; Genbauffe and Cooper, 1991) are examples.

Plant Biotin-Containing Enzymes

Until recently, only three biotin-containing enzymes have been reported in plants, ACCase, MCCase and GCCase. However, there are indications that additional biotin-containing enzymes occur in the protein extracts from plants (Wurtele and Nikolau, 1990). The most thoroughly studied biotin-containing enzyme in higher plants is ACCase, which performs an essential function during the initial stages of fatty acid biosynthesis. There are two types of ACCase in plants (Sasaki et al, 1995): heteromeric type which is found in chloroplasts (Sasaki et al., 1993; Choi et al., 1995; Shorrosh et al., 1995, 1996; Sun et al., 1997; Ke et al., 2000), and the homomeric type which is found in the cytosol (Egin-Buhler et al., 1980; Gornicki et al., 1993; Roesler et al., 1994; Schulte et al., 1994; Shorrosh et al., 1994; Yanai et al., 1995). Malonyl-CoA generated in the plastids by heteromermic ACCase has a single known metabolic fate, the formation of fatty acids (Ohlrogge et al., 1979; Stumpf, 1987; Harwood, 1988). However, the cytosolic malonyl-CoA generated by the homomeric ACCase is not utilized for de novo fatty acid biosynthesis, but for the synthesis of a variety of phytochemical (Conn, 1981; Nikolau, et al., 1984), for example, epicuticular
waxes, suberin, flavonoids, stilbenoids, a variety of malonyl-derivatives chemicals, and free malonic acid.

Wurtele and Nikolau (1990) first reported the discovery of MCCase activity in plant protein extracts in 1990. Subsequently, this enzyme was purified from maize, carrot, pea, potato and soybean (Alban et al., 1993; Chen et al., 1993; Diez et al., 1994; Song et al., 1994; Wang et al., 1994, Wurtele and Nikolau, 2000). As in animals and bacteria, MCCase is composed of two subunits (Chen et al., 1993; Alban et al., 1993; Diez et al., 1994; Wang et al., 1994, Song et al., 1994; Weaver et al., 1995; Mckean et al., 2000): the larger, biotinylated subunit (MCC-A) which is about 85 kDa and the smaller and non-biotinylated subunit (MCC-B) which is approximately 60 kDa. The cDNAs and genes coding for the MCC-A subunit have been cloned from tomato, soybean and Arabidopsis (Song et al., 1994; Wang et al., 1994; Weaver et al., 1995). At the amino-terminus, the initial 15-30 residues have the characteristics of a mitochondrial targeting transit peptide, consistent with the mitochondrial localization of the enzyme. Most recently, the cDNA and gene coding for MCC-B subunit have been cloned from Arabidopsis in our lab (McKean et al., 2000). Despite these molecular characterizations of MCCase, the physiological significance of this enzyme in plant metabolism has not been defined.

In animals and bacteria, this enzyme is known to be required for the catabolism of leucine (Leu) (Lau et al., 1980), which occurs in mitochondria. Studies on MCCase activity in tomato and soybean revealed that MCCase specific activity was always higher in the roots (non-photosynthetic organ) than in the leaves (photosynthetic organ) (Wang et al., 1995). It was also reported that darkness induced MCCase activity in barley seedlings (Maier et al., 1998; Clauss et al., 1993). These findings indicate that MCCase activity is inversely related
to plants' or plant organ's photosynthetic activity and implied MCCase's putative role in Leu catabolism. A study on MCCase activity during carbohydrate starvation in sycamore cells is consistent with MCCase's putative role in Leu catabolism (Aubert et al., 1996). Furthermore, Leu catabolism may also occur in the peroxisomes, by a pathway that is not well defined, but it does not require MCCase (Gerbling and Gerhardt, 1988 and 1989; Gerbling, 1993). In this pathway, 3-methylcrotonyl-CoA, an intermediate from Leu degradation, is converted to isobutyryl-CoA, which in turn is converted via a modified β-oxidation pathway to acetyl-CoA.

In addition to Leu catabolism, MCCase also plays a role in the mevalonate shunt (Popják, 1971; Edmond and Popják, 1974). In the mevalonate shunt, mevalonate is converted to acetoacetate and acetyl-CoA. The net result of this shunt in animals is to reassimilate carbon that has been converted to mevalonate into primary metabolites rather than into isoprenoids. Isoprenoids are a diverse class of compounds that include scents, carotenoids, sterols, cardiac glycosides, taxol, gibberellines, abscisic acid, rubber, and the prenyl tail of chlorophyll and ubiquinones. These isoprenoids are synthesized from acetyl-CoA via the five-carbon intermediate isopentenyl pyrophosphate (IPP). In animals, this conversion (acetyl-CoA to IPP) occurs via the sequence acetoacetyl-CoA, HMG-CoA and mevalonate.

Most recently, GCCase (Guan et al., 1999), which plays an important role in isoprenoid catabolism, was purified and characterized from plants.
Metabolic Control of Gene Expression in Higher Plants

Carbohydrates play multiple roles in biology by providing energy and carbon skeletons for the growth and development of an organism. They are also major regulatory molecules that control gene expression, metabolism, physiology, cell cycle and development in prokaryotes and eukaryotes.

The glucose-sensing pathway in *E. coli* is probably the best understood regulatory mechanism in which carbohydrates play a major role in regulation metabolism (Saier, 1991), and is known as catabolite repression. In *E. coli*, the expression of the *lac* operon proteins is repressed by the presence of glucose in the medium, and can be derepressed when glucose is removed. This phenomenon prevents the wasteful duplication of energy-producing enzyme systems. In this transduction pathway, cAMP and its receptor protein (CRP) are the major regulators of genes repressed by glucose. cAMP is synthesized by the enzyme adenylcyclase, and its concentration is regulated indirectly by glucose transport and metabolism. When bacteria are growing in a medium containing glucose, the cAMP concentration in the cells is quite low. However, when the bacteria are deprived of the energy source, the cAMP concentration increases. In the absence of glucose, the CRP-cAMP complex binds to the *lac* operon and stimulates transcription.

In yeast, genes required for growth on carbon sources other than glucose are repressed by the presence of glucose in the medium and can be derepressed when glucose is removed. Hexokinase (HK) PII, the enzyme that catalyzes the phosphorylation of hexose sugars as the first reaction of the glycolytic pathway, is considered to be the major sensing molecule for catabolite repression that is triggered by glucose (Carlson, 1987; Entian and Frölich, 1984; Ma and Botstein, 1986; Ma et al., 1989; Rose et al., 1991). A functional
sucrose nonfermenting-1 (SNF1) complex, which is a serine/threonine kinase, is required for the down-stream signal transduction and essential for depression of all glucose-repressed genes (Celenza, 1986). The SNF1 forms a complex with other proteins, for example, the activating subunit SNF4 and other adapter proteins. The interaction between SNF1 and SNF4 is strongly regulated by glucose. The SNF4 protein binds to the SNF1 regulatory domain when glucose levels are low, whereas when glucose levels are high the regulatory domain of SNF1 binds to its own kinase domain, causing autoinhibition of the kinase activity (Jiang et al., 1996) and this regulation is also affected by HXK2, GLC7 (gene encodes a type 1 protein phosphatase) and REG1 (encodes a nuclear-localized protein), which means these components are upstream of SNF1 in glucose signaling pathway.

Compared to the understanding of sugar signal transduction pathway in *E. coli* and yeast, relatively little is known about the molecular and biochemical mechanisms underlying sugar response in the higher plants. A large and specific set of genes whose expressions are induced by sugar starvation has been reported. Some of them are photosynthetic genes, such as chlorophyll a/b binding protein (CAB) (Krapp et al., 1993; Harter et al., 1993). Some of them are non-photosynthetic genes, such as α-amylase genes in rice suspension cells and germinating embryos (Huang, 1993; Yu et al., 1991 and 1996), sucrose synthase gene in maize root tips (Mass, 1990; Koch et al., 1992), and malate synthase and isocitrate lyase genes in cucumber (Grahma et al., 1994 and 1992). For all of these genes, sugar-repression appears to regulated at the level of gene transcription. However, it is not entirely clear what the signal for sugar repression is and how that signal is transduced to alter gene transcription. Evidence that accumulation of sugars directly represses photosynthetic gene expression has been obtained in several cases. By analysis of promoter-reporter gene fusions, Sheen
(1990, 1994 and 1997) found that transcriptional activity of seven different promoters from photosynthetic genes of maize was repressed by glucose and sucrose. Furthermore, glucose transport alone is not sufficient to trigger the repression, glucose phosphorylation by hexokinase is required. The glucose analog 3-O-methylglucose, which is transported into cells but not phosphorylated via hexokinase, does not trigger repression. On the other hand, 2-deoxyglucose, which can be phosphorylated by hexokinase, but not further metabolized, triggers the repression. Furthermore, a hexokinase inhibitor (mannuheptulose) is able to reduce the glucose repression of a maize photosynthetic gene. These data support the hypothesis that plant hexokinase has dual-functions and plays a role in both sugar-sensing and phosphorylating hexoses. Two non-photosynthetic genes in the glyoxylate pathway, malate synthase and isocitrate lyase, have the similar characteristic of metabolic repression as these photosynthetic genes in maize (Grahma et al., 1994 and 1992).

However, it is still unknown how hexokinase stimulates the sugar-signaling pathway in plants and the notion that hexokinase is a primary sugar sensor was recently been challenged, and multiple sugar-sensing pathways are proposed to exist in plants (Halford et al., 1999).

Determination of the down stream components of sugar-sensing pathway in plants will help us fully and precisely understand the whole signal process. Recently, it is reported that plant homologues of SNF1, called SNF1-related protein kinases (SnRK1), may play a role analogous to that of SNF1 in yeast and fungi (Purcell et al., 1998). Using the tobacco SNF1 homolog, it has been shown that both the glucose-regulated interaction with SNF4 and the specific interaction between the kinase and regulatory domains are conserved between yeast and plants (Jiang et al., 1996). However, the function of this protein in plants needs
further determination and it will be very interesting to determine whether the transcription of this gene is affected by hexokinase (Halford et al., 1999).

It is clear that the sugar-sensing system in plants is a much more complex system than glucose-sensing pathway in *E. coli* and yeast. In plants, sugars are not only involved in repressing gene expression, but they are also involved in stimulation gene expression and the induction is also controlled at the transcriptional level (see review Yu, 1999; Koch, 1996). Genes involved in starch biosynthesis, protein biosynthesis and storage, nitrogen reduction and assimilation, respiration, pigment formation and defense and metabolism of sucrose are enhanced by sucrose. For instance, exogenous sucrose induced the expression of genes for nitrate reductase in dark-adapted *Arabidopsis* (Cheng, 1992). Genes encoding patatin (Grierson et al., 1994; Liu et al., 1990), chalcone synthase (Tsukaya et al., 1991), and β-amylase and sporamine in sweet potato (Ishiguro et al., 1992) are all reported to be induced by sucrose. It is also reported that sugar-regulated gene expression pathway may communicate with other signal transduction pathway. For example, the expression of α-amylase genes in barley embryos is under hormonal (GA and ABA) control as well as metabolic (sugar) control, suggesting the occurrence of an interaction between the GA and sugar signal transduction pathways (Perate, 1997).

Thesis Organization

This dissertation is composed of five chapters which address three main questions: 1) What is the physiological role of MCCase in plants? 2) How is the MCCase expression regulated during plant development and in response to environmental stimuli? 3) Whether biotin plays a role in the regulation of gene expression of the biotin-containing enzyme,
MCCase, in plants? Chapter 1 provides an overview of biotin and biotin-containing enzymes. Chapter 2 is a paper published in the journal of *Plant Physiology*. This paper presents direct evidence that one of the roles of MCCase is catabolism of leucine in plant mitochondria and also demonstrated for the first time that plant mitochondria contain all the enzymes for this catabolic pathway. Ping Che, Jianping Song and Marc D. Anderson made equal contributions to this paper. My contribution to this paper includes the development of techniques for the analysis radioactive metabolites and determination of the Leu content of tissue by HPLC. In chapter 3, I demonstrated that the expression of the MCCase gene (MCC-A and MCC-B) is controlled by metabolic repression at the level of gene transcription. Chapter 4 describes, for the first time, that biotin regulation of MCCase accumulation occurs at the post-transcriptional and/or translational levels. Chapter 5 summarizes the results presented in chapter 2, 3 and 4 and discusses future research. Appendix I contains the MCCase biotinylated subunit genomic DNA sequence from *Arabidopsis thaliana*. Appendix II contains other data which are important for further studies on MCCase and ACCase.

Literature Cited

Alexeev, D., Bury, S.M., Boys, C.W.G., Turner, M.A., Sawyer, L., Ramsey, A.J.,

dethiobiotin synthase, the penultimate enzyme of biotin biosynthesis. J. Mol. Biol. 235,
774-776.

Escherichia coli, an investigation of the low molecular weight and protein components

Bower, S., Perkins, J.B., Yocum, R.R., Howitt, C.L., Rahaim, P. and Pero, J.
(1996) Cloning, sequencing, and characterization of the Bacillus subtilis biotin

Celenza, J.L. and Carlson, M. (1986) A yeast gene that is essential for release from
glucose repression encodes a protein kinase, Science 233, 1175-1180.

Bacteriol. 169, 4873-4877.

characterization of 3-methylcrotonyl-CoA carboxylase from somatic embryos of Duucus

Chauhan, J. and Dakshinamurti, K. (1991) Transcriptional regulation of the

Sci. USA 89, 1861-1864.

'sink-regulation' of photosynthesis in spinach: changes in gas exchange, carbohydrate,
metabolits, enzyme activities and steady-state transcript levels after cold-girdling source

Lau, E.P., Cocharan, B.C. and Fall, R.R. (1980) Subcellular localization of 3-
methylcrotonyl-CoA carboxylase in bovine kidney. *Arch. Biochem. Biophys.* 205, 352-
359.

Liu X.J., Prat S., Willmitzer L. and Frommer W.B. (1990) *Cis* regulatory elements
directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin

(1988) Structure of coding sequence and primary amino acid sequence of acetyl-coenzyme

Li, S.-J. and Cronan, JE. Jr. (1992a) The gene encoding the biotin carboxylase subunit of

Li, S.-J. and Cronan, JE. Jr. (1992a) The gene encoding the two carboxylase subunit of
Escherichia coli acetyl-CoA carboxylase. *J. Biol. Chem.* 267, 16841-16847

Ma, H. and Botstein, D. (1986) Effects of null mutations in the hexokinase genes of

phosphorylation activity of hexokinase II mutants is correlated with glucose repression in

CHAPTER 2. 3-METHYLCROTONYL-CoA CARBOXYLASE IS A COMPONENT OF THE MITOCHONDRIAL LEUCINE CATABOLIC PATHWAY IN PLANTS

A paper published in the Journal of Plant Physiology

Marc D. Anderson, Ping Che, Jianping Song, Basil J. Nikolau, and Eve Syrkin Wurtele

Department of Botany (M.D.A and E.S.W.) and Department of Biochemistry and Biophysics (P.C., J.S., and B.J.N.), Iowa State University, Ames, IA 50011

Abstract

3-Methylcrotonyl-CoA carboxylase (MCCase) is a mitochondrial biotin-containing enzyme whose metabolic function is not well understood in plants. In soybean seedlings, the organ-specific and developmentally-induced changes in MCCase expression are regulated by mechanisms that control the accumulation of MCCase mRNA and that control the activity of the enzyme per se. During soybean cotyledon development, when seed storage proteins are degraded, leucine accumulation peaks transiently at 8 DAP. The coincidence between peak

1 These authors contributed equally to this paper.
MCCase expression and the decline in leucine content provides correlative evidence that MCCase is involved in the mitochondrial catabolism of leucine. Direct evidence for this conclusion was obtained from radiotracer metabolic studies using extracts from isolated mitochondria. These experiments traced the metabolic fate of $[U^{-14}C]$leucine, and NaH14CO$_3$, the latter of which was incorporated into methylglutaconyl-CoA via MCCase. These studies directly demonstrate that plant mitochondria can catabolize leucine via the following scheme: leucine $\Rightarrow \alpha$-ketoisocaproate \Rightarrow isovaleryl-CoA \Rightarrow 3-methylcrotonyl-CoA \Rightarrow 3-methylglutaconyl-CoA \Rightarrow 3-hydroxy-3-methylglutaryl-CoA \Rightarrow acetoacetate + acetyl-CoA. These findings demonstrate for the first time that the enzymes responsible for leucine catabolism are present in plant mitochondria. We conclude that a primary metabolic role of MCCase in plants is the catabolism of leucine.

Introduction

3-Methylcrotonyl-CoA carboxylase (MCCase, EC 6.4.1.4) is a biotin-containing enzyme that catalyzes the Mg-ATP-dependent carboxylation of 3-methylcrotonyl-CoA to form 3-methylglutaconyl-CoA. MCCase was discovered nearly 40 years ago in bacteria and mammals (see review by Moss and Lane, 1971) but its presence in plants was more recently reported (Wurtele and Nikolau, 1990). The reaction catalyzed by MCCase is required in several interconnected metabolic pathways (Fig. 1): leucine catabolism, isoprenoid catabolism, and the mevalonate shunt. The catabolism of leucine in animals and some bacteria requires the sequential action of six enzymes, which convert leucine to acetoacetate and acetyl-CoA. MCCase is the fourth enzyme in this catabolic pathway. In some species of bacteria, noncyclic isoprenoids, such as geranoyl-CoA, are catabolized to acetyl-CoA.
probably via a set of reactions analogous to β-oxidation; one of the reactions in this pathway is the carboxylation of MC-CoA (Seubert and Remberger, 1963). The mevalonate shunt converts mevalonate to acetoacetate and acetyl-CoA in animals (Popják, 1971; Edmond and Popják, 1974) and in plants (Nes and Bach, 1985). The net result of this shunt is to reassimilate carbon that has been converted to mevalonate into primary metabolites rather than into isoprenoids.

Despite the purification of MCCase from plants (Alban et al., 1993; Chen et al., 1993; Diez et al., 1994) and the isolation of cDNA and genomic clones for the biotin-containing subunit of MCCase (Song et al., 1994; Wang et al., 1994; Weaver et al., 1995), the physiological significance of this enzyme in plant metabolism has not been defined. Evidence for the catabolism of leucine has been provided by the observations that leucine-derived carbon is incorporated into sugars and organic acids (Stewart and Beevers, 1967; Sodek and Wilson, 1973) or isoprenoids (Overton, 1985; Koops et al., 1991) although there was no evidence implicating MCCase in the process. In vitro studies of leucine catabolism in plants indicate that this process occurs in peroxisomes by a mechanism that does not require MCCase (Gerbling and Gerhardt, 1988; 1989; Gerbling, 1993), a mitochondrial enzyme in plants (Baldet et al., 1992). To better understand the physiological role of MCCase in plants, we investigated the expression of MCCase during plant development, particularly focusing on cotyledon development when massive hydrolysis of seed storage proteins and the remobilization and catabolism of the amino acids occurs. We also examined the metabolism of leucine and MC-CoA in protein extracts from isolated mitochondria. Together, these studies demonstrate the involvement of MCCase in the mitochondrial catabolism of leucine.
Materials and Methods

Plant Material

Soybean seeds (*Glycine max* cv Corsoy 79) were germinated in a sterile mixture of 30% (v/v) black soil, 30% (v/v) peat moss, and 40% (v/v) perlite, in a greenhouse at 22 to 25 °C, under a cycle of 15 h illumination and 9 h darkness, with a maximum daily irradiance of no less than 1200 μmol photons m⁻² s⁻¹. Plants were watered daily and fertilized twice a week with a solution of 20/10/20 (N/P/K). Plants were grown to maturity in 25 cm pots. Plants that were to be sampled prior to 20 DAP were grown in 50 cm X 30 cm X 6 cm flats. All samples were harvested between 4 and 6 h after the beginning of the illumination period. Organs of plants at different stages of development were harvested and frozen in liquid N₂. For long-term storage, plant materials for RNA isolation were stored at -70°C, and plant materials for protein isolation were stored in liquid N₂. Mitochondria were isolated from shoots of pea (*Pisum sativum* cv Progress #9), 14 to 16 DAP, grown in flats under conditions similar to those described for soybeans.

Isolation and Analysis of RNA

RNA was isolated as previously described (Logemann et al., 1987). The concentration of RNA was determined by absorbance at 260 nm. RNA samples were denatured with formaldehyde and formamide and were fractionated by electrophoresis using 1.0% agarose gels buffered with 0.02 M Mops, 8 mM sodium acetate, 1 mM EDTA, 2.2 M formaldehyde, pH 7.0 (Sambrook et al., 1989). After electrophoresis, the gel was washed twice with DEPC-treated water, soaked in 20 X SSC (1 X SSC is 150 mM NaCl and 15 mM sodium citrate, pH 7.0) for 10 min, and the RNA was transferred by capillary action with 20
X SSC to a nitrocellulose filter. The filter was subsequently baked for 2 h at 80°C in a vacuum oven, prehybridized for 2 h at 68°C in a solution containing 6 X SSC, 5 X Denhardt's [1 X Denhardt's is 0.02% (w/v) Ficoll, 0.02% (w/v) PVP-360, 0.025% (w/v) BSA], 50 mM Tris-HCl, pH 8.0, 0.2% (w/v) SDS, 10 mM EDTA, and 100 µg/mL sheared salmon sperm DNA, and hybridized overnight at 68°C in a similar solution containing 10% (w/v) dextran sulfate and 32P-labeled DNA probes. The DNA probes were radioactively labeled with [α-32P]dCTP (10 mCi/mmol, Amersham) using the random primer labeling method (Feinberg and Vogelstein, 1983). After hybridization, the membrane was washed twice with 0.2 X SSC, 0.5% SDS for 10 min at room temperature followed by a third wash for 30 min at 68°C.

Preparation of Cell-Free Extracts

All the procedures were performed at 4°C. Soybean organs (1 to 2 g fresh weight) were pulverized using a mortar and pestle in the presence of liquid N₂. The frozen pulverized tissue was homogenized with 3 to 4 volumes of a buffer containing 0.1 M Hepes-KOH, pH 7.0, 1 mM EDTA, 0.1% (v/v) Triton X-100, 20% (v/v) glycerol, 20 mM β-mercaptoethanol, 100 µg/mL PMSF, and 10 µM E-64. The extract was filtered through four layers of cheesecloth, and the filtrate was centrifuged at 22,100 gmax for 15 min. The extract was desalted in 200 µL portions using Sephadex G-25 columns (1 mL bed volume) and the pooled eluate was utilized for MCCase assays and western blot analyses.
Enzyme Assays

MCCase activity was assayed by the incorporation of radioactivity from NaH14CO\textsubscript{3} into an acid-stable product (Wurtele and Nikolau, 1990). The reaction mixture contained 0.1 M Tricine-KOH, pH 8.0, 5 mM MgCl\textsubscript{2}, 2.5 mM DTT, 5 mM KHCO\textsubscript{3}, 5 \mu Ci NaH14CO\textsubscript{3} (58 mCi/mmol, Amersham), 1 mM ATP, and 0.2 mM MC-CoA. The assay was initiated by the addition of the protein extract and incubated in a final volume of 200 \mu L at 37°C for 10 min. The reaction was terminated by the addition of 50 \mu L 6 N HCl. A sample (100 \mu L) was applied to a strip of Whatmann 3MM paper, dried, and the acid-stable radioactivity was determined by liquid scintillation. Assays were performed in duplicate. Control assays lacking the MC-CoA substrate were carried out for each protein extract. Cyt c oxidase activity was assayed in 1 mL reactions containing 0.1 M KH\textsubscript{2}PO\textsubscript{4}, pH 7.0, 0.1% (v/v) Nonidet P-40, mitochondria (10 to 25 \mu g protein), and 0.4 mg reduced cyt c (\epsilon\textsubscript{550} = 21 mM-1 cm-1). The oxidation state of cyt c was adjusted to a standard level (A\textsubscript{550} = 0.3 for a 0.16 mg/mL cyt c solution) using sodium hydrosulfite as the reducing agent. Reactions were started with cyt c and oxidation was monitored by a change in absorbance at 550 nm. Hydroxypyruvate reductase was assayed according to Schwitzguebel and Siegenthaler (1984) and NADP-glyceraldehyde-3-phosphate dehydrogenase was assayed according to Heber et al. (1963) as modified by Kaethner and ap Rees (1985).

Electrophoresis and Western Blot Analysis

SDS-PAGE was performed in 7.5% acrylamide gels as described previously (Laemmli, 1970). After electrophoresis, proteins were electrophoretically transferred to a
nitrocellulose membrane (Kyhse-Andersen, 1984), and the biotin-containing proteins were detected by using ^{125}I-streptavidin (Nikolau et al., 1985), or the biotin-containing polypeptide of MCCase was immunologically detected with specific antiserum (Song et al., 1994), diluted 1:200, followed by an incubation with ^{125}I-Protein A.

Quantitation of Chlorophyll, Leucine, and Protein

The chlorophyll content of developing soybean cotyledons was measured by the method of Arnon (1949). Free leucine content of developing soybean cotyledons was determined following conversion of leucine to its dansyl derivative and separation by HPLC. Cotyledons (0.5 g) were homogenized with 5 mL 10% TCA and the insoluble material was removed by centrifugation at 10000 g_{\text{max}} for 10 min. The supernatant was extracted three times with cold diethyl ether to remove the TCA. The dansylation procedure was modified from that of Tapuhi et al. (1981). Equal volumes (200 µL) of TCA-extracts, 0.2 M NaHCO$_3$, and 1.5 mg/mL dansyl chloride were mixed and incubated for 60 min at 21°C in darkness. The reaction was terminated by addition of 20 µL 2% (w/v) methylamine. The dansyl-leucine concentrations were determined from the absorbance at 254 nm following HPLC fractionation. The protein content of developing soybean cotyledons was determined from the protein concentration of the TCA-precipitate of the cotyledon extracts after an overnight incubation in 0.1 M NaOH to resolubilize the protein (Bradford, 1976, as modified by Jones et al., 1989).
Isolation of Mitochondria

Mitochondria were isolated from pea shoots by a method modified from that of Sandalio et al. (1987). Reagents and equipment were maintained at 0-4°C. Chilled plant material (480 g) was homogenized with a mortar and pestle in 80 g batches with 240 mL of 0.35 M mannitol, 30 mM Mops-NaOH, 1 mM EDTA, 0.2% (w/v) BSA, 4 mM Cys, pH 7.5, and the homogenate was filtered through four layers of cheesecloth. The filtrate was centrifuged 1500 g_{max} for 10 min to yield a pellet containing predominantly intact chloroplasts and other dense material. The supernatant was centrifuged at 12000 g_{max} for 20 min to yield a pellet enriched in mitochondria and peroxisomes. Pellets were resuspended in wash medium (0.3 M mannitol, 20 mM Mops-NaOH, 1 mM EDTA, 0.2% (w/v) BSA, pH 7.2) and repelleted at 12000 g_{max} for 20 min. Washed pellets were resuspended in approximately 24 mL of wash medium and distributed among eight 40 mL polycarbonate tubes containing discontinuous Percoll gradients. Each gradient consisted of 6 mL 60% (v/v) Percoll, 16 mL 38% (v/v) Percoll, and 10 mL 26% (v/v) Percoll in a buffer of 0.25 M sucrose, 10 mM Mops-NaOH, 0.2% (w/v) BSA, pH 7.2. These step gradients separated mitochondria (which form a band at the 26%/38% interface) from peroxisomes (which form a band at the 38%/60% interface), and to some extent from thylakoid membranes (atop and within the 26% Percoll layer). After centrifugation at 15000 g_{max} for 45 min using a Beckman JA-20 rotor, mitochondria were removed, diluted at least 5-fold with wash medium, centrifuged at 12000 g_{max} for 20 min, and resuspended in a final volume of approximately 16 mL. This suspension was then distributed over four 40 mL polycarbonate tubes containing continuous Percoll gradients (self-generating gradients, initially 31% (v/v)}
Percoll). Gradients were subjected to centrifugation at 41000 \(g_{\text{max}} \) for 30 min. The highly purified mitochondria (which form a band near the bottom of the continuous gradient) were collected and washed twice by dilution (at least 5-fold) with BSA-free wash medium and centrifugation at 12000 \(g_{\text{max}} \) for 20 min. Pooled mitochondrial pellets (generally 15 to 25 mg protein) were resuspended in a small volume of BSA-free wash medium (final volume of 1.5 to 2.5 mL). Mitochondrial purity was assessed by assaying cyt c oxidase activity (mitochondrial marker), hydroxypyruvate reductase activity (peroxisomal marker), and NADP-glyceraldehyde-3-phosphate dehydrogenase activity (chloroplastic marker) in samples taken from the crude filtrate and from the final mitochondrial preparation. In mitochondrial purifications, 12 to 21% of the cyt c oxidase activity was retained, resulting in a 47- to 68-fold increase in specific activity. The purification procedure resulted in the removal of over 99% of hydroxypyruvate reductase activity and over 99.9% of NADP-glyceraldehyde-3-phosphate dehydrogenase activity.

In vitro Mitochondrial Assays

Suspensions of freshly isolated mitochondria were adjusted to 10 mM DTT and 0.01% (v/v) Triton X-100 and sonicated (15 sec/mL, 60% output power). Lysed mitochondria were immediately desalted on Sephadex G-25 columns (200 \(\mu \)L extract/mL bed volume), using 0.1 M \(\text{KH}_2\text{PO}_4 \), pH 7.2, 1 mM DTT, as the elution buffer, and eluants were immediately frozen in liquid nitrogen and stored until later use.

The components of the leucine catabolic pathway were assessed as follows: Mitochondrial extracts were incubated with either 1 \(\mu \)Ci \L-\[^{14}\text{C}] \) leucine (346 mCi/mmol, ICN), or with various intermediates of the leucine catabolic pathway (300 \(\mu \)M MC-CoA, 1
mM IV-CoA, 1 mM αKIC, or 1 mM L-leucine) in the presence of 20 μCi NaH$_{14}$CO$_3$ (54 mCi/mmol, Amersham). The basal reaction components of these incubations were: 0.3 M mannitol, 5 mM MgCl$_2$, 10 mM KCl, 10 mM KH$_2$PO$_4$, 0.1% (w/v) BSA, 300 μM thiamine pyrophosphate, 300 μM NAD$^+$, 300 μM FAD$^+$, 1 mM ATP, 500 μM CoA, 300 μg mitochondrial protein, pH 7.2 in a total volume of 600 μL. In reactions containing either L-[U-14C]leucine or nonradioactive leucine, 1 mM α-ketoglutarate was added to support the transamination of leucine, and in reactions with L-[U-14C]leucine, 300 μM NaHCO$_3$ was added to support the MCCase reaction. Mitochondrial extract was added immediately prior to the start of the reactions, which were initiated by the addition of the appropriate radioactively-labeled compound. Reactions were incubated at 21°C for the appropriate duration on a nutator, and terminated by adjusting the solution to 5% TCA. Precipitated protein was pelleted in a microcentrifuge and 10 μL of the supernatant was transferred to a 0.75 cm x 0.75 cm section of Whatman 3MM paper, allowed to dry overnight to remove 14CO$_2$, and total acid-stable products were measured by liquid scintillation. The remainder of the supernatant was filtered through a 0.2 nm pore nylon syringe filter for HPLC analysis.

HPLC Analysis

For the quantitation of leucine, dansylated amino acids were fractionated by HPLC, using an octadecyilsilane column (Supelcosil LC-18, 25 cm x 4.6 mm i.d., 5 μm particle size) with a 20 μL injection volume and a flow rate of 1.2 mL/min. The solvent program was: isocratic at 7% B for 1 min, linear gradients of 7% B to 48% B over 15 min, 48% B to 65% B over 2 min, 65% B to 7% B over 7 min, and isocratic at 7% B for 3 min (buffer A was 10%
acetonitrile and buffer B was 30% acetonitrile, both in 25 mM trifluoroacetic acid, pH 7.6). Eluted peaks were identified by absorbance at 254 nm and quantification was performed with reference to standard dansyl-leucine.

Separation of radioactively-labeled metabolites was performed using octadecylsilane columns (Supelcosil LC-18, 25 cm x 4.6 mm i.d., 5 μm particle size; Alltech Adsorbosphere, 25 cm x 4.6 mm i.d., 5 μm particle size). The solvents and gradient profiles were the same as reported by King and Reiss (1985). Radioactively-labeled metabolites were detected using a Beckman 171 radioisotope detector with a scintillation cocktail (ScintiSafe Plus 50%, Fisher) flow rate of 2 mL/min. Radioactive peaks were identified by coelution with standards, measured at the maximal absorbance wavelength of the specific compounds (254 nm for acyl-CoA compounds and 210 nm for organic acids). The identity of acyl-CoA metabolites was confirmed by observing the disappearance of specific peaks after alkaline hydrolysis of the thioester bond (2.5 M NaOH, 3 h, 60°C). This treatment also affects αKIC, which undergoes decarboxylation at alkaline pH.

Statistical Analyses

MCCase activity and leucine, protein, and chlorophyll data from Figs. 2 and 3 are reported with standard errors of individual treatments. For all other data, standard errors were determined from the mean square of the error term from each respective analysis of variance. MCCase activity in Table I was analyzed as a factorial design with organ, developmental stage, and replication as the independent variables. The remaining data were analyzed as a factorial design with substrate, avidin, incubation duration, and replication (Fig. 5 and Table II) or reaction, incubation duration, and replication (Table III) as the
independent variables. Incubation duration was treated as a linear variable within the model. Interactions that did not significantly reduce the error or were not meaningful were removed from the model and only treatments giving a measurable response were included in the analysis. For the data in Tables II and III and Fig. 5, the variance was proportional to the mean; consequently, a log transformation was used.

Results

MCCase Activity during Soybean Fruit Development

MCCase activity was determined in extracts from the developing soybean fruit, its subtending leaf, and in vegetative leaves (Table I). In developing seeds, MCCase activity peaked at the onset of storage lipid and protein deposition at about 30 DAF, and subsequently declined to 1/3 of the peak activity as the seed matured. MCCase activity was also detectable in dry seeds. During seed set, MCCase activity was somewhat lower in the pod (pericarp) than in the developing seed, and mirrored the developmentally-induced changes that occurred in the seed until desiccation. In contrast to the seed, the pod did not retain MCCase activity upon desiccation. In the leaves subtending the fruit, MCCase activity changed little during the period when seeds were developing, until late in seed development, when the leaves began to senesce and MCCase activity declined. MCCase activity in vegetative leaves was higher than in the leaves subtending the fruit and was somewhat higher in the young leaves than in the mature leaves.
Organ-Specific Expression of MCCase

The distribution of MCCase was examined among organs of soybean seedlings at 13 DAP. At this stage of maturity, the unifoliate leaves of the seedlings had fully unrolled (VC stage; Fehr and Caviness, 1977) and the cotyledons were beginning to senesce (Fig. 2A). MCCase activity was detectable in the shoot apex and in all organs of the seedling (Fig. 2B). The specific activity of MCCase was highest in roots and hypocotyls and lowest in unifoliate leaves and shoot apices. There was up to a 7-fold difference in the specific activities of MCCase among these organs.

To determine whether these differences in MCCase activity are due to the differences in the accumulation of the biotin-containing subunit of MCCase, samples of extracts from each organ containing equal MCCase activity were subjected to SDS-PAGE, followed by western analysis with antiserum against the biotin-containing subunit of MCCase (Fig. 2C). We would expect to observe equal intensities of the 85 kD MCCase subunit if the difference in activity among the organs was due to differences in the accumulation of the biotin-containing subunit. This was not the case; therefore, we conclude that the level of the biotin-containing subunit alone does not determine the activity of MCCase. One possible specific explanation that we tested is that MCCase activity is modified by the degree of biotinylation of the apoprotein, as was previously observed in tomato (Wang et al., 1995). However, in soybean, the differences in the intensity of the MCCase biotin-containing subunit band, revealed by western analysis with 125I-streptavidin, mirrored the changes detected by the antiserum to that subunit (cf. Figs. 2C and 2D), indicating that the relative state of biotinylation of the MCCase subunit was constant among the organs examined.
MCCase Expression in Developing Cotyledons

One possible metabolic function of MCCase in plants is in the catabolism of leucine. Examination of MCCase in organs where free leucine is expected to be rapidly metabolized may provide insight into the role of MCCase in leucine catabolism. Developing soybean cotyledons were chosen as the model system. Using chlorophyll content as the criterion, under the growth conditions used in these experiments, development of the photosynthetic apparatus occurred between 6 and 10 DAP, thereafter the cotyledons maintained photosynthetic competence until 18 DAP when senescence became evident. Protein content declined dramatically from 6 to 14 DAP, reflecting the degradation of seed storage proteins (Fig. 3A). During this period of protein mobilization, free leucine accumulated, peaking at 8 DAP, and then sharply declined (Fig. 3B). During soybean cotyledon development, MCCase activity increased, reaching a peak at 10 DAP during the period of rapid protein degradation and coinciding with the decline in leucine concentration (Fig. 3B). The decrease in MCCase activity lags just behind the decline in leucine content, consistent with a role of MCCase in leucine catabolism.

To ascertain whether these developmentally associated changes in MCCase activity are ascribable to changes in MCCase enzyme accumulation or changes in enzyme efficiency, we determined the accumulation of the biotin-containing subunit of MCCase. Western blots were analyzed with either anti-MCCase serum to detect the subunit polypeptide \textit{per se} (Fig. 3C) or 125I-streptavidin to detect the biotin prosthetic group of this polypeptide (Fig. 3D). In these analyses, gels were loaded with samples containing equal amounts of MCCase activity. Hence, if the changes in activity during cotyledon development are due to changes in the steady state levels of the MCCase biotin-containing subunit, we would expect to observe
equal intensity protein bands. However, the MCCase biotin-containing subunit exhibited a modulation in intensity. Therefore, as we concluded with the organs of soybean seedlings, the level of the biotin-containing subunit alone does not determine the activity of MCCase. Furthermore, the close correlation between the levels of the biotin-containing subunit (Fig. 3C) and the biotin prosthetic group on this subunit (Fig. 3D) indicates that the biotinylation status of the MCCase biotin-containing subunit is unaltered during cotyledon development.

Abundance of MCCase mRNA in Soybeans

To ascertain whether the developmentally-associated changes in MCCase expression may also be regulated by the accumulation of the mRNA coding for the biotin-containing subunit of MCCase, we determined the abundance of this mRNA in organs of soybean plants at 13 DAP and in cotyledons from seedlings of various ages (Fig. 4). In plants at 13 DAP, the steady-state level of the 2.4 kb MCCase mRNA was highest in the cotyledon, followed by, in decreasing levels, the hypocotyl, shoot apex, root, and stem (Fig. 4C). Very little MCCase mRNA was detected in the leaf. In developing cotyledons, the steady state levels of the MCCase mRNA changed slightly from 4 to 8 DAP, increased by at least 10-fold between 8 and 10 DAP, and subsequently declined to about 1/5 of the level present at peak accumulation (Fig. 4D).

Mitochondrial Catabolism of MC-CoA

Because MCCase is located in the mitochondria (Baldet et al., 1992), we investigated MCCase-related metabolism in this organelle. In the presence of MC-CoA and cofactors (see Materials and Methods), mitochondrial extracts catalyze the incorporation of
radioactivity from NaH14CO\textsubscript{3} into acid-stable metabolites in a time-dependent manner (Fig. 5A). Incorporation of label was precluded by withholding MC-CoA or ATP (data not shown), or by preincubating mitochondrial extracts with avidin (Wurtele and Nikolau, 1990; Fig. 5A), consistent with a requirement for MCCase. Analysis of the products by HPLC revealed four radioactively-labeled peaks, eluting at \(-3.3\) min, \(-5\) min, \(-19.2\) min, and \(-22.6\) min (Figs. 6A and 6B). These were identified as acetoacetate, bicarbonate, HMG-CoA, and MG-CoA, respectively. Acetoacetate, HMG-CoA, and MG-CoA are predicted to be labeled if MCCase, MG-CoA hydratase, and HMG-CoA lyase are present and active in mitochondria (Fig. 1). The kinetics of metabolite accumulation (Figs. 5B, 5C, and 5D) support the sequential action of these enzymes. MG-CoA, the immediate product of MCCase, is labeled initially, followed sequentially by accumulation of \([^{14}\text{C}]\text{HMG-CoA}\) and \([^{14}\text{C}]\text{acetoacetate}\). Interestingly, \([^{14}\text{C}]\text{HMG-CoA}\) accumulated to higher levels than \([^{14}\text{C}]\text{MG-CoA}\), indicating that the hydratase reaction occurs at a faster rate than the lyase reaction, at least under the conditions we employed.

Additional evidence for the sequential conversion of MC-CoA to MG-CoA, HMG-CoA and acetoacetate was obtained in experiments in which avidin was used to inhibit MCCase activity after an initial incubation without avidin. In these experiments, we essentially carried out a pulse-chase experiment, where the incubation without avidin (for 2.5 min) represented the pulse phase, and the incubation following the addition of avidin was the chase phase. As avidin inhibited further incorporation of radioactivity from NaH14CO\textsubscript{3}, \([^{14}\text{C}]\text{MG-CoA}\) and \([^{14}\text{C}]\text{HMG-CoA}\) sequentially declined as \([^{14}\text{C}]\text{acetoacetate}\) accumulated. The accumulation of \([^{14}\text{C}]\text{acetoacetate}\) indicates that further metabolism of acetoacetate in
mitochondrial extracts is slower than the previous reaction catalyzed by HMG-CoA lyase, or that the catabolic mechanism (if it exists in mitochondria) has been disrupted in our mitochondrial extracts. These results clearly indicate the existence of MCCase, MG-CoA hydratase, and HMG-CoA lyase in plant mitochondria, enzymes that catalyze reactions common to leucine catabolism, isoprenoid catabolism, and the mevalonate shunt.

Mitochondrial Catabolism of Leucine

If MCCase is involved in leucine catabolism, IV-CoA, α-KIC, and leucine would be precursors of MC-CoA (Fig. 1). We addressed this hypothesis by testing whether IV-CoA, αKIC, and leucine could support the incorporation of radioactivity from NaH14CO$_3$ into MG-CoA, HMG-CoA, and acetoacetate. The results presented in Table II indicate that both IV-CoA and αKIC support the incorporation of radioactivity from NaH14CO$_3$ into acid-stable products in a time-dependent manner. As expected, this incorporation is avidin-sensitive. Both IV-CoA and αKIC support the incorporation of radioactivity into HMG-CoA, detectable after a 20 min incubation. In the case of the incubation with IV-CoA, [14C]MG-CoA was detected after a 1 h incubation. These data indicate that both BCKDH and the branched-chain acyl-CoA dehydrogenase are present in mitochondria (Fig. 1). Leucine was unable to support detectable incorporation of radioactivity from NaH14CO$_3$ into MG-CoA or HMG-CoA (data not shown). A likely explanation is that leucine is too far upstream in the metabolic pathway from the MCCase reaction to be an effective source of MC-CoA.

To demonstrate that mitochondria possess the entire complement of leucine catabolic enzymes, the metabolic products of [U-14C]leucine were examined by HPLC. Upon
incubation of mitochondrial extracts with [U-%C]leucine, six primary peaks of radioactive metabolites were observed, eluting at \(-3.6 \text{ min}, -5.1 \text{ min}, -13 \text{ min}, -20 \text{ min}, -36.5 \text{ min}, \) and \(-38.5 \text{ min}.\) The peak at \(-20 \text{ min}\) coelutes with isovaleric acid, possibly arising from decarboxylation of \(\alpha\)KIC. Other peaks were identified as leucine \((-5.1 \text{ min}), \alpha\)KIC \((-13 \text{ min}), \) MC-CoA \((-36.5 \text{ min}), \) and IV-CoA \((-38.5 \text{ min}).\) The peak at \(-3.6 \text{ min}\) remains unidentified. \(\alpha\)[\(^{14}\)C]KIC was first detected after 20 min and continued to accumulate to a maximum at 2 h (Table III). The conversion of [U-%C]leucine to \(\alpha\)-[\(^{14}\)C]KIC as well as subsequent catabolism was dependent on the addition of \(\alpha\)-ketoglutarate, implicating the presence of the branched-chain amino acid aminotransferase in mitochondria. Accumulation of \([^{14}\text{C}]\)IV-CoA was detected between 1 and 2 h, demonstrating the sequential action of the aminotransferase and BCKDH. This appearance of \([^{14}\text{C}]\)IV-CoA was prevented by competition with nonradioactive \(\alpha\)KIC or by withholding free CoA, which is needed by BCKDH, from the incubation mix. \([^{14}\text{C}]\)MC-CoA was detectable after 4 h of incubation and its presence was enhanced by addition of avidin, which inhibits MCCase and prevents further catabolism of MC-CoA.

Discussion

Developmental Regulation of MCCase

As a first step in elucidating the physiological functions of MCCase in plants, we determined the accumulation of MCCase mRNA and protein in different organs of soybean and during cotyledon development. MCCase is expressed in all organs of the soybean plant, although there is considerable variation in the level of expression, presumably reflecting the relative importance of MCCase in these organs. These studies indicated that MCCase
expression can be regulated by at least two different mechanisms. Changes in the accumulation of the mRNA for the biotin-containing subunit of MCCase probably reflect developmentally-regulated changes in its gene transcription or mRNA stability. For example, during the development of the cotyledons, the accumulation of this mRNA increases with increasing age of the organ. In addition, MCCase activity does not always correlate with the level of accumulation of the MCCase biotin-containing subunit, indicating MCCase activity is controlled by a second mechanism. This lack of correlation could be explained by changes in the accumulation of the nonbiotinylated subunit (which we could not detect) or changes in the catalytic efficiency of the MCCase enzyme. The catalytic efficiency of the MCCase enzyme might be altered during development due to a post-translational mechanism (e.g. covalent modification of the enzyme) or due to the differential expression of isozymes of MCCase that differ in their catalytic efficiency. One post-translational modification that is essential for the activity of MCCase is biotinylation; MCCase activity is modulated by biotinylation in tomato (Wang et al., 1995). However, in seedling organs and developing cotyledons of soybean, differences in the abundance of the biotin prosthetic group closely paralleled differences in the abundance of the biotinylated subunit. Therefore, MCCase did not appear to be regulated by biotinylation in soybean. Clearly, isolation and characterization of the gene for the nonbiotinylated subunit of MCCase will facilitate studies of the regulation of the activity of this enzyme.

Cotyledons initially function as a source tissue supporting the growth of the entire seedling. At this stage of development, seed storage proteins are hydrolyzed and the released amino acids are incorporated into new proteins, catabolized during respiration, or utilized in the formation of new compounds. In soybean cotyledons, we observed that the maximal rate
protein degradation occurred between 4 and 6 DAP, which correlated with the peak accumulation of free leucine content. Subsequently, between 8 and 10 DAP, the free leucine concentration declined and this correlated with the peak in MCCase activity. These data indicate that MCCase may have a role in leucine catabolism in cotyledons. This conclusion is consistent with the finding that in carbohydrate-starved sycamore cells, there is a correlation between a transient accumulation of leucine and the accumulation of the biotin-containing subunit of MCCase (Aubert et al., 1996). It is possible that leucine accumulation itself, or some consequence of leucine accumulation, is responsible for the induction of MCCase activity. Indeed, exogenously added leucine has been observed to induce MCCase activity in carrot cells (E.S. Wurtele, B.J. Nikolau, unpublished). However, in sycamore cells, exogenous leucine did not induce accumulation of the biotin-containing subunit of MCCase (Aubert et al., 1996), suggesting that leucine itself was not the signaling molecule in this system.

Role of MCCase in Leucine Catabolism

To provide more direct evidence for the metabolic function of MCCase in plants, we analyzed the fate of the MCCase product, MG-CoA, in extracts from isolated mitochondria. Incubation of mitochondrial extracts with MC-CoA and NaH\(^{14}\)CO\(_3\) resulted in the time-dependent incorporation of label into three compounds; MG-CoA, HMG-CoA, and acetoacetate. These three metabolites are those predicted to arise from MC-CoA catabolism via the pathway depicted in Fig. 1. Furthermore, the time-course of accumulation of radioactivity in these products relative to each other, as well as the depletion of \([\text{14}\text{C}]\)MG-CoA and \([\text{14}\text{C}]\)HMG-CoA and the simultaneous accumulation of \([\text{14}\text{C}]\)acetoacetate following
addition of avidin to the mitochondrial extracts, are consistent with the interdependence of these three metabolites within a single pathway. Additional radiotracer experiments showed that mitochondrial extracts can metabolize αKIC and IV-CoA to MC-CoA, which could then be carboxylated by MCCase. Finally, mitochondrial extracts are able to catabolize [U-\(^{14}\)C]leucine sequentially to α-[\(^{14}\)C]KIC, [\(^{14}\)C]IV-CoA and [\(^{14}\)C]MC-CoA. In combination, these radiotracer metabolic studies have shown that mitochondria have the capacity to catabolize leucine to acetoacetate and presumably, acetyl-CoA as illustrated in Fig. 1. These findings imply that the six enzymes involved in leucine catabolism are housed in the mitochondria.

In animals, the mitochondrial location of all of the enzymes of leucine catabolism is well established while in plants, these enzymes have received little attention. MG-CoA hydratase and HMG-CoA lyase have been studied in the context of their role in providing HMG-CoA for isoprenoid biosynthesis (Alam et al., 1991; Weber and Bach, 1993; van der Heijden et al., 1994; van der Heijden and Verpoorte, 1995). Studies of the branched-chain amino acid aminotransferase have concentrated on its role as the terminal enzyme in the biosynthesis of branched-chain amino acids (Aarnes, 1981; Pathre et al., 1987; 1989). Until our studies, the subcellular locations of these enzymes were unknown in plants.

Apart from MCCase, the only enzyme involved in mitochondrial leucine catabolism for which a cDNA or gene has been cloned is BCKDH (Fujiki et al., 1997; Luethy et al., 1997; Mooney et al., 1998). Interestingly, Fujiki et al. (1997) have observed enhanced accumulation of BCKDH mRNA in response to dark-induced starvation and senescence, conditions which induce MCCase accumulation (Aubert et al., 1996). A BCKDH has been shown to be present in peroxisomes and subsequent studies on the metabolism of αKIC by
isolated peroxisomes have led to the prediction of a parallel, but MCCase-independent pathway for leucine catabolism (Gerbling and Gerhardt, 1988; 1989; Gerbling, 1993).

Our findings that mitochondria have the capacity to catabolize leucine by an MCCase-dependent mechanism, in combination with the studies of Gerbling and Gerhardt (1989) and Gerbling (1993), indicate that plants can catabolize leucine via two pathways that are separated into different subcellular compartments, mitochondria and peroxisomes. Studies are required to determine the fate of carbon catabolized via these two pathways and the mechanisms that regulate the commitment of leucine to each catabolic pathway. The conditions under which such partitioning is affected should reveal much about the mechanisms that control the utilization of carbon reserves during plant metabolism.

In addition to its role in the mitochondrial catabolism of leucine, MCCase has been suggested to participate in two important elements of isoprenoid metabolism in plants: the mevalonate shunt (Nes and Bach, 1985) and the catabolism of isoprenoids via geranyl-CoA (X. Guan, T.A. Diez, B.J. Nikolau, E.S. Wurtele, unpublished). The ultimate product of these pathways, acetyl-CoA, has a wide array of potential fates including respiration, the glyoxylate cycle, lipogenesis, and the biogenesis of polyketides (Fig. 1). By virtue of its central position in leucine and isoprenoid metabolism, and the numerous potential fates of acetyl-CoA, MCCase might play a pivotal role in regulating the carbon flux among these pathways.
Literature Cited

Fehr WR, Caviness CE (1977) Stages of soybean development. Iowa State University Cooperative Extension Service 80: 1-12

Kaethner TM, ap Rees T (1985) Intracellular location of ATP citrate lyase in leaves of *Pisum sativum* L. Planta **163**: 290-294

Pathre U, Singh AK, Sane PV (1989) Inactivation of leucine aminotransferase with diethylpyrocarbonate and rose bengal: Evidence for an active site histidine residue. Ind J Biochem Biophys 26: 136-139

Sodek L, Wilson CM (1973) Metabolism of lysine and leucine derived from storage protein during the germination of maize. Biochim Biophys Acta 304: 353-362

(1995) Molecular cloning of the biotinylated subunit of 3-methylcrotonyl-coenzyme A
carboxylase of Arabidopsis thaliana. Plant Physiol 107: 1013-1014

Weber T, Bach TJ (1993) Partial purification and characterization of membrane-
associated 3-hydroxy-3-methylglutaryl-coenzyme A lyase from radish seedlings. Z
Naturforsch C 48: 444-450

Wurtele ES, Nikolau BJ (1990) Plants contain multiple biotin enzymes: Discovery
of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase and pyruvate
Figure 1. Potential metabolic functions of MCCase. MCCase catalyzes the ATP-dependent carboxylation of 3-methylcrotonyl-CoA (MC-CoA) to form 3-methylglutaconyl-CoA (MG-CoA). This reaction may be required in the catabolism of leucine to acetoacetate and acetyl-CoA (reactions 1 to 6). MCCase may also function to convert mevalonate (MVA) to acetoacetate and acetyl-CoA (via isopentenyl pyrophosphate [IPP] and 3-methylcrotonic acid) by the "mevalonate shunt." A third function of MCCase may be as a part of an isoprenoid catabolic pathway (via geranyl-CoA). Reactions 4 to 6 are common to all three processes. The products of these processes, acetoacetate and acetyl-CoA, can be further metabolized to isoprenoids, polyketide derivatives (e.g. flavonoids, stilbenoids), fatty acids, glucose in tissues engaging the glyoxylate cycle, or respired to CO₂ in the tricarboxylic acid cycle. The enzymes of leucine catabolism are: 1) branched-chain amino acid aminotransferase, 2) branched-chain keto-acid dehydrogenase complex, 3) branched-chain acyl-CoA dehydrogenase, 4) 3-methylcrotonyl-CoA carboxylase, 5) 3-methylglutaconyl-CoA hydratase, 6) 3-hydroxy-3-methylglutaryl-CoA lyase. The asterisk denotes the carbon atom expected to be radioactively labeled when NaH¹⁴CO₃ is supplied for the MCCase reaction.
L-Leucine

\[\text{CH}_3\text{C}-\text{CH}-\text{CH}-\text{COOH} \]

aKG

\[\text{CH}_3\text{C}-\text{CH}-\text{CH}-\text{COOH} \]

CoA

NAD

TPP

CO₂

NADH

IV-CoA

\[\text{CH}_3\text{C}-\text{CH}-\text{CH}-\text{SCoA} \]

FAD

3-oxo-7-methylloctenyl-CoA

3-hydroxy-carboxygeranyl-CoA

b-Oxidation

2 Acetyl-CoA

Carboxygeranyl-CoA

Geranyl-CoA

Isoprenoids

2-Isopentenaldehyde

2-Isopentanol

DMAPP

GPP

IPP

MVA

HMG-CoA

\[\text{HO}--\text{C}-\text{CH}-\text{C}-\text{SCoA} \]

Acetoacetate

TCA Cycle

Glyoxylate Cycle

Fatty Acids

Polyketides

2-Isopentenoic acid

3-o xo-7-methylloctenyl-CoA

3-hydroxy-carboxygeranyl-CoA

b-Oxidation

2 Acetyl-CoA

Carboxygeranyl-CoA

Geranyl-CoA

Isoprenoids

2-Isopentenaldehyde

2-Isopentanol

DMAPP

GPP

IPP

MVA

HMG-CoA

Acetoacetate

TCA Cycle

Glyoxylate Cycle

Fatty Acids

Polyketides
Figure 2. MCCase activity and the accumulation of the biotin-containing subunit of MCCase in soybean seedlings at 13 DAP. Organs of a soybean seedling (A). MCCase activity (mean of five experiments ± SE) (B). Western blot probed with antiserum to detect the biotin-containing subunit of MCCase (C). Western blot identical to that shown in panel C, but instead probed with 125I-streptavidin to detect the biotin prosthetic group on the biotin-containing subunit of MCCase (D). In panels C and D, protein samples were loaded on the basis of equal MCCase activity (0.1 nmol/min) to detect differences in the catalytic efficiency of the enzyme among organs. The data presented in panels C and D were gathered from a single experiment; five replicates of this experiment gave similar results.
Figure 3. Effect of cotyledon development on MCCase activity, and leucine, protein, and chlorophyll accumulation. Chlorophyll and total protein contents (A) and MCCase activity and free leucine content (B). Western blot probed with antiserum to detect the biotin-containing subunit of MCCase (C). Western blot identical to that shown in panel C, but instead probed with 125I-streptavidin to detect the biotin prosthetic group on the biotin-containing subunit of MCCase (D). In panels C and D, protein samples were loaded on the basis of equal MCCase activity (0.1 nmol/min) to detect differences in the catalytic efficiency of the enzyme during cotyledon development. The data presented in panels A and B are means +/- SE from three replicates. The data presented in panels C and D were gathered from a single experiment; three replicates of this experiment gave similar results.
Figure 4. Steady state levels of the mRNA coding for the biotin-containing subunit of MCCase in organs of soybean seedlings at 13 DAP and during cotyledon development. Ethidium bromide-stained agarose gel containing approximately equal amounts (20 µg) of RNA, isolated from various organs (A) or from cotyledons at different stages of development (B). Northern blot depicting the accumulation of the mRNA coding for the biotin-containing subunit of MCCase in various organs (C) or in cotyledons at different stages of development (D). The data presented in this figure were gathered from a single experiment. Five replicates (A and C) and three replicates (B and D) of these experiments gave similar results.
Figure 5. Kinetics of the incorporation of radioactively-labeled bicarbonate into acid-stable metabolites by mitochondrial extracts in the presence of MC-CoA and cofactors. Time-course of the incorporation of radioactivity into acid-stable products (A), MG-CoA (B), HMG-CoA (C), or acetoacetate (D). Incubations were carried out either without or with 10 μg avidin (to inhibit MCCase activity), which was added 2.5 min after the start of the reaction (arrow). Each time point is an independent sample and represents two replicates. Due to the rapid incorporation of NaH\(^{14}\)CO\(_3\), the background radioactivity was impossible to obtain. Therefore, the zero-minute time point was derived from samples incubated for 1 min in the presence of 10 μg avidin.
Figure 6. Separation of radioactive metabolites by HPLC. Representative chromatograms depicting metabolites arising from the catabolism of MC-CoA by mitochondrial extracts in the presence of NaH\(^{14}\)CO\(_3\) and cofactors after 5 min (A) or 45 min (B) incubations. After 5 min, \([^{14}\text{C}]\text{MG-CoA}\) and \([^{14}\text{C}]\text{HMG-CoA}\) are at similar levels and \([^{14}\text{C}]\text{acetoacetate}\) is barely detectable. After 45 min, \([^{14}\text{C}]\text{HMG-CoA}\) has exceeded \([^{14}\text{C}]\text{MG-CoA}\) and \([^{14}\text{C}]\text{acetoacetate}\) is increased. Representative chromatograms depicting metabolites arising from the catabolism of \([\text{U-}^{14}\text{C}]\text{leucine}\) by mitochondrial extracts in the presence of 10 \(\mu\text{g}\) avidin after a 2 h (C) or 6 h (D) incubation. After 2 h, \(\alpha-[^{14}\text{C}]\text{KIC}\) has accumulated to a substantial level and \([^{14}\text{C}]\text{IV-CoA}\) accumulation is in progress. After 6 h, the level of \(\alpha-[^{14}\text{C}]\text{KIC}\) has diminished, indicating that the rate of its disappearance has exceeded its formation. \([^{14}\text{C}]\text{IV-CoA}\) has continued to accumulate and \([^{14}\text{C}]\text{MC-CoA}\) has appeared. \([^{14}\text{C}]\text{Isovaleric acid}\) is likely a decarboxylation product of \(\alpha-[^{14}\text{C}]\text{KIC}\), possibly arising nonenzymatically.
Table I. *MCCase activity in developing soybean organs*

<table>
<thead>
<tr>
<th>Organ</th>
<th>Developmental Stage</th>
<th>MCCase Activity*<sup>b</sup></th>
<th>DAF**<sup>c</sup></th>
<th>nmol min<sup>-1</sup>mg protein<sup>-1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing Seeds</td>
<td>20</td>
<td>6.9</td>
<td>20</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.9</td>
<td>30</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5.6</td>
<td>40</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3.3</td>
<td>50</td>
<td>3.3</td>
</tr>
<tr>
<td>Dry Seeds</td>
<td></td>
<td></td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Seed Pod Coat</td>
<td>10</td>
<td>2.5</td>
<td>20</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.0</td>
<td>30</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.0</td>
<td>40</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.3</td>
<td>60</td>
<td>0.8</td>
</tr>
<tr>
<td>Reproductive Leaf<sup>e</sup></td>
<td>10</td>
<td>1.2</td>
<td>20</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.3</td>
<td>30</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1.3</td>
<td>50</td>
<td>0.02</td>
</tr>
<tr>
<td>Young Leaf</td>
<td>d</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mature Leaf</td>
<td>e</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average of three replicates. SE = 0.7 nmol min⁻¹mg protein⁻¹

^bDays after flowering.

^cReproductive leaf is the leaf next to a seed pod and is staged relative to flowering.

^dYoung leaf is the first true leaf of 14 day old plants.

^eMature leaf is the first true leaf of 30 day old plants, prior to flowering.
Table II. *Mitochondrial metabolism of αKIC and IV-CoA*

Mitochondrial extracts were incubated with αKIC or IV-CoA and their conversion to MC-CoA was monitored by the MCCase-catalyzed (avidin-sensitive) incorporation of radioactivity from NaH\(^{14}\)CO\(_3\) into acid-stable products, which were identified as [\(^{14}\)C]MG-CoA or [\(^{14}\)C]HMG-CoA by HPLC analysis. The amount of radioactivity present in each metabolite is expressed as a percentage of the total radioactivity recovered during HPLC fractionation, discounting the residual [\(^{14}\)C]bicarbonate peak. For acid-stable metabolites, the variance was dependent on the mean and a log transformation was used. Consequently, one standard error above the mean (shown) was greater than one standard error below the mean (not shown).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Incubation Duration (min)</th>
<th>Acid-Stable Metabolites</th>
<th>MG-CoA</th>
<th>HMG-CoA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-CoA</td>
<td></td>
<td>dpm (x10^3)/mg protein</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Avidin</td>
<td>+Avidin</td>
<td>-Avidin +Avidin -Avidin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>47.8(+10.3)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>80.3(+17.3)</td>
<td>64.6(+13.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>106.2(+22.8)</td>
<td>64.9(+13.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>166.4(+35.8)</td>
<td>77.2(+16.6)</td>
</tr>
<tr>
<td>αKIC</td>
<td></td>
<td>1</td>
<td>49.9(+10.7)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>63.7(+13.7)</td>
<td>64.5(+13.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>88.5(+19.0)</td>
<td>67.1(+14.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>146.3(+31.4)</td>
<td>100.8(+21.5)</td>
</tr>
</tbody>
</table>

ND = Not detected
Table III. *Catabolism of leucine by mitochondrial extracts*

Mitochondrial extracts were incubated with [U-14C]leucine and cofactors for various lengths of time and the resulting radioactive products were analyzed by HPLC. Additional reactions were also conducted without added α-ketoglutarate (αKG) or CoA, or with the addition of 1 mM nonradioactive αKIC or 10 µg avidin. αKG is required for the transamination of leucine; CoA is required for the decarboxylation and activation of αKIC in the BCKDH reaction, nonradioactive αKIC inhibits further metabolism of α-[14C]KIC by competition, and avidin inhibits MCCase. Standard errors are reported as in Table II.

<table>
<thead>
<tr>
<th>Additions/ Omissions</th>
<th>Incubation Duration</th>
<th>αKIC dpm (x10^3)/mg protein</th>
<th>IV-CoA</th>
<th>MC-CoA</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.33 h</td>
<td>256.4 (+45.1)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>1 h</td>
<td>585.3 (+102.9)</td>
<td>19.7 (+2.3)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2 h</td>
<td>1303.2 (+229.1)</td>
<td>110.5 (+13.0)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4 h</td>
<td>697.6 (+122.7)</td>
<td>426.5 (+50.2)</td>
<td>8.6 (+4.2)</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>362.1 (+63.7)</td>
<td>508.6 (+59.8)</td>
<td>29.9 (+14.4)</td>
</tr>
<tr>
<td>- αKG</td>
<td>2 h</td>
<td>89.4 (+15.7)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>- CoA</td>
<td>2 h</td>
<td>1214.7 (+213.6)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>+ 1 mM αKIC</td>
<td>2 h</td>
<td>1099.0 (+193.2)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4 h</td>
<td>1835.0 (+322.6)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>2270.3 (+399.1)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>+ avidin</td>
<td>2 h</td>
<td>936.8 (+164.7)</td>
<td>154.3 (+18.2)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4 h</td>
<td>800.7 (+139.9)</td>
<td>420.6 (+49.5)</td>
<td>51.4 (+24.7)</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>602.4 (+105.9)</td>
<td>436.8 (+51.4)</td>
<td>71.7 (+34.5)</td>
</tr>
</tbody>
</table>

ND = Not Detected
CHAPTER 3. DEVELOPMENTAL AND ENVIRONMENTAL REGULATION OF 3-METHYLCROTONYL-CoA CARBOXYLASE IN ARABIDOPSIS

Ping Che, Eve Syrkin Wurtele and Basil J. Nikolau

Department of Biochemistry, Biophysics and Molecular Biology (P.C. and B.J.N.) and Department of Botany (E.S.W.), Iowa State University, Ames, IA 50011

Summary

3-Methylcrotonyl-coenzyme A carboxylase (MCCase) is a nuclear-encoded mitochondrial biotin-containing enzyme whose major metabolic role is the catabolism of leucine. In addition, MCCase may be required for isoprenoid catabolism and the mevalonate shunt. MCCase contains two subunits: the biotinylated MCC-A subunit and the non-biotinylated MCC-B subunit. In the work presented herein, the single-copy gene encoding the Arabidopsis MCC-A subunit was isolated and characterized. It contains 15 exons separated by 14 introns. We examined the regulation of expression of MCC-A and MCC-B genes in transgenic plants containing the 1.1-kb and 1.0-kb 5' upstream sequences of the two genes, respectively, fused to the β-glucuronidase gene. Transfer seedlings from light to dark induces MCCase expression, which is repressed by exogenous carbohydrates, especially sucrose. Several lines of evidence indicate that an inhibitor of MCCase expression is
synthesized in illuminated photosynthetic organs and can be translocated to non-photosynthetic organs. Furthermore, either artificially inhibiting carbohydrate biosynthesis by limiting atmospheric CO₂ or inhibiting carbohydrate translocation from leaves to roots by detaching the leaves, results in the induction of MCCase. These results are consistent with the hypothesis that the inhibitor is a carbohydrate, perhaps sucrose. The effect of hexoses and glucose analogous on MCCase expression indicate that phosphorylation of hexoses may be the signal for the repression. We conclude that MCCase expression is primarily controlled at the level of gene transcription and regulated by a complex interplay between the illumination status and its carbon balance.

Introduction

MCCase (EC 6.4.1.4) was discovered 40 years ago in bacteria and mammals (Moss and Lane, 1971). This enzyme catalyzes the ATP-dependent carboxylation of 3-methylcrotonyl-CoA (MC-CoA) to form 3-methylglutonyl-CoA (MG-CoA), in a two-step reaction mechanism:

\[
\begin{align*}
 \text{HCO}_3^- + \text{ATP} + \text{E-BIOTIN} & \rightarrow \text{E-BIOTIN-CO}_2^- + \text{ADP} + \text{Pi} \\
 \text{E-BIOTIN-CO}_2^- + \text{MC-CoA} & \rightarrow \text{E-BIOTIN} + \text{MG-CoA}
\end{align*}
\]

\[
\begin{align*}
 \text{HCO}_3^- + \text{ATP} + \text{MC-CoA} & \rightarrow \text{MG-CoA} + \text{ADP} + \text{Pi}
\end{align*}
\]

MCCase is a heteromeric enzyme composed of two types of subunits: a biotinylated subunit (MCC-A) and a non-biotinylated subunit (MCC-B). The MCC-A subunit catalyzes the first half reaction, and MCC-B subunit catalyzes the second. The biotin prosthetic group acts as an intermediate carrier of the substrate carboxyl group that carboxylates MC-CoA.
Since the discovery of MCCase activity in plant extracts (Wurtele and Nikolau, 1990), this enzyme has been purified and characterized from several plant species (Alban et al., 1993; Chen et al., 1993; Diez et al., 1994; Song et al., 1994; Wang et al., 1994; Weaver et al., 1995; McKean et al., 2000). It contains two subunits: MCC-A and MCC-B (Chen et al., 1993; Alban et al., 1993; Diez et al., 1994; Weaver et al., 1995; McKean et al., 2000). Genic sequences for the two subunits have been isolated only for the plant enzyme.

In animals and in some bacteria and fungi, MCCase is required for the catabolism of leucine (Leu) (Lau et al., 1980), for the operation of the mevalonate shunt (Popják, 1971; Edmond and Popják, 1974; Guan et al., 1999) and in certain aspects of isoprenoid metabolism (Seubert and Remberger, 1963). Moreover, we recently demonstrated that plant mitochondria can convert Leu to acetoacetate and acetyl-CoA via a pathway analogous to that found in animals and bacteria (Anderson et al., 1998). This earlier study not only provides direct evidence for the metabolic function of MCCase in plants, but also demonstrates that the entire Leu catabolic pathway occurs within plant mitochondria.

The molecular and biochemical regulation of Leu catabolism in plants is not fully understood. As a first step towards understanding MCCase regulation, and hence obtain more detailed insights into Leu catabolism, we isolated and characterized the genomic organization of the MCC-A gene and analyzed the regulation of MCC-A and MCC-B (McKean et al., 2000) gene expression patterns. The data presented in this paper indicate that environmental and developmental signals affect MCCase expression and these are primarily regulated at the level of mRNA accumulation. Furthermore, these signals coordinately affect both the MCC-A and MCC-B genes. We also determined that artificially depleting carbohydrate synthesis induces the transcription of MCC-A and MCC-B genes in
Arabidopsis seedlings and roots. These results indicate that the expression of MCC-A and MCC-B genes is coordinately regulated by metabolic repression at the level of gene transcription and imply that the role of MCCase in plant metabolism is to respond to low carbohydrate availability during autophagic processes.

Results

Structure of Arabidopsis thaliana MCC-A gene

The MCC-A gene was isolated from an Arabidopsis genomic library in the vector λ Fix (see experimental procedures). Adjoining 2-kb and 4-kb SacI fragments were subcloned from this λ clone into plasmids (pBP5 and pBP4, respectively) and sequenced. The complete sequence of MCC-A gene was obtained by combining the sequence of these two fragments. The structure of the MCC-A gene was identified by comparing the sequence with the corresponding cDNA (Weaver et al., 1995). The transcribed region of the gene spans 6165 bp of genomic sequence and consists of 15 exons separated by 14 introns. All but one exon/intron junction displays the canonical 5'GT-intron-AG3' sequence (Fig. 1A). The only exception to this rule is the 3' end of intron 12 which has the sequence, 5'GT-intron-GG3'. The promoter region contains an apparent TATA box motif at position -243 to -236 (TTAATAAA).

Light-mediated regulation of MCCase expression

Previously, we had found that MCCase activity was higher in roots (a non-photosynthetic organ) than in leaves (a photosynthetic organ) (Wang et al., 1995; Anderson et al., 1998). In addition, MCCase activity was found to be higher in barley seedlings (Maier
et al., 1998; Clauss et al., 1993) and plant cells (Aubert et al., 1996) that were maintained in darkness. As a first step to investigate light-mediated regulation of MCCase expression, we examined the effect of illumination on MCCase activity. *Arabidopsis* seedlings were germinated on MS agar plates for 6 days, and then light was withheld by covering them with aluminum foil for a period of time. MCCase specific activity was determined in extracts prepared at various times over the next 4 days. As shown in Figure 2A, a significant increase in MCCase activity was induced by darkness in a time-dependent pattern. MCCase activity increased by three- and eight-fold after 0.5 and 2 days of dark treatment, respectively, and by 4 days, activity increased by more then 10-fold.

To further study the mechanism of MCCase induction, western-blot analysis were performed on extracts from the identical experiments. Aliquots of extracts containing equal amounts of protein were fractionated by SDS-PAGE, followed by western-blot analysis with antisera specific for the MCC-A and MCC-B subunits. These analyses (Fig. 2B) demonstrate that the accumulation of both MCC-A and MCC-B proteins increases in response to darkness, in parallel with the increase in MCCase activity. To ascertain whether the darkness-associated induction of MCC-A and MCC-B subunit accumulation is mediated by changes in the accumulation of the corresponding mRNAs, we determined the abundance of the respective mRNAs in the tissues collected from the same experiments. As shown in Figure 2C, the accumulation of *MCC-A* and *MCC-B* mRNAs was induced in tissues deprived of illumination, in parallel with the increases in MCC-A and MCC-B subunit accumulation. These data indicate that, in response to darkness, MCCase expression may be up-regulated in the level of gene transcription.
To further elucidate the mechanism by which MCCase expression is enhanced in response to darkness, we examined the response of promoter-reporter transgenes during light-dark transition. Specifically, we generated two sets of transgenic *Arabidopsis* lines, each of which carried either a *MCC-A:GUS* or *MCC-B:GUS* transgene as illustrated in Figures 1B and 1C. Time course experiments similar to those shown in Figure 2A were repeated with *MCC-A:GUS* and *MCC-B:GUS* transgenic *Arabidopsis* seedlings. GUS activities were measured using a fluorometric GUS assay (Jefferson, 1987). As shown in Figure 3A, transferring seedlings into darkness induced GUS activity for both transgenes; with about a 3-fold increase after 24 h of light deprivation, increasing to a 10-fold induction after 4 days of light deprivation. *In situ* staining of GUS activity in these seedlings indicated that the darkness-induced enhancement of *MCC-A*- and *MCC-B*-directed GUS expression occurred throughout the entire seedlings, including cotyledons, leaves, hypocotyls and roots (Fig. 3B and 5B). These results suggest that the sequences between -1150 to -12 of the *MCC-A* gene and -1110 to -64 of the *MCC-B* gene are sufficient to confer light-regulated expression on the *GUS* reporter gene. Furthermore, these results indicate that light-mediated changes in *MCC-A* and *MCC-B* gene expression are at least partially regulated by the changes in the transcription of the respective genes.

Regulation of MCCase expressions by sugars

Sugars, particularly sucrose, the major translocated sugar, have been recognized as regulatory molecules that control gene expression (reviewed in Koch, 1996). To determine if sugars interact with the light-mediated changes in MCCase expression, GUS expression was studied in *MCC-A:GUS* and *MCC-B:GUS* transgenic plants grown on different
concentrations of sucrose either in continuous illumination or after transfer into darkness. As shown in Figures 4A and 5A, sucrose significantly repressed *MCC-A*- and *MCC-B*-promoter-mediated *GUS* expression, especially in seedlings grown in the dark. Histochemical staining of *MCC-A:*GUS expression in seedlings grown on different concentrations of sucrose showed that at low concentrations of sucrose, repression is confined to the roots and that as the exogenous sucrose concentration is raised, MCC-A expression is affected in the hypocotyls (Fig. 4B).

In these experiments, we noted that growth of the seedlings was inhibited in the presence of sucrose (Fig. 4B). To investigate whether repression of *MCC-A:*GUS and *MCC-B:*GUS expression is due directly to sucrose, rather than a general osmotic effect, we measured the effect of sorbitol on the expression of these transgenes. Although sorbitol, a non-metabolizable sugar, inhibits *Arabidopsis* seedling growth as sucrose does (data not shown), it has the opposite effect of sucrose on *MCC-A*- and *MCC-B*-mediated *GUS* expression (Fig. 4C and 5A). These results indicate that the repression of *MCC-A*- and *MCC-B*-directed *GUS* expression by sucrose is not caused by the osmotic effect of the sugar, but is either the direct effect of sucrose or some metabolite derived from sucrose.

We also determined the metabolic regulation of *MCC-A* and *MCC-B* gene expression by glucose, fructose, galactose and xylose (Fig. 4D and 5A). Like sucrose, all these sugars repress *MCC-A*- and *MCC-B*-mediated *GUS* expression in darkness.
Regulation of \textit{MCC-A:GUS} and \textit{MCC-B:GUS} gene expression through information exchange between organs

Sucrose is the major translocated sugar in plants and is thus the major form in which carbon is imported into non-photosynthetic cells. The data presented above indicate that there may be an interaction between the illumination status of the plant and sucrose levels in regulating \textit{MCC-A} and \textit{MCC-B} gene expression in photosynthetic organs. This was further investigated by studying MCCase expression in a non-photosynthetic organ, the root. Extracts were prepared separately from roots and leaves isolated from the identical plants that had been grown in soil for 21 days either under constant illumination or from plants that were deprived of illumination for the last 2 days prior to extraction. As previously reported for tomato (Wang \textit{et al.}, 1995; Anderson \textit{et al.}, 1998), MCCase activity is 3-4 fold higher in roots than in leaves. However, the interesting observation made here is that MCCase activity is induced in both leaves and roots of dark-adapted plants by a factor of 6-8 fold (Fig. 6A). This is presumably despite the fact that soil borne roots do not directly perceive the illumination status of the plant.

To further delineate how MCCase is induced in roots of dark-adapted plants, we determined \textit{MCC-A-} and \textit{MCC-B-promoter-mediated GUS} expression in transgenic plants treated as in the experiment shown in Figure 6A. As expected darkness induced GUS expressions in the leaves of these plants. Moreover, GUS expression was induced by a factor of 5-7 fold in roots of these dark-adapted transgenic plants (Fig. 6 B-C). These findings indicate that leaves communicate their illumination status to the roots and affect MCCase expression. One model to explain this result is that illuminated leaves produce a signal molecule (possibly sucrose), which acts to affect the suppression of \textit{MCC-A} and \textit{MCC-B}
gene expressions. Thus, when plants are placed in the dark, concentration of this suppressor signaling molecule declines, leading to the induced expression of MCCase in both leaves and roots.

To further develop this hypothesis, we conducted two analogous experiments in which illumination was withheld from a subset of the leaves on Arabidopsis rosettes. In one experiment, a single leaf of the second pair of emerged leaves, was selectively deprived of light, while the other leaves were continuously exposed to light. In the other experiment, light was withhold from all but one of the second pair of emerged leaves of 21-day old plants. In both experiments, MCC-A- and MCC-B-driven GUS activity were determined in the illuminated and non-illuminated leaves of the second pair of emerged leaves. As shown in Figure 7A and B, higher levels of GUS activities were detected in the selectively dark-treated leaves. However, these increased GUS activities in both cases were not as high as in those leaves of seedlings that were completely deprived of illumination. These data are consistent with the suppressor model outlined above. Namely, the shaded leaf ceases to produce MCC-A and MCC-B suppressor and thus GUS activities are induced. However, because the illuminated leaf or leaves synthesize the suppressor and it is translocated to the shaded leaf or leaves, and MCC-A- and MCC-B-mediated GUS activities were not fully induced (Fig.7A and B).

Effect of limiting CO₂ on MCC-A:GUS and MCC-B:GUS gene expressions

To begin the process of identifying the molecular signal that suppresses MCCase expression, we grew Arabidopsis seedlings in CO₂-free atmosphere, but under constant illumination and examined the effect on the expression of MCCase.
As shown in Figures 8A and 8B, as compared to seedlings grown in a normal atmosphere, MCCase activity and accumulation of the MCC-A and MCC-B subunits were induced 8-9 fold when 6-day old seedlings were transferred to a CO$_2$-free atmosphere for a 2-day period. The provision of exogenous sucrose in the growth medium repressed these induction of MCCase activity and accumulation of the MCC-A and MCC-B subunits.

In experiments identical to the above, MCC-A- and MCC-B-promoter-mediated GUS expression was determined in 8-day old transgenic seedlings which were transferred for 2 days to a CO$_2$-free-air environment and kept under constant illumination. As shown in Figures 8C-D, in the absence of atmospheric CO$_2$, MCC-A- and MCC-B-promoter-mediated GUS expression increased 10- and 11-fold, respectively. As with the induction of MCCase activity and subunit accumulation, the induction of MCC-A- and MCC-B-mediated GUS expressions in response to a CO$_2$-free atmosphere was reversed by the inclusion of sucrose in the growth medium (Fig. 8C-D). Namely, in the presence of exogenous sucrose, MCC-A-GUS and MCC-B-GUS expression is not induced by the CO$_2$-free-atmosphere.

We utilized this experimental system as a convenient means of identifying whether other biochemicals could substitute for sucrose and act as repressors of the induction process. We found that at equal molar concentrations, glucose, fructose, galactose and xylose were also able to repress the CO$_2$-free-atmosphere induction of MCC-A- and MCC-B-mediated GUS expressions. However, these monosaccharides were not as strong repressors as sucrose (Fig. 8C-D). To ensure that the effects of these sugars on MCCase expression were not due to an osmotic stress of the tissue, sorbitol, a non-metabolizable sugar, was also tested. Sorbitol had no effect on the CO$_2$-free-atmosphere induction of MCC-A-GUS and MCC-B-GUS expression.
Interestingly, if the 2-day CO₂-free atmospheric treatment is conducted in darkness, \textit{MCC-A}- and \textit{MCC-B}-mediated GUS activities are still induced, and exogenous sucrose represses that induction (Fig. 8C-D), although these effects are not as strong as when conducted on illuminated plants.

Effects of sugars and glucose analogues on gene expression in the excised leaves and roots

Roots are non-photosynthetic organs and obtain carbohydrates (mainly sucrose) from leaves via transport through the phloem. Detaching roots from leaves results in the depletion of the sucrose supply to the roots. Such detached roots can be steriley maintained in culture media and MCCase expression can be monitored as the tissue is depleted of phloem-derived sucrose.

\textit{Arabidopsis} seedlings were grown steriley for two weeks in MS agar medium. The aerial portions of these seedlings were steriley removed, and the detached roots were maintained for an additional one day in MS-based medium, supplemented with a variety of different carbohydrates. At the end of this incubation, tissue was extracted and MCCase activity and \textit{MCC-A} and \textit{MCC-B} subunit accumulations were determined in the roots (Fig. 9A and 9B). In the absence of any exogenous carbohydrate, MCCase activity and accumulation of the \textit{MCC-A} and \textit{MCC-B} subunits is about 2.5-fold higher in detached roots as compared to roots attached to seedlings. The addition of sucrose to the medium in which detached roots were maintained, represses this increase in MCCase activity (Fig. 9A) and accumulation of the two MCCase subunits (Fig. 9B). To gain further insights into the mechanism by which MCCase expression maybe regulated by sucrose metabolites, we also
tested the effect of glucose analogs on the detached roots. Of the two glucose analogs tested, 2-deoxyglucose repressed the induction in MCCase activity, and accumulation of MCC-A, and MCC-B subunits, whereas 3-O-methylglucose could not mimic the repressive ability of sucrose (Fig. 9A and 9B).

To further identify the mechanism by which MCCase expression is altered in detached roots, we studied MCC-A- and MCC-B-promoter-mediated GUS expressions in these organs. As shown in Figures 9C and D, MCC-A- and MCC-B-mediated GUS expression is 4-fold higher in detached roots than in roots of intact plants. Consistent with the data presented in Figure 9A and 9B, incubating detached roots in presence of exogenous sucrose reversed this induction. Furthermore, the glucose analog 2-deoxyglucose also reversed this induction of GUS expressions, whereas 3-O-methylglucose did not. These findings indicate that the alterations in MCCase expression in detached roots are primarily the result of changes in the transcription of the MCC-A and MCC-B genes.

Lastly, monitoring MCC-A- and MCC-B-mediated GUS expressions in detached roots is a convenient experimental system for further identifying metabolites that affect MCCase expression. Using this experimental system, we found that as with the CO₂-free atmosphere experiments, MCCase expression is repressed in detached roots by the exogenous application of glucose, fructose, galactose and xylose (Fig. 9C and 9D). The fact that sorbitol does not repress this expression indicates that these effects are due to metabolite repression of gene expression rather than the effect of osmotic stress.
Discussion

Our previous work provided direct evidence that one of the metabolic roles of MCCase in plants is in the catabolism of Leu in mitochondria (Anderson et al., 1998). This work also demonstrated for the first time that plant mitochondria contain all the enzymes for this catabolic pathway. Additional potential functions for MCCase include the interconnection between isoprenoid catabolism and general metabolism (Gray, 1987; Kleinig, 1989; Bach, 1995), and the mevalonate shunt (Nes and Bach, 1985; Bach, 1987). The key position occupied by MCCase in these metabolic networks implies that it may play an important role in plant development. In the work presented herein, we determined the full-length sequence and genomic organization of the MCC-A gene of Arabidopsis. Furthermore, we fused promoter regions from the MCC-A and MCC-B gene loci to the GUS reporter gene, and assayed for the inducibility of the fusion genes in transgenic Arabidopsis plants.

Metabolic regulation of MCC-A and MCC-B gene expressions in Arabidopsis

The regulation of MCCase activity in plants has been reported in several cases. In tomato and soybean, the regulation of the expression of MCCase gene was investigated in different organs (Wang et al., 1995; Anderson et al., 1998). In both cases, the specific activity of MCCase was highest in the extracts from roots and lowest in the leaves. It was also reported that light has a significant effect on reducing MCCase activity (Maier et al., 1998; Aubert et al., 1996; Clauss et al., 1993). Finally, MCCase activity is induced in senescing plants, and older plants or plant organs contain higher MCCase activity (Maier et al., 1998; Clauss et al., 1993; Alban et al., 1993). However, the molecular mechanisms by
which MCCase activity is modulated remain unknown. The results presented in this paper demonstrate that in response to the withdrawal of illumination from plants, the expression of the \textit{MCC-A} and \textit{MCC-B} genes is up-regulated at the transcriptional level. Exogenous sugars repress these darkness-induced changes in gene transcription. A number of experiments indicate that the suppressor of MCCase expression (maybe sucrose) is synthesized during photosynthesis and is translocatable. For example, partial shading of seedlings moderates the effect of the suppressor on the shaded parts of the plant. Furthermore, depletion of the carbon source by artificially depriving plants of CO\textsubscript{2} or inhibiting carbohydrate translocation to roots by detaching leaves results in increased MCCase expression. In all instances, sucrose highly represses these inductions of MCCase expression. In all instances, changes in \textit{MCC-A}- and \textit{MCC-B}-promoter-mediated GUS activity were consistent with the changes in MCCase activity and accumulation of MCC-A and MCC-B subunit mRNAs and/or proteins. Furthermore, in all instances, changes in \textit{MCC-A} and \textit{MCC-B} gene expression were coordinated. Thus, the effect of light on \textit{MCC-A} and \textit{MCC-B} expression could be through light-mediated changes in sucrose (suppressor) accumulation. These results provide strong evidence that the transcription of the \textit{MCC-A} and \textit{MCC-B} genes are under metabolic control.

Sugars regulate the expression of a variety of genes which are essential for many different processes. Examples include genes that code for proteins localized to chloroplasts (photosynthetic genes) (Sheen, 1990; Jang and Sheen, 1994; Urwin and Jenkins, 1997), peroxisomes (malate synthase and isocitrate lyase need for glyoxylate metabolism) (Graham \textit{et al.}, 1994 and 1992), cytosol (nitrate reductase) (Cheng \textit{et al.}, 1992) and mitochondria (MCCase, this paper). The sugar-sensing mechanism for the regulation of gene expression is not fully understood. Recently, it has been suggested that the initial signal for sugar sensing
is the phosphorylation of hexose sugars by hexokinase (Jang and sheen 1994; Jang et al., 1997; Urwin and Jenkins 1997; Dai 1999; Grahma et al., 1994; Grahma et al., 1992). In agreement with this hypothesis, glucose, fructose and galactose all repressed MCC-A and MCC-B expression. In addition, the findings that the non-metabolizable glucose analogue 3-O-MG, which can not be phosphorylated by hexokinase, had no effect on MCC-A and MCC-B gene expression, but 2-dGlc, which can be phosphorylated by hexokinase, but not metabolized further, significantly repressed MCC-A and MCC-B gene expression, are consistent with the hexokinase hypothesis.

It has been reported that glucose is more efficient in repressing photosynthetic genes than sucrose (Jang and Sheen, 1994). However, in our system, sucrose was the most effective repressor, as compared to the hexoses tested. This difference maybe because sucrose is the main translocated sugar in plants and is translocated more efficiently from source to sink than other hexoses.

Interestingly, like MCCase, darkness also induced the expression of branch-chain keto-acid dehydrogenase (BCKDH) in Arabidopsis leaves, and this dark-induced expression is regulated by sugar levels in leaf cells (Fujiki et al., 1997). BCKDH is a multienzyme complex that is also required for the Leu catabolic pathway (Fujiki et al., 1997; Luethy et al., 1997; Mooney et al., 1998). Hence, the expression of two different enzymes in this pathway appear to be regulated by same mechanisms. This may imply that the entire pathway may be coordinately regulated by metabolic control.

Potential functions of MCCase during carbohydrate starvation

It has been reported that plants respond to carbohydrate starvation by increasing the enzymatic activities related to the fatty acid β-oxidation, the catabolism of proteins and
amino acids and the glyoxylate pathway that is needed for carbohydrate synthesis (for review, see Yu, 1999). Degradation of proteins and fatty acids are also observed during seed germination, senescence and limiting photosynthesis (Poirier et al., 1999; Dieuaide et al., 1992; Pistelli et al., 1996; Ismail et al.; 1997; Lee et al., 1998). The degradation of protein via autophagic processes results in increase accumulation of free amino acids (Genix et al., 1990), which are capable of entering the tricarboxylic cycle and glyoxylate pathway to sustain respiration and metabolic processes during environmental stress.

Leu, isoleucine and valine are the major amino acids of membrane proteins in the plants. Acetyl-CoA, the final product of Leu catabolism, can be used in various processes including respiration, the glyoxylate cycle and fatty acid synthesis. Two enzymes in the glyoxylate pathway, malate synthase and isocitrate lyase, are also down-regulated by light and sugars, at the transcriptional level (Grahma et al., 1994 and 1992). This correlation between Leu catabolism and the glyoxylate pathway indicates the potential fate of acetyl-CoA derived from Leu catabolism during carbohydrate limitation. In addition, in situ hybridization performed by McKean (2000) in different cell types and organs of Arabidopsis shows that MCC-A and MCC-B mRNAs accumulate at higher levels in rapidly growing and metabolically active tissues. These results indicate not only the tissues that are involved in MCCase biosynthesis, but may also indicate the tissues in which MCCase function is most important. The metabolic control of MCCase expression and the potential fate of acetyl-CoA imply that MCCase may play an important role in regulating the carbon and energy balance during plant development particularly in non-photosynthetic organs, and during carbon stress conditions. In support of this suggestion, it was reported that various amino acids, especially
Leu, strongly inhibited autophagic proteolysis in the isolated rat hepatocytes (Caro et al., 1989).

Experimental procedures

Cloning and sequence analysis

An *Arabidopsis thaliana* genomic library, cloned in the bacteriophage vector λ FIX (Voytas et al., 1990), was obtained from the Biological Resource Center (Ohio State University). The library was screened by hybridization with the *Arabidopsis* MCC-A cDNA (Weaver et al., 1995). Hybridizing clones were isolated by plaque purification. Isolation and purification of bacteriophage DNA was conducted using the method described by Sambrook et al. (1989). DNA manipulation and subcloning of DNA fragments into *pBluescript KS* (*pBKS*, from Stratagene Cloning System, La Jolla, CA) was carried out according to standard procedures (Sambrook et al., 1989). The MCC-A gene was isolated as a single λ clone. Two adjoining *SacI* fragments were subcloned into *pBKS* and named *pBP5* and *pBP4*. The junction of *pBP4* and *pBP5* was amplified by PCR using λ DNA containing *MCC-A* genomic DNA as the template. This amplified fragment was sequenced, which verified that *pBP4* and *pBP5* carried adjoining *Arabidopsis* genomic fragments. The nucleotide sequence of both strands of all plasmid clones was determined using an Applied Biosystem 373A Automated DNA Sequencer (DNA Sequencing Facility of Iowa State University). DNA sequences were analyzed using the GCG suite of sequence analysis software (University of Wisconsin Genetics Computer Group, Madison, WI).
Construction of the **MCC-A** and **MCC-B** promoter-**GUS** chimeric genes

A Sau3AI fragment of pBP4, which contains the 5' end of the **MCC-A** gene, was subcloned into the BamHI site of pBKS. The resultant plasmid, termed pBP6, was digested with HindIII and XbaI, and the DNA fragment from positions -1150 to -12 of the **MCC-A** gene was subcloned into the Ti-based plant transformation vector, pBI101.2 (Clontech, Palo Alto, CA). Schematic of the resulting plasmid (pBP8) is shown in Figure 1B.

The promoter of the **MCC-B** gene was excised from the plasmid, pMAGP (McKean et al., 2000) as a 1.2 kb XhoI-XmnI fragment and subcloned into the XhoI and SmaI sites of pBKS (pBPl5). This promoter fragment was PCR amplified with the vector associated T3 primer and the mutagenic primer of sequence 3' CTGTTAGTTATCATGATCTAGT5' (A and T were added to create an XbaI site). This resulting PCR product was digested with XhoI and XbaI, and cloned into the SalI and XbaI sites of pBI101.2. In the resulting plasmid (pBP18), the **MCC-B** promoter (from -1110 to -64 relative to the ATG translation start site) was fused with **GUS** reporter gene (Fig. 1C).

Plant transformation and regeneration

The pBP8 and pBP18 plant transformation vectors were transformed into *Agrobacterium tumefaciens* C58C1 by electroporation. Transformation of *Arabidopsis* was done as described by Koncz and Schell (1996) but without applying a vacuum. Primary transgenic plants (T1 generation) were selected by germinating seeds on Murashige and Skoog medium (MS, BRL) containing 0.8% (w/v) Bacto-agar, 0.05% (w/v) MES (pH 5.7), 40 mg/l kanamycin, 250 mg/l vancomycin and 1% (w/v) sucrose. For each transgene construct, twenty independent transgenic lines were generated. T2 seeds obtained from these
twenty primary transformants were grown on MS medium supplemented with 40 mg/l kanamycin and scored for resistance to antibiotic. For each transgenic line six kanamycin-resistant plants were transferred to soil and T3 seeds were harvested. Ten independent transgenic plants were finally identified as being homozygous for the transgene on the basis of the segregation of the kanamycin-resistance trait. The transgenic nature of the kanamycin-resistant plants were further confirmed by Southern blot analysis (data not shown).

Plant materials and growth conditions

Arabidopsis seeds of the Columbia ecotype were germinated in sterile soil or MS media, and plants were grown in a growth room maintained at 22°C with 24-hour continuous illumination provided by 40 W Sylvania cold-white fluorescent light bulbs at white light irradiation of 150 μmol.m⁻².s⁻¹.

Seeds (T2 or T3 generation transgenic plants which are homozygous for the transgene) were surface-sterilized by treatment with 50% (v/v) ethanol for 1 min, followed by a 20 min treatment with 50% (v/v) bleach in 1% (v/v) Tween-20. Following extensive washing with sterile water, approximately 40 seeds were applied to each Petri dish, and plates were sealed with parafilm or gas-permeable surgical tape. In some experiments, the above media also contained different concentrations of sugars. Seedlings were grown under constant white light (150 μmol.m⁻².s⁻¹) or in completely darkness at 22°C. Day 0 was defined as the time when seeds were sown on the Petri dish.

Incubation of excised plant tissues was performed in Petri dishes containing sterile MS liquid medium with different concentration of sugars and glucose analogues for 24 hours in continuous light at 22°C.
Isolation of RNA and blot hybridization analysis

RNA was isolated from whole plant tissue by the method described by Logennmann (1987). Twenty micrograms of each RNA sample was subjected to electrophoresis in a 1.4% (v/v) formaldehyde-agarose gel and blotted to nylon membrane by capillary transfer using 25 mM sodium phosphate buffer, pH 7.0. In order to ensure equal loading of RNA, ethidium bromide was included in the sample-loading buffer, and blots were viewed under UV illumination. After transfer, RNA was bonded to the membrane by baking at 90°C for 60 min. The filter was hybridized with ³²P-labeled MCC-A and MCC-B cDNA fragments. The blots were washed once with 1 x SSC, 0.1 (w/v) % SDS at 60°C for 15 min followed by 0.25 x SSC, 0.1% (w/v) SDS at 60°C for another 30 min.

Protein extracts

Arabidopsis seedling tissue (0.1 g) was frozen with liquid N₂ and homogenized with an “Eppendorf pestle” in 1.5 ml microcentrifuge tubes. The resulting powder was homogenized at 4°C with 0.3 ml of extraction buffer (0.1 M Hepes-KOH pH 7.0, 20 mM 2-mercaptoethanol, 0.1 mg/ml PMSF, 0.1% (v/v) Triton X-100, 1 mM EDTA, and 20% (v/v) glycerol) using the “Eppendorf pestle”. The mixture was immediately centrifuged at 12,200 g for 15 min at 4°C. The supernatant was recovered and frozen in liquid N₂ and the pellet was discarded. Protein concentrations were determined by the Bradford method (BioRad, Hercules, CA) using bovine serum albumin (BSA) as a standard (Bradford, 1976).
Histochemical staining of GUS activity

Histochemical assay of GUS activity was conducted as described by Jefferson (1987) with minor modification. Whole seedlings and excised plant organs and tissues were incubated in 5-bromo-4-chloro-3-indole glucuronide (X-gluc) solution (0.5 mg/ml X-gluc in 50 mM Tris/NaCl buffer, pH 7.0, 0.5% (v/v) Triton X-100, 0.5 mM K₃[Fe(CN)₆], 0.5 mM K₄[Fe(CN)₆]₇, 10 mM Na₂EDTA). 100 mM X-gluc stock solution was prepared by dissolved 26.1 mg X-gluc in 0.5 ml DMSO just before use. Vacuum infiltration was carried out for 10 min. Tissue was then incubated at 37°C in the dark for 16 h or until color developed. To improve the contrast, Soluble pigments were removed by incubating the stained material in several changes of 70% (v/v) ethanol until the chlorophyll was cleared from the tissue. The stained tissue was examined under bright-field microscopy, using an Olympus BH2 microscope.

Fluorometric analysis of GUS activity

GUS activity was determined in extracts with a fluorometric assay essentially as described by Jefferson (1987). Plant samples were collected and protein extracts prepared as described above. One hundred μl of protein extract was mixed with 500 μl GUS assay buffer (2 mM 4-methylumbelliferyl β-glucuronide (MUG) in extraction buffer) and incubated in 37°C. Aliquots of 100 μl were removed at timed intervals (generally 5, 15, 25, 35 and 45 min), and the reaction was terminated by adding 0.9 ml of 0.2 M Na₂CO₃. The fluorescent product was quantified using a fluorometer (Hitachi, Model F-2000). Excitation and emission wavelengths were 365 nm and 455 nm, respectively. Tissues from regenerated
non-transformed plants were used to quantify background GUS activity. All the experiments were repeated three times using three independently transformed plants.

MCCase assay

MCCase activity was measured as the rate of incorporation of radioactivity from NaH\(^{14}\)CO\(_3\) into the acid-stable product (Wurtele and Nikolau, 1990). The reaction mixture contained 0.1 M Tricine-KOH, pH 8.0, 5 mM MgCl\(_2\), 2.5 mM DTT, 5 mM KHCO\(_3\), 5 µCi NaH\(^{14}\)CO\(_3\) (58 mCi/mmol, Amersham), 1 mM ATP, and 0.2 mM methylcrotonyl-CoA. Aliquots of each extract were passed through individual 1 ml Sephadex G-25 columns preequilibrated with extraction buffer and centrifuged at 800 g for 1 min to remove lower molecular weight molecules. The MCCase assay was initiated by the addition of the protein extract and incubated in a final volume of 200 µl at 37°C for 60 min. The reaction was terminated by the addition of 50 µL 6 N HCl. A sample (50 µl) was applied to a strip of Whatman 3MM paper, dried, and the acid-stable radioactivity was determined by liquid scintillation counting. Assays were performed in triplicate. For each protein extract, control assays lacking the methylcrotonyl-CoA substrate were carried out in parallel.

Electrophoresis and western blot analysis

SDS-PAGE was performed in 10% (w/v) acrylamide gels as described previously (Laemmli, 1970). After electrophoresis, proteins were electrophoretically transferred to a nitrocellulose membrane (Kyhse-Andersen, 1984). MCC-A and MCC-B subunits were immunologically detected with specific antisera (Weaver *et al.*, 1995; McKean *et al.*, 2000), diluted 1:2000.
followed by an incubation with 125I-Protein A. The biotin-containing MCC-A subunit was also detected by using 125I-streptavidin (Nikolau et al., 1985).
References

Figure 1. A. Schematic representation of the structure of the MCC-A gene of Arabidopsis. Black boxes represent the 15 exons and introns are indicated by the solid black lines. Positions of the translation start codon (ATG) and stop codon (TAA) and the unique SacI site are indicated. B. Schematic representation of the MCC-A:GUS transgene, which is composed of the 1.1 kb promoter region (-1150 to -12) of the MCC-A gene fused to the GUS reporter gene. C. Schematic representation of MCC-B:GUS transgene, which is composed of the 1.0 kb promoter region (-1110 to -64) of the MCC-B gene fused to the GUS reporter gene.
Figure 2. Effect of dark treatment on MCCase expression.

A. Changes in MCCase activity in 10-day-old *Arabidopsis* seedlings, which were initially grown under constant illumination and then transferred to darkness for the indicated time period. The data presented are means ± SE from three replicates. B. Western-blot analysis of MCC-A and MCC-B accumulations in *Arabidopsis*, which were initially grown under constant illumination and then transferred to darkness for the indicated time period. Proteins were extracted from the samples and aliquots containing equal amounts of protein were fractionated by SDS-PAGE, followed by western-blot analysis with antiserum against MCC-A or MCC-B. C. Northern-blot analysis of *MCC-A* mRNA abundance in 10-day old *Arabidopsis* seedlings, which were initially grown under constant illumination and then transferred to darkness for the indicated time period. Equal amounts of RNA (30 μg) isolated from each sample were fractionated by electrophoresis in a formaldehyde-containing agarose gel. The data presented in B and C were gathered from a single experiment; three replicates of this experiment gave similar results.
A

Days in darkness

MCC activity (nmol/min/mg protein)

B

Days in darkness

MCC-A

MCC-B

C

Days in darkness

MCC-A mRNA

MCC-B mRNA
Figure 3. Effect of dark treatment on MCC-A-promoter-mediated GUS expression.

A. GUS activity in 10-day-old MCC-A:GUS transgenic Arabidopsis seedlings which were initially grown under constant illumination and then transferred to darkness for the indicated time period. The data are means ± SE from three replicates using three independent transgenic lines. B. Histochemical localization of MCC-A:GUS expression in transgenic Arabidopsis plants. GUS activity is indicated by an indigo blue precipitate after staining with X-Gluc. Seedlings carrying MCC-A:GUS transgene were grown in continuous light for 5.5 days, half the seedlings were then moved into darkness. GUS expression was stained eight days after planting. The upper 3 seedlings (from three independent transgenic lines) were in continuous illumination and lower 3 seedlings (from same three independent transgenic lines) were in darkness for the last 60 hours prior to staining.
Figure 4. The effect of illumination and carbohydrates on MCC-A-promoter-mediated GUS expression.

MCC-A:GUS transgenic Arabidopsis seedlings were grown for 8 days on MS medium containing the indicated concentration of sucrose (A) sorbitol (C) and 1.5% (w/v) of the indicated monosaccharides (D). Seedlings were grown either under continuous illumination (▫️) or transferred to darkness for the last 2 days of growth (❒), and GUS activity was determined in protein extracts. The bars represent the mean ± SE from three replicates using three independent transgenic lines. B. Histochemical staining of GUS activity in eight-day-old MCC-A:GUS transgenic Arabidopsis plants that were maintained in darkness for the last 2 days of growth. Seedlings were grown in MS agar medium containing the indicated concentration of sucrose.
GUS Activity (nmol MU/min/mg protein)

Sorbitol (% w/v)

Control
Glucose
Fructose
Galactose
Xylose

GUS Activity (nmol MU/min/mg protein)

Sucrose (% w/v)

Light
Dark
Figure 5. The effect of illumination and carbohydrates on MCC-B-promoter-mediated GUS activity.

A. MCC-B:GUS transgenic Arabidopsis seedlings were grown for 8 days on MS medium containing either 3% (w/v) of indicated disaccharide or 1.5% (w/v) of the indicated monosaccharide. Seedlings were grown under continuous illumination (□) or transferred to darkness for the last 2 days of growth (■). GUS activity was determined in protein extracts. The bars represent the mean ± SE from three replicates using three independent transgenic lines.

B. Histochemical staining of GUS activity in seedlings carrying the MCC-B:GUS transgene. Seedlings were grown in continuous light for 6 days, and then half the seedlings were moved into darkness for another 2 days. GUS activity was stained on the eighth day after planting. Upper seedlings (from three independent transgenic lines) were grown under continuous illumination, and lower seedlings (from same three independent transgenic lines) had been transferred to darkness for the last 2 days of growth.
No Carbohydrates

Sucrose
Sorbitol
Galactose
Xylose

GUS Activity
(nmol MU/min/mg protein)

0 0.5 1 1.5 2 2.5 3

No Carbohydrates
Sucrose
Sorbitol
Glucose
Fructose
Galactose
Xylose

Dark
Light
Figure 6. Effect of the illumination status of plants on MCCase expression in roots and leaves.

Three-week-old wild-type (A), *MCC-A:GUS* (B) or *MCC-B:GUS* (C) transgenic *Arabidopsis* plants were grown in soil under constant illumination (□) or under constant illumination until the last 2 day of growth, when they were placed in darkness (■). MCCase activity (A) and GUS activities (B and C) were determined in protein extracts from leaves and roots. The data are means ± SE from three replicates. In panel B and C, the data are means ± SE from three replicates using three independent transgenic lines.
Figure 7. Effect of partial shading on MCCase expression.

Three-week-old *MCC-A:GUS* (A) and *MCC-B:GUS* (B) transgenic *Arabidopsis* plants at the four-leaf stage were maintained either in constant illumination or in constant illumination until the last 2 days of growth when the indicated subset of leaves were shaded by wrapping in foil. GUS activity was determined in protein extracts prepared from individual shaded (■) or illuminated (□) second pair of leaves. The data are means ± SE from three replicates using three independent transgenic lines.
Figure 8. The effect of limiting atmospheric CO₂ on MCCase expression.

Eight-day old wild-type (A, B), *MCC-A:GUS* (C) and *MCC-B:GUS* (D) transgenic plants were grown on MS-agar medium supplemented with the indicated carbohydrates (% w/v). Seedlings were grown in either a normal atmosphere or in a normal atmosphere for the first 6 days of growth followed by 2 days of growth in a CO₂-free atmosphere. MCCase (A) and GUS (C, D) activities were determined in protein extracts prepared from these seedlings. The accumulation of the MCC-A and MCC-B subunits were detected by western analysis of protein extracts (B). The data in panel A are means ± SE from three replicates. The data in panel B were gathered from a single experiment; three replicates of this experiment gave similar results. The data in panel C and D are means ± SE from three replicates using three independent transgenic lines.
Figure 9. Regulation of MCCase gene expression in detached roots.

Roots were detached from the aerial portions of two-week-old wild-type (A, B) or MCC-A:GUS (C) and MCC-B:GUS (D) transgenic Arabidopsis seedlings and incubated in MS media containing the indicated carbohydrates (% w/v) for 1 day. MCCase (A) and GUS (C, D) activities were determined in protein extracts. The accumulation of the MCC-A and MCC-B subunit was determined by western analysis (B). The data in panel A are means ± SE from three replicates. The data in panel B were gathered from a signal experiment; three replicates of this experiment gave similar results. The data in panel C and D are means ± SE from three replicates using three independent transgenic lines.
CHAPTER 4. The Effects of Biotin Depletion on the Expression of Biotin-Containing Enzymes

Ping Che, Lisa M. Weaver, Eve Syrkin Wurtele and Basil J. Nikolau

Department of Biochemistry, Biophysics and Molecular Biology (P.C., L.M.W. and BJN) and
Department of Botany (E.S.W.), Iowa State University, Ames, IA 50011

Abstract

Regulation of biotin-containing enzyme expression by biotin was investigated in wild-type and biotin-depleted bio1 mutant Arabidopsis plants. Our results showed for the first time that the accumulation of 3-methylcrotonyl-CoA carboxylase (MCCase) subunits (the biotinylated MCC-A subunit and the non-biotinylated MCC-B subunit) was inversely related to the biotin content of the tissue. In contrast, abundance of MCC-A and MCC-B mRNAs and GUS expression mediated by the MCC-A and MCC-B promoters were not affected by the depletion of biotin. We conclude that MCC-A and MCC-B accumulation is down-regulated by biotin and this down-regulation is mediated at the translational and/or post-translational level of gene expression. Although biotin had no effect on MCC-A and MCC-B gene transcription, as biotin was depleted in bio1 plants, these genes gradually lost their ability to be induced by darkness or in a CO₂-free-atmosphere. These results indicate that biotin is required for the metabolic control of MCC-A and MCC-B gene transcription.
The molecular weight of MCCase reveals that different species have different subunit stochiometries. The subunit stochiometry of *Arabidopsis* MCCase is A_4B_4. Biotinylation has no effect on MCCase subunit stochiometry. We also determined that charge isoforms of MCCase exist in both wild-type and *bio1* mutant plants.

Introduction

Biotin is an essential water-soluble vitamin required by all living organisms for normal cellular functions and growth. It is biosynthesized by plants, some fungi, and most bacteria. The biosynthetic pathway for biotin was first elucidated in bacteria by studying the growth behavior of auxotrophic mutants (Eisenberg, 1973; Pai, 1975). Enzymes and genes required for biotin biosynthesis have been characterized initially in bacteria (Izumi et al., 1981; Ploux and Marquet, 1992; Ploux et al., 1992; Alexeev et al., 1994; Huang et al., 1995). Analogous, but more limited studies of eukaryotes indicate that these organisms share a very similar biotin biosynthetic pathway. The cDNA and gene for biotin synthase (*BIO2*), which catalyzes the final reaction in biotin biosynthesis, has been cloned from *Arabidopsis* (Weaver et al., 1995; Patton et al., 1996). To date, this is the only plant biotin biosynthetic gene to be isolated from plants.

Two biotin auxotrophic mutants have been reported in *Arabidopsis*: *bio1* (Shellhammer and Meinke, 1990) and *bio2* (Patton et al., 1998). The *bio1* mutant seedlings can be rescued when grown in the presence of dethiobiotin, diaminopelargonic acid (DAPA) or biotin. The expression of *E. coli* *bioA* gene (encoding DAPA synthetase) in homozygous *bio1/bio1* plants eliminates the auxotrophic phenotype (Patton et al., 1996). This evidence indicates that the plant *bio1* gene corresponds to the *bioA* gene of *E. coli*. Hence, in the *bio1*
mutant of *Arabidopsis*, biotin biosynthesis is blocked in the conversion of 7-keto-8-aminopelargonic acid to 7, 8-diaminopelargonic acid. The *bio2* mutant can only be rescued by biotin, but not by dethiobiotin. This indicates that the final step of biotin biosynthesis is blocked in the *bio2* mutants. Molecular characterization of this mutant indicates that the *bio2* gene corresponds to *bioB* gene of *E. coli*, which encodes biotin synthase.

Biotin acts as a small coenzyme that binds covalently to a lysine amino group of carboxylases to facilitate the transfer of CO₂ during carboxylation and decarboxylation reactions (Moss and Lane, 1971). The reactions catalyzed by these enzymes are involved in diverse metabolic processes including fatty acid biosynthesis (ACCase), gluconeogenesis (pyruvate carboxylase), and the catabolism of amino acids (MCCase and propinoyl-CoA carboxylase). Although each enzyme has distinct metabolic functions, the overall reactions catalyzed by biotin-dependent carboxylases are carried out in two similar steps. The first step, the ATP and Mg²⁺ dependent reaction, involves the carboxylation of biotin on the enzyme. Then the carboxyl group is transferred from the carboxybiotinyl enzyme intermediate to an appropriated substrate, which serves as an acceptor.

\[
\text{ENZ-BIOTIN} + \text{HCO}_3^- + \text{ATP} \rightarrow \text{ENZ-BIOTIN-CO}_2^+ + \text{ADP} + \text{Pi} \quad [1]
\]

\[
\text{ENZ-BIOTIN-CO}_2^+ + \text{ACCEPTOR} \rightarrow \text{ENZ-BIOTIN} + \text{ACCEPTOR-CO}_2^+ \quad [2]
\]

\[
\text{HCO}_3^- + \text{ATP} + \text{ACCEPTOR} \rightarrow \text{ADP} + \text{P} + \text{ACCEPTOR-CO}_2^+ \quad [3]
\]

Different organisms contain a different complement of biotin-containing proteins. Bacteria have one to three biotin-containing protein depending on the species. For instance, *E. coli* contains only one such protein, the biotin carboxyl carrier subunit (BCC) of ACCase. Eukaryotic organisms contain four or five such proteins. Three biotin-containing enzymes
have been demonstrated in plants, ACCase, MCCase and geranyl-CoA carboxylase (GCCase) (Guan et al., 1999). However, additional biotin-containing polypeptides are present (Wurtele and Nikolau, 1990).

The most thoroughly studied biotin-containing enzyme in higher plants is ACCase, which catalyzes an essential reaction during the initial stages of fatty acid biosynthesis. There are two types of ACCase found in plants (Sasaki et al., 1995). The heteromeric type occurs in chloroplasts and is composed of four subunits. These are the nuclear-coded biotin carboxyl carrier subunit (CAC1), biotin carboxylase subunit (CAC2), α-carboxyltransferase subunit (CAC3) and plastid-coded β-carboxyltransferase subunit (accD) (Sasaki et al., 1993; Choi et al., 1995; Shorrosh et al., 1995, 1996; Sun et al., 1997; Ke et al., 2000). The homomereric ACCase is found in the cytosol of plant cells (Egin-Buhler et al., 1980; Gornicki et al., 1993; Roesler et al., 1994; Schulte et al., 1994; Shorrosh et al., 1994; Yanai et al., 1995).

MCCase is a mitochondrial enzyme whose major metabolic role in plants is the catabolism of leucine (Anderson et al., 1998). It contains two subunits, the biotinylated, MCC-A subunit and non-biotinylated, MCC-B subunit (Chen et al., 1993; Alban et al., 1993; Diez et al., 1994; Weaver et al., 1995; McKean et al., 2000). The cDNA and genomic clones for subunits of ACCase and MCCase have been isolated and the proteins have been purified and characterized from different plants. Most recently, GCCase (Guan et al., 1999), which plays an important role in isoprenoid catabolism, was purified and characterized from plants.

Although the biological functions of biotin have been well recognized, little is known about the role of this cofactor in regulating gene expression, especially in plants. Biotin operons (bio operons) from several prokaryotes have been sequenced and analyzed (Otsuka
et al., 1988; Cronan, 1989; Gloeckler et al., 1990; Bower et al., 1996). Regulation of the *E. coli* bio operon is the best understood example of transcriptional regulation by biotin. In eukaryotes, it has been reported that biotin enhances the transcription of glucokinase in starved rats (Chauhan and Dakshinamurti, 1991). However, the physiological significance of this regulation is still unknown.

As an initial investigation to ascertain whether and how the expression of biotin-containing enzymes are regulated by their prosthetic group, biotin, we performed western blot analysis and compared MCCase expression patterns between wild-type and *bio1* mutant *Arabidopsis* plants. We also measured the GUS activity mediated by *MCC-A* and *MCC-B* promoters in both wild-type and *bio1* genetic backgrounds. These studies led to the discovery that biotin does indeed play a role in the regulation MCCase expression.

Materials and Methods

Plant materials and growth conditions

Wild-type Columbia ecotype of *Arabidopsis thaliana*, homozygous *bio1* mutant (Shellhammer and Meinke, 1990), *MCC-A:GUS* and *MCC-B:GUS* transgenic *Arabidopsis* (Che et al., Chapter 3 this thesis), soybean (*Glycine max* cv Corsoy 79) and pea (*Pisum sativum* cv Progress #9) seeds were germinated in sterile soil or MS agar media in Petri dishes. Plants were grown in a controlled growth-room maintained at 22°C under continuous illumination with 40 W Sylvania cold-white fluorescent bulbs. The white light irradiation was at 150 µmol.m⁻².s⁻¹.
Genetic crosses

Homozygous \textit{MCC-A:GUS} and \textit{MCC-B:GUS} transgenic lines (Che et al., Chapter 3 this thesis) (used as male) were crossed with homozygous \textit{bioI} mutants (as female). The resulting F1 progeny were selected on the basis of kanamycin resistance, a trait tightly linked to each of the transgenes. F2 progeny, obtained after self-pollination of F1 plants, were grown on MS agar medium without biotin. Those progeny that showed the \textit{bioI} phenotype were selected and rescued by transferring the seedlings to soil and watered daily with a 1 mM biotin solution. Finally, the F3 progeny obtained by self-pollination of F2 plants were tested for kanamycin resistance in the presence of biotin in the media. Those F3 families that did not show segregation of the kanamycin resistance trait were judged to be homozygous for both the promoter-mediated \textit{GUS} transgene and the \textit{bioI} gene. These plants were used for further experimentation.

Protein extracts

\textit{Arabidopsis} seedling tissue (0.1 g) was frozen with liquid N$_2$ and homogenized with an “Eppendorf pestle” in 1.5 ml microcentrifuge tubes. The resulting powder was homogenized at 4°C with 0.3 ml of extraction buffer (0.1 M Hepes-KOH pH 7.0, 20 mM 2-mercaptoethanol, 0.1 mg/ml PMSF, 0.1% (v/v) Triton X-100, 1 mM EDTA, and 20% (v/v) glycerol) using the “Eppendorf pestle”. The mixture was immediately centrifuged at 12,200 g for 15 min at 4°C. The supernatant was recovered and frozen in liquid N$_2$ and the pellet discarded. Protein concentrations were determined by the Bradford method (BioRad, Hercules, CA) using bovine serum albumin (BSA) as a standard (Bradford 1976).
Electrophoresis and western blot analysis

SDS-PAGE was performed in 10% (w/v) polyacrylamide gels as described previously (Laemmli, 1970). Non-denaturing polyacrylamide gel electrophoretic procedures were applied by two methods. One is the method described by Hedrick and Smith (1968) in which the mobility of proteins are size limited by the polyarylamide gel pore size. In this method, gels were composed of a linear gradient of 3%-30% (w/v) polyacrylamide and protein were separated on the basis of the molecular weight. The other method was developed by Lambin and Fine (1979), and it fractionates proteins according to both charge and size. In this method, electrophoresis is conducted in a gel of 2-16% (w/v) polyacrylamide linear gradient. After electrophoresis, gels were either stained with Coomassie Brilliant Blue or subjected to western blot analysis.

For western blot analysis, proteins were electrophoretically transferred to a nitrocellulose membrane (Towbin et al., 1979). In this study western blots were probed with antisera directed against the MCCase subunits (MCC-A and MCC-B) (Wang et al., 1994; Song et al., 1994; McKean et al., 2000). Biotin-containing proteins were also detected by using 125I-streptavidin (Nikolau et al., 1985).

Fluorometric analysis of GUS activity

GUS activity was determined in extracts with a fluorometric assay essentially as described by Jefferson (1987). Plant samples were collected and protein extracts prepared as described above. One hundred μl of protein extract was mixed with 500 μl GUS assay buffer (2 mM 4-methylumbelliferyl β-glucuronide (MUG) in extraction buffer) and incubated in 37°C. Aliquots of 100 μl were removed at timed intervals (generally 5, 15, 25, 35 and 45
min), and the reaction was terminated by adding 0.9 ml of 0.2 M Na₂CO₃. The fluorescent product was quantified using a fluorometer (Hitachi, Model F-2000). Excitation and emission wavelengths were 365 nm and 455 nm, respectively. Tissues from regenerated non-transformed plants were used to quantify background GUS activity. All the experiments were repeated three times using three independently transformed plants.

Isolation of RNA and blot hybridization analysis

RNA was isolated from whole plant tissue by the method described by Logenmann (1987). Twenty micrograms of each RNA sample was subjected to electrophoresis in a 1.4% (v/v) formaldehyde-agarose gel and blotted to nylon membrane by capillary transfer using 25 mM sodium phosphate buffer, pH 7.0. In order to ensure equal loading of RNA, ethidium bromide was included in the sample-loading buffer and blots were viewed under UV illumination. After transfer, RNA was bonded to the membrane by baking at 90°C for 60 min. The filter was hybridized with ³²P-labeled MCC-A and MCC-B cDNA fragments. The blots were washed once with 1 x SSC, 0.1% (w/v) SDS at 60°C for 15 min followed by 0.25 x SSC, 0.1% (w/v) SDS at 60°C for another 30 min.

Results and Discussions

The effects of biotin depletion on MCCase expression

Studies to ascertain the effect of biotin on gene expression need to be conducted in a tissue that contains low levels of endogenous biotin, optimally the tissue should contain no biotin. This condition however is difficult to find, particular in organisms that produce and/or store this cofactor. Because the bioI mutant of Arabidopsis (Shellhammer and
Meinke, 1990) cannot biosynthesize biotin, it is ideally suited for investigations into the effect of biotin on plant gene expression. The homozygous bio1 mutant is recessive embryonic lethal, but can form normal plants in the presence of exogenous biotin (Shellhammer and Meinke, 1990). Therefore, in absence of exogenous biotin, homozygous bio1 mutant seedlings fail to develop beyond the cotyledon stage as the seedling depletes residual biotin obtained from the parental tissue.

As an initial step to ascertain the rate of biotin depletion in the bio1 mutant, we measured and compared MCCase activity in bio1 and wild-type Arabidopsis seedlings. To better control the biotin content in these experiments and prevent biotin contamination from microorganisms, in all these experiments seedlings were grown on sterile media in Petri dishes. Arabidopsis seedlings grown in Petri dishes on Whatman 3MM paper saturated with 0.25 x Hoagland’s solution were harvested at different stages after planting. MCCase activity was determined in extracts prepared from these samples. As shown in Figure 1A, during seedling development, MCCase activity increased initially, peaking at almost the same maximum MCCase activity at 8 and 10 day after planting (DAP) for both bio1 and wild-type plants. Two days after this peak, MCCase activity in bio1 and wild-type plants sharply declines to lower levels where it is maintained for next 20 days. However, during these 20 days, MCCase activity in the bio1 mutant is 3-fold lower than that in the wild-type plants. These findings indicate that residual biotin obtained from the parental plant is depleted within the first 10 days of growth. Addition of exogenous biotin to the bio1 plants did not change the pattern of MCCase expression, but higher MCCase activity was expressed.
Because our previous studies have shown that MCCase expression is influenced by the illumination status of the plant (Che et al., Chapter 3 this thesis), studies of the effect of biotin depletion on MCCase expression are better conducted with seedlings grown in continuous illumination.

The effect of biotin depletion on MCC-A subunit accumulation can be determined in the biol seedlings either by measuring MCCase activity or by western blot analysis using \(^{125}\)I-streptavidin or anti-MCC-A serum. As shown in Figure 2A, in comparison to wild-type plants, covalent bound by biotin on the MCC-A subunit gradually declined in biol seedlings. Biotin content on the MCC-A subunit declined significantly in 11-day old biol mutant seedlings, reaching the lowest level by 20 DAP. This profile is consistent with the pattern of decreasing MCCase activity seen in the seedlings (Fig.1). In contrast to the declining biotin-content of the MCC-A subunit, the accumulation of the MCC-A subunit itself, revealed by western blot analysis using MCC-A-specific antibodies, increased in biol plants to reach a maximum in 20-day old seedlings (Fig. 2B). Analogous analysis indicate that the accumulation of the MCC-B subunit also increased in response to biotin depletion (Fig. 2C). Addition of exogenous biotin to biol mutant seedlings decreased the accumulation of both the MCC-A and MCC-B subunits to the levels found in wild-type seedlings (Fig. 2B-C). These results indicate that limiting biotin content in the tissue results in increasing accumulation of apo-MCCase.

The interpretation of the above results are complicated by the factor that biol mutant seedlings show altered morphological traits in response to biotin deprivation as compared to wild-type seedlings. Namely, whereas 20-day old wild-type seedlings have fully developed cotyledons, leaves and roots, 20-day old biol mutant seedlings have only expanded
cotyledons, and do not fully develop roots and leaves. Hence, to ensure that the experiment described in Figure 2A-C fairly reflect an increase in apo-MCCase accumulation in response to biotin deprivation, the identical experiment was conducted and MCC-B accumulation was determined in the cotyledon. In this experiment, MCC-B protein expression patterns were compared in the same organ. As shown in Figure 2D, identical results were obtained using only cotyledons. These results indicate that there is no significant difference in the conclusion to be drawn relative to MCCase expression in response to biotin-deprivation between experiments that use whole seedlings or cotyledons. Therefore, to simplify the experiments, whole seedlings were used as the experimental material for the following studies.

The above findings demonstrated for the first time that biotin plays a role in the regulation of MCCase gene expression. The accumulation of the MCC-A and MCC-B proteins is inversely related to the biotin content of the tissue.

A number of observations have been made to date which may indicate that MCCase expression in a particular tissue is inversely related to the biotin-content of that tissue. However, the mechanism by which this relationship is established appears to vary. For instance, in tomato, soybean and *Arabidopsis*, the specific activity of MCCase is higher in the roots than that in the leaves (10-, 4- and 3-fold higher in tomato, soybean and *Arabidopsis*, respectively) (Wang et al., 1995; Anderson et al., 1998, Che et al. Chapter 3 this thesis). However, the total biotin content of leaves is 4- or 5-fold higher in roots of tomato (Wang et al., 1995), which is inversely related to MCCase activity. Furthermore, in *Arabidopsis*, the biotin content in cauline leaves (younger leaves) is 11-fold higher than that in rosette leaves (older leaves) (Shellhammer and Meinke, 1990).
Biotin synthase (BIO2), which catalyzes the addition of a sulfur atom to dethiobiotin and converts it to biotin, is down-regulated by light and BIO2 expression is also inversely related to the age of the tissue (Patton et al., 1996). These findings imply that dark-treated plants and older plants may contain less biotin. However, MCCase activity and accumulation of MCCase subunits are higher in such dark-treated plants or older plant organs (Maier et al., 1998; Aubert et al., 1996; Clauss et al., 1993; Che et al. Chapter 3 this thesis). Regardless of the mechanisms that are involved in the regulation MCCase expression, all of these previous studies support our hypothesis that the accumulation of the MCC-A and MCC-B proteins and MCCase activity are inversely related to the biotin content of tissue.

Biotin regulation of MCCase expression is at the post-translational level

To further elucidate the mechanism by which MCCase expression is enhanced in response to biotin depletion, we compared the accumulation of MCC-A and MCC-B mRNA in 20-day old bio1 and wild-type plants. As shown in Figure 3A, the abundance of the MCC-A and MCC-B mRNAs was unaltered between wild-type and bio1 mutant seedlings.

Furthermore, we analyzed MCC-A- and MCC-B-promoter-mediated GUS expression in a biotin-deficient genetic background and compared the expression obtained when these transgenes where in a wild-type background. This was achieved by intercrossing homozygous MCC-A:GUS or MCC-B:GUS transgenic lines (Che et al., Chapter 3 this thesis) with homozygous bio1 mutant plants (see method for detail). The developmental and environmental regulation GUS expression was analyzed by using homozygous MCC-A:GUS/bio1 and MCC-B:GUS/bio1 transgenic plants grown in the absence and presence of biotin and comparing these expression patterns to those obtained from the same transgene
maintained in a wild-type background. As shown in Figure 3B-C, there was no significant change in both the MCC-A- and MCC-B-promoter-mediated GUS expression in both wild-type and bio1 genetic background plants, consistent with the northern blot analysis (Fig. 3A).

Based on these results, we conclude that the depletion of biotin has no effects on the transcription of MCC-A and MCC-B genes and on the accumulation of the respective mRNAs. Hence, the enhanced accumulation of MCC-A and MCC-B proteins in response to biotin deprivation is not due to an alteration in the expression of these genes at the transcriptional and post-transcriptional level of control. Most likely, the enhanced accumulation of these proteins are due to either changes in the translation of the respective mRNAs or changes in the stability of the MCC-A and MCC-B proteins.

Our previous studies demonstrate that MCC-A and MCC-B genes are down-regulated by carbohydrates at the level of gene transcription (Che et al., Chapter 3 this thesis), namely the transcription rates of these genes can be repressed by carbohydrates, such as sucrose. To test if the increased accumulation of at least the MCC-B subunit in the bio1 mutant seedlings (Fig. 2B-D) is affected by exogenous sucrose, bio1 mutant and wild-type plants were grown in the presence or absence of sucrose and MCC-B accumulation determined. As shown in Figure 3D, exogenous sucrose had no effect on the enhanced accumulation MCC-B subunit the bio1 mutant seedlings. This result indicates that the increased accumulation of the MCC-B (and probably MCC-A) protein in response to biotin depletion probably is not due to enhanced MCC-B gene transcription, otherwise, sucrose would have altered the observed expression pattern. These results further support our conclusion that biotin regulation of MCCase expression is not regulated the level of gene transcription.
Biotin is required for metabolic control MCCase gene expression

Our previous studies showed that MCC-A and MCC-B genes are down-regulated by carbohydrates at the level of gene transcription via a metabolic repression mechanism (Che et al., Chapter 3 this thesis). Both darkness and a CO$_2$-free atmosphere induce MCCase expression by enhancing the transcription of the respective genes. To test whether biotin has any role in this regulation, homozygous MCC-A:GUS/biol and MCC-B:GUS/biol transgenic plants were grown in MS medium under either continuous illumination or transferred to darkness for the last 2 days of growth. As shown in Figure 4A-B, as MCC-A:GUS/biol and MCC-A:GUS/biol transgenic plants aged, they gradually lost their ability to respond to the darkness treatment, as compared to the respective transgenes maintained in a wild-type genetic background. This was especially apparent with 15- and 20-day old seedlings, which did not respond to darkness at all and had the same GUS activity as those plants grown under constant illumination (Fig. 3B-C). Interestingly, MCC-A- and MCC-B- mediated GUS activity declined significantly in the biol mutant background on eleventh day, which was the same day biotin content on the MCC-A subunit declined in these plants (Fig. 2A). These results indicate that biotin is required in the metabolic regulation MCCase gene expression.

To further study the effect of biotin on the regulation of MCCase expression, exogenous biotin was applied to MCC-A:GUS and MCC-B:GUS transgenic seedlings of the wild-type and biol genetic background. These seedlings were grown for 13 days under constant illumination in a normal atmosphere and then they were either maintained in the same growth condition or transferred to either darkness or a CO$_2$-free atmosphere for an additional 2 days of growth. Consistent with our findings that biotin has no effect on the transcription of MCCase genes, exogenous biotin had no effect on MCC-A -and MCC-B-
promoter-mediated GUS activity in both the wild-type and \textit{bio1} genetic background plants grown under constant illumination (Fig. 5A-B). Both dark-treatment or a CO\textsubscript{2}-free atmosphere (Fig. 5A-B) induced the \textit{MCC-A} and \textit{MCC-B} promoter-mediated GUS activity in wild-type genetic background, but not in \textit{the bio1 genetic background}. Addition of exogenous biotin did not alter the darkness-induced or CO\textsubscript{2}-free atmosphere induced \textit{MCC-A} and \textit{MCC-B} promoter-mediated GUS expression when the transgenes were in a wild-type genetic background. However, exogenous biotin enable the transgenes to be at least partially induced by darkness and the CO\textsubscript{2}-free atmosphere, while they were in \textit{a bio1 genetic background} (Fig. 5A-B). These results indicate that biotin is required for the metabolic regulation of \textit{MCC-A} and \textit{MCC-B} genes at the transcriptional level.

These initial studies on biotin regulation of MCCase expression suggest that the regulatory pathway that controls the expression of this enzyme may be very complex. Biotin appears to play two roles in the regulation MCCase expression. First, the accumulation of MCCase subunits is up-regulated by biotin deprivation, and this occurs by a translational and/or post-translational mechanism. Second, although biotin has no effect on the regulation of the transcription of the two MCCase genes when plants are in normal growth conditions, biotin is required in order for the MCCase genes to respond to environmental and metabolite signals.

In contrast to MCCase, the regulation of another biotin enzyme, the chloroplastic heteromeric ACCase, is complete different (Fig. A4 and Fig. A5 in appendix II). Although, the biotin content on the CAC1 subunit declines during biotin deprivation as \textit{bio1} mutant plants develop (same as the biotin depletion on the MCC-A subunit), the accumulation pattern of ACCase subunits, CAC1, CAC2 (data not shown) and CAC3, do not change in
response to this deprivation (Fig. A5 in appendix II). Furthermore, depletion of biotin in the biol mutant results in decreased CACl-promoter-mediated GUS expression and addition of exogenous biotin enhanced the GUS activity in both a wild-type and the biol genetic background (Fig. A4 in appendix II). These results indicate that different genes may be regulated by different mechanisms in response to biotin.

As an essential vitamin, biotin plays a variety of roles in cell growth and development. Biotin is a dual-function compound. It may act as a regulator, for example, directly regulating the bio operon of E. coli (Cronan, 1989) or act as a prosthetic group to ensure the activity of biotin-containing enzyme. In plants, depletion of biotin will inhibit biotin-containing enzyme activities and result in the blocking of sequential reactions in pathways requiring biotin-containing enzymes (for instance, fatty acids biosynthesis and branched-chain amino acids catabolism). Although, it is still not clear what the signaling mechanisms are for the increased accumulation MCCase during biotin depletion and whether these processes are dependent of biotin's enzymatic function, using biotin analog, such as dehydrobiotin which binds to the active site of the biotin-containing enzyme and inhibits the enzymatic function of the protein, may help us solve this puzzle.

The effect of biotin on MCCase subunit stoichiometry

The subunit stoichiometry of MCCase has been investigated in several plant species (Chen et al., 1993; Alban et al., 1993; Diez et al., 1994; Weaver et al., 1995; McKean et al., 2000). In all cases, MCCase is composed of two subunits: a larger, biotinylated MCC-A subunit and a smaller, non-biotinylated MCC-B subunit. Different species have very similar subunit molecular weights. The molecular weights of MCC-A and MCC-B subunits are
about 80 kDa and 60 kDa, respectively. However, the native molecular weight of MCCase is reported to be quite different in different species. For example, the native molecular weight of soybean MCCase is about 850 kDa (Song et al., 1993), but only 530 kDa for the pea enzymes (Alban et al., 1993). Based on these types of observations, the enzyme from pea (Alban et al., 1993) and potato (Alban et al., 1993) has been proposed to have an \(A_4B_4 \) quaternary structure, whereas the enzyme from carrot (Yang et al., 1993), maize (Diez et al., 1994), soybean (Song et al., 1993), and tomato (Wang et al., 1993) appear to have an \(A_6B_5 \) quaternary structure. In the present work, we determined the molecular weight of the native MCCase from \textit{Arabidopsis} and deduced the subunit’s stoichiometry of the enzyme. Proteins from 20-day-old \textit{Arabidopsis} seedlings, 7-day old soybean cotyledons and 16-day old pea leaves were analyzed by non-denaturing electrophoresis in a 5-30% linear gradient polyacrylamide gels. By conducting electrophoresis as described by Hedrick and Smith (1968), proteins migrated to position in the gel at which the pore radius of the gel limited the movement of each protein. In this way, proteins were fractionated in relation to their molecular weight. The molecular weight of the native MCCase was estimated by comparing its migration to proteins of known molecular weight. We determined that the molecular weight of the native MCCase in both pea and \textit{Arabidopsis} to be 500 kDa, whereas soybean MCCase is about 900 kDa (Fig. 6A). These data confirmed that different species have different MCCase molecular weights, probably due to different subunit stoichiometries (\(A_6B_5 \) for soybean and \(A_4B_4 \) for pea and \textit{Arabidopsis}). However, it is still not clear what causes these differences and what physiological significance is indicated by these differences. That MCCase in different species have different quaternary structure (\(A_4B_4 \) and \(A_6B_5 \)) may provide new and interesting possibilities about how MCCase activity could be regulated.
We also investigated whether biotinylation effects MCCase subunit stoichiometry. Protein extracts from 20-day old wild-type (containing holo-MCCase) and bilo1 mutant seedlings (containing apo-MCCase) were analyzed by non-denaturing electrophoresis in 5-30% linear gradient polyacrylamide gels. As shown in Figure 6B, both apo-MCCase and holo-MCCase have the same molecular weight and hence the same subunit stoichiometry, A₄B₄. Thus, biotinylation of MCCase has no effect on the molecular weight of MCCase and does not affect the subunit stoichiometry of the enzyme.

It is still not entirely clear whether the biotinylation occurs prior to or after the importation of biotin-containing proteins into organelles, such as mitochondria. The distribution of total biotin and its partition between free and protein-bound biotin in plant cells varies widely between different plant species (Shellhammer and Meinke, 1990; Baldet, 1993a; Mozafi, 1993). In pea leaves most of the biotin is unbound and found mostly in the cytoplasm (Baldet, 1993a), which is consistent with the findings in tomato (Wang et al., 1995). However, in Arabidopsis, most of the biotin resides in the chloroplast and mitochondria and is bound to proteins (Shellhammer, 1991). There is evidence which indicates that biotin holocarboxylase synthetase, which catalyzes the biotinylation of apo-proteins to form the holo-proteins, exists in the cytosol, chloroplast and mitochondria of pea leaves (Tissot et al., 1996; 1997). Therefore, biotinylation of biotin-containing proteins may take place in all three of these subcellular locations. Furthermore, since the biotin-containing subunit of propionyl-CoA carboxylase can be imported into mitochondria independent of its biotinylation status (Taroni and Rosenberg, 1991), it was proposed that the apo-MCCase subunit should accumulate in mitochondria (Wang et al., 1995).
It is most likely that the import of the MCC-B peptide into mitochondria is independent of the biotinylation status of the MCC-A subunit. If this is the case, because both the apo-MCCase and holo-MCCase have same subunit stoichiometry in Arabidopsis, A₄B₄, it would indicate that apo-MCC-A and MCC-B subunits were indeed in the same location, the mitochondria. This would imply that apo-MCC-A subunit can be imported into mitochondria without being biotinylated. The remaining question is whether the biotinylation occurs prior to or after the combination of apo-MCC-A with MCC-B subunits to form the A₄B₄ complex. Whenever the biotinylation occurs, the co-existence of apo- and holo-MCCase in the mitochondria may indicate that the post-translation biotinylation modification MCCase is a mechanism for regulating MCCase activity (Wang et al., 1995).

The effect of biotin on the formation of MCCase charge isoforms

Two MCCase isoforms have previously been purified from soybean (Song, 1993). These two MCCases, which were separated on the basis of charge differences, show different kinetic properties, but they have the same molecular weights. Because in soybean, MCCase subunits are encoded by a small gene family, these charge isoforms may be products of different genes. We examined whether charge isoforms of MCCase occur in Arabidopsis. This was conducted by subjecting protein extracts to non-denaturing polyacrylamide electrophoresis. By using the method of Lambin and Fine (1979), proteins were separated according to charge and molecular weight. Knowing that all MCCase molecule in these extracts have the identical molecular weight (see Fig. 6), any isoforms detected in this latter analysis must be charge isoform.
After electrophoresis, MCCase was detected by western blot analysis of the resulting gels using anti-MCC-B serum (same results were obtained by using anti-MCC-A serum, data not shown). As shown in Figure 7, there are two immunoreactive bands in wild type protein extracts. This was a surprise finding, as the two MCCase subunits are each coded by a single gene in *Arabidopsis* (Weaver et al., 1995; McKean et al., 2000). Therefore, these charge isoforms must be the result of a post-translational process. One such process that can potentially generate charge isoforms of MCCase is the post-translational biotinylation of the MCC-A subunit. Biotin is covalently bound to this subunit by an amide linkage to a specific Lys side chain to form the biocytin residue. Therefore, biotinylation make the protein less positively charged. To investigate if differential biotinylation may be the cause of the different charge isoforms of MCCase, we subjected protein extracts from *bio1* seedlings to non-denaturing electrophoresis. Three MCC-B immunoreactive bands were detected in *bio1* extracts. Two of these were the same as those detected in extracts from wild-type seedlings (Fig. 7). These results are partially consistent with biotinylation being the cause of the charge isoforms. If this hypothesis is correct, five bands should be observable in total, each corresponding to the degrees of biotinylation of MCCase (A₄B₄, A₄(biotin)B₄, A₄(biotin)₂B₄, A₄(biotin)₃B₄, A₄(biotin)₄B₄). However, only three bands were observed in the *bio1* mutant. It is possible that the two bands seen in wild-type seedlings and the three bands in the *bio1* mutant are the most dominate forms of MCCase. To resolve this dilemma, the specific biotinylation status corresponding to each charge isoform needs to be determined.
Literature Cited

Figure 1. The effect of plant age on MCCase activity.

MCCase specific activity was determined in protein extracts of seedlings between 3 and 28 days after sowing. Seedlings were grown in a cycle of 15 h illumination and 9 h of darkness in wild-type. Biol and bio1 plants supplemented daily with 1 mM biotin. Measurements are the average of four determinations.
biol + 1 mM biotin daily

MCCase Activity
(nmol/min/mg protein)

Time (days)
Figure 2. The effect of biotin on the biotinylation status and the expression of MCCase.

Protein extracts were prepared from whole seedlings (A, B and C) or cotyledons (D) of wild-type and bio1 Arabidopsis plants at the indicated days after planting (DAP). Aliquots of extracts containing equal amounts of protein (150 µg) were subjected to SDS-PAGE, followed by western blot analysis with ^125I-streptavidin (A) or immunological detection with antibodies to MCCase subunits (B, C and D). Biotin (0.25 mM) was supplemented to bio1 mutants 2 days before harvest. The data presented were gathered from a single experiment; three replicates of this experiment gave similar results.
Figure 3. The effect of biotin depletion on MCCase gene transcription.

(A) Northern analysis of MCC-A and MCC-B mRNA accumulations in wild-type and biol Arabidopsis plants. Equal amounts (50 µg) of RNA isolated from 20-day old wild-type and biol plants were subjected to electrophoresis in formaldehyde-containing agarose gels. MCCase mRNAs were detected by hybridization with radioactively labeled cDNAs coding for MCC-A and MCC-B. Different ages of MCC-A:GUS (B) and MCC-B:GUS (C) transgenic Arabidopsis seedlings with either wild-type or biol genetic background grown on MS agar medium for indicated time period under constant illumination. GUS activity was determined in protein extracts. Data are the mean ± SE from three replicates. (D) Protein extracts were prepared from 20-day old wild-type, biol and biol plants supplemented with 1.5% (w/v) sucrose. Aliquots of extracts containing equal amounts of protein (150 µg) were subjected to SDS-PAGE, followed by immunological detection with antibodies to MCC-B subunit. The data presented were gathered from a single experiment; three replicates of this experiment gave similar results.
A

MCC-A mRNA

MCC-B mRNA

B

MCC-A:GUS

C

MCC-B:GUS

D

3% (w/v) Sucrose - - +

MCC-B
Figure 4. The effect of depletion biotin on *MCC-A* and *MCC-B* promoter-mediated *GUS* expression in darkness. *MCC-A:GUS* (A) and *MCC-B:GUS* (B) transgenic *Arabidopsis* seedlings with either wild-type or *biol* genetic background grown on MS agar medium for indicated time period. These plants were transferred to darkness for the last 2 days of growth. GUS activity was determined in protein extracts. Data are the mean ± SE from three replicates.
Figure 5. Fifteen-day old *MCC-A:GUS* (A) and *MCC-B:GUS* (B) transgenic *Arabidopsis* seedlings with either wild-type or *bio1* genetic background grown on MS agar. These plants were kept in the constant illumination (□), transferred to darkness (■) or CO₂-free air (□□) for the last 2 days of growth. In all of these growth conditions, 0.25 mM biotin was supplied to the MS medium for the last 2 days of growth as indicated in the figure. GUS activity was determined in protein extracts. Data are the mean ± SE from three replicates.
GUS Activity (nmol MU/min/mg protein)

B

- **MCC-B-GUS**
 - wild-type
 - bni1

- **wild-type**
 - B
 - CO2-free

GUS Activity (nmol MU/min/mg protein)

A

- **MCC-A-GUS**
 - wild-type
 - CO2-free

- **wild-type**
 - B
 - CO2-free
Figure 6. Determination of the molecular weight of the native MCCase by nondenaturing polyacrylamide gel electrophoresis.

An aliquot of protein extracts from wild-type, bio1 mutant Arabidopsis, soybean and pea were subjected to electrophoresis in a gel composed of a linear gradient of 5-30% (w/v) polyacrylamide. After electrophoresis at 200 volts for 3 days, MCCase was detected by western blot analysis of the resulting gels. The blots were incubated with the anti-MCC-B serum (A, B). Same results were obtained using either anti-MCC-A serum or 125I-streptavidin (data not shown). The molecular weight of MCCase was determined by comparing its migration to the standard proteins (apoferritin dimer, 886 kDa; apoferritin monomer, 443 kDa; urease dimer, 545 kDa; urease monomer, 272 kDa). Position of MCCase is indicated by arrows.
wild-type Arabidopsis

bio1
Figure 7. Analysis MCCase charge isoforms.

Aliquots of protein extracts from 20-day old wild-type and bio1 Arabidopsis plants were subjected to electrophoresis in a linear 5-20% gradient polyacrylamide gel. After electrophoresis at 70 volts for 17 hours, MCCase was detected by western blot analysis with anti-MCC-B serum.
CHAPTER 5. CONCLUSIONS

Comprehensive studies of MCCase have attempted to address three questions: 1) what is the physiological role of MCCase in plants? 2) how is MCCase expression regulated during plant developmental and in response to environmental stimuli? 3) whether biotin plays a role in the regulation of MCCase gene expression?

The radiotracer metabolic studies using extracts from isolated mitochondria and incubating with [U-^{14}C]leucine and NaH^{14}CO_{3}, respectively, demonstrate that plant mitochondria can catabolize leucine via the following scheme: leucine \Rightarrow α-ketoisocaproate \Rightarrow isovaleryl-CoA \Rightarrow 3-methylcrotonyl-CoA \Rightarrow 3-methylglutaconyl-CoA \Rightarrow 3-hydroxy-3-methylglutaryl-CoA \Rightarrow acetoacetate + acetyl-CoA. These findings demonstrate for the first time that the enzymes responsible for leucine catabolism are present in plant mitochondria. We conclude that one of the primary metabolic role of MCCase in plants is the catabolism of leucine. In addition to Leu catabolism as demonstrated here, MCCase may also operate in the mevalonate shunt and isoprenoid metabolism. Further studies on the role of MCCase in these pathways may illustrate the pivotal role of MCCase in manipulating these pathways during plant development.

A single-copy gene encoding the Arabidopsis MCC-A subunit was isolated and characterized. It contained 15 exons separated by 14 introns. The light mediated repression of MCCase expression reveals that the expression of the MCC-A and MCC-B genes are under metabolic control at transcriptional level. The role of MCCase in the Leu catabolism and metabolic control MCCase activity imply that MCCase plays an important role in regulating
the carbon and energy balance during plant development and particularly in non-photosynthetic organs and during stress conditions. I also isolated *Arabidopsis* line containing T-DNA insertional mutation in the *MCC-B* gene (Fig. A1, Appendix II). Further biochemical and genetic characterizations of this mutation will be helpful for determining the biological function of MCCase in plants.

Biotin, an essential water-soluble vitamin, is required by all living organisms for normal cellular functions and growth. It may also play very important roles in the regulation of protein expression. Our studies showed for the first time that MCCase is down-regulated by biotin at translational and/or post-translational level. Although biotin had no effects on MCCase gene transcription, it is required for the MCCase response to plant metabolic changes at the transcriptional level. On the other hand, ACCase is up-regulated by biotin at transcriptional level, which is opposite to the mode of regulation of MCCase.

The comparison of the molecular weight of MCCase reveals that different plants species have different MCCase subunit stoichiometry. We determined herein that the subunit of *Arabidopsis* MCCase is A₄B₄. The coexistence of apo- and holo-MCCase and different charge isoform of MCCases in the *Arabidopsis* indicate that biotinylation may play a role in the regulation of MCCase expression during plant developmental and environmental changes. The determining whether the quaternary structure of apo-and holo-MCCase are different will provide new and interesting information about the regulation and structure of biotin enzyme.
APPENDIX 1. MCCase BIOTINYLATED SUBUNIT

GENOMIC DNA SEQUENCE FROM ARABIDOPSIS

THALIANA (COLUMBIA)

1 gagctctcggtccacgtttggtttttcttcaagctctgtct50
ΔSau3AIpBP8CAAT-box
51 ttttagggctacttattggttcaacttttcctcaacaggtct100
101 taaaagttgagaattacgtttgttccataacttttagtttaaa150
GATAMotif
151 cttttgcaagaaaaagttatactcagattatatgttggttatcgttatgtat200
201 cattttcatcaagccttctaatatttaattttataaat250
251 taagatgtagacttacttttaattttttttgctgactgactgact300
ΔNsiIpBP12
301 tggatgtggtatttgcttgacacattctatatattatattat350
351 tgtaatcattcagaaagtttcaagaaaaaccatatccac400
401 tgggaacatatttttgctcagtttagattcagactcacaac450
T-box
451 tatttcatatatatttctacagttttctactttactttacttttgattct500
501 aataattcattcaagctctgacttcaaatctttagctcttcttaatggtatat550
CAAT-box
551 tactaacataatctctcttgctactttggaattaataataa600
601 aagtttatttatttttctatattacttttcttttttgcttttattag650
ΔHincIIpBP13
651 aatgcaaaaaaaagttctagattttagaaccacttcaacagccac700
E-box/ABREMotif
701 tagttttcaatattcctagttttcctgctttattctattttcttt750
751 caagatgattctatttctattttttattttttctattttattttcttt800
GATA-motif
801 cctcagcttatttcatgtcagatgtatttattttattattttttttattatttctttctctctattttcttctttttctt
1101 gattagtttt tacgaaattg accaacatac cctcgttgtt tgggttttatac 1150
 E-box E-box
1151 tacaacggag_tttctgatgac acaaccttttt tcttactcag gaaaatctga 1200
 Δ Sau3A I
1201 aatacggagAT CAAATGGCGA TGATGACGCC GTGGCGACTT CGACGGAATG 1250
1251 TTCGTCGGAA AAATCACTCG ATGCTCGTGA GATATATTTCC CGCTTCGGCA 1300
1301 TCGATGAAAGC CTAAGGAGCA ATGTATTGAG AAGATTTTGG TGGCGAACAG 1350
1351 AGGCCAGATT GCTTGCAGGA TCATGAGAAC GCCGAAGCCT TTAGGGATTC 1400
1401 AGACCGTTCG GCTTCTACGT GACGCTGATA GACATTGGCT CCATGTTAAA 1450
1451 TCCTGAGACCG AAGGGTGACG AGTGGCGGCG CCACTGTGCTA GACTTATTTA 1500
1501 CCTCAGCGGT GTGACTATCA TGGAGGCAGC GGCTCGGAAT CTGGCACAGg 1550
1551 tatgagtttt gatccccgaa aaagaataat cgtgtttactg tagctgtatgt 1600
1601 cttctctggaa ttatataact agGCAATACA CCCTGGCTAT GGGTTCTTGT 1650
1651 CAGAAAGTTC TGACTTGGCC CAACTCTGTTG AGGATTCCCG TCTAAACATC 1700
1701 ATGGAGCCCT CAGCATCTGC TATTTAGAGAC ATGGGTGATA AAAGgtacca 1750
1751 ttacagggct cctttacgaa cttgctttct cttgcacaaa gttgttatattt 1800
1801 tattctctct tgaatagtttt cgtgagacat gttccctctat gtatatatgt 1850
1851 aagTGCATCC AAGAGAAATTG TGGGAGCTGC TGGAGTTCCT CTCGTGCTCG 1900
1901 GATATCATGG CCATGAGCAA GATATGGATC ATATGAAGTC AGAAGGCTAA 1950
1951 AAGATGGAGT ACCCTATAAT AATCAAGCCA ACACATGGAG GTGGGGGGA 2000
2001 Ggtatgttat gatatacgcc attgatatttt tcataagat ggtttttttgt 2050
2051 aatagctaaa gtttgataacc ctttttaaaat ctattggttt tcagacgaag 2100
2101 taagcctcttt ttttttagGG AATGAGGATA GTGCAAAGTG GGAAGGATTT 2150
2151 TGCTGACTGC TTTTTGGGGG CCAACGTGGA AGTGTGTGCT CTTTTTGGCG 2200
2201 TTAACACTAT TCTTCTCGAG AAATACATTA CTCGACCGAG GCATATAGA 2250
2251 GTCCAGGtag tgatgctgtg aatcccctatgt ttgtttttttttttttttctga 2300
2301 ggttggttat gccgcctgga aacccagttta ttgtatatag aaagagacaa 2350
2351 aatgttaaacct ttaacccgta tttttttttt ggcgtactca tggagaaccc 2400
2401 attttcttgtt ttttcctcttt tttttctagct ttttaacctt ttttgcattc 2450
2451 gttttttccag tgccttttagA TATTTTGGTG CAACACTGGA AAATTTCTTC 2500
2501 ATCTATAGCA AAGGAGTGGC AGTGGCGAAA GAAGACACCA AAAGATATTAT 2550
GAAGAAGCTC CTGGGgtaat gaccatat ttttcgttta tgtattcata 2600
atatctag cataatgga tgtgggtctg attgacacta tactggtgca 2650
gcctaatata tctggaaagt tccggcctaa cttaggccaa gctgctttct 2700
cggcaccg ggtatactct taaatctgc tttcatcttt tacaagtttc 2750
atggctctca gtagaagagc ttgaccgaaa atgatcttcat acaatgctct 2800
gtatattgca ttcattcata gtatgtctcg ggtgtctctt aaaaaatatag 2850
tgcattacta ataggtgca ttgaaaaattt gatcaaggtt cactattgct 2900
aatgttaggt tcattgata tgtagttctt tggaaacctct tcttgcttgg 2950
catatctca cttcaacctt cacaagaaac gcctttatct tgtttctctt 3000
tgtatatttaa agGCGATGGG ATATTATAT TGCAGGAGG TGGAAATATAT 3050
AGTTGACACC GAGTCTGATC AATTTTTT TATGGAATATG AACACCGGTC 3100
TACAGgtgct tctttgtatc atatgttttat taaatataac tcggataaaca 3150
tttgcttttc caaaggaaaa gctgtgatcc ttcttaggTC GAACATCCTG 3200
TAACTGAGAT GATTGTTGT CAAGATCTTG TGGAAATGGA AATTCGCTTT 3250
GCCAATGGGG AACCCTCCC CTAAAGCCAA TCCGGGAGTG CAATGTCAAg 3300
tatggctctt ctctcttttttaaaaa ataatggaaa aatagtggtt tggatttttct 3350
tcattgccta ttcgtaactg aatccatgat ttttcaatgt ttttaattttg 3400
gcgaagaaaa atccgaacaa ctagacccac atgatgttc tcttgtgctcagG 3450
TCATGCCTTT GAGGCCAGGA TATAATTGTGA AAAGCTTCCA AAGGATAAAC 3500
TTCTGCAACC TGGGGTCTCC AATCATTATTG GCCCTGTTTGC AGTCTCAACA 3550
TCAGgtgaaag tccaaatttg tgatataaca gttggttttt tttctattag 3600
aaagttttttt tttctctcgtatatcgtga cccctggttttt gctctgttgtt 3650
ttacctctct ctgtgtggaa tttgtctgtgaa acagtTCCGGG TTGGAACCTG 3700
AGTTGAGCAA GGAGACACTG TTAGCATGCA CTATGATCCT ATGATGCGAA 3750
AGCTGGTTGT CGGCGGGAGT AATCGTGGGC AAGCCTTAGT GAAACTGGA 3800
GATTGCCTTTT CTAACTTTCA Ggtgatattcc ctgagaacctgtatatggag 3850
↓Sac I
GCTCTctcttg caatattcat tataacctcg cttaaaccta aatctttcag 3900
gccttatgggt tccatgtgga atttcttaaag aacaactttttt ggtttctcctg 3950
3951 cacatcgct cttagttacc acaatagttt agtaattaca tggtathttg 4000
4001 ttgacagGTA GCAGGTGTA GCTACGAACAT AAATTTCTTT CAAAAACATG 4050
4051 CTCAGTCATAA GGGTGGTTGCA GTGGGCAATG TAGAATTCTA TTTTATGAG 4100
4101 CACCATAAAA GTGATCTATT TGCTGACGAA AGCAATCCAG CTGCAACAGA 4150
4151 AGTGGCGGATA AACGGCAGTA AGCATAGTGC AGCATTTGGA GCTGATTGTA 4200
4201 TCTCCACAAT CGACCATCCT ACTTGGGATG AAAGTAATCA TGgtcagttc 4250
4251 gcattggggtc tagtctcttc ttcacaacctt acatgattccc cgacgtgtgc 4300
4301 ttaatttttt atgtgtaaac tcatcagGGA AGGTTCCAT CGATATGGTA 4350
4351 TTCGAAATCCT CCTTTTGGGG TTCATCATGA AGCCAAACAA ACCATGGAGC 4400
4401 TAGAATGGAAA TAATGAATGC GAGGGAACCTG GCTCTAAACAT CATACTACCC 4450
4451 GGTGTAAGAT ATCAACCAGA TGGAGCTAT ACTTGAGGg ttttaaacct 4500
4501 cacatccttcc ttattagtttc acttttagaac tcatatactt cattttagag 4550
4551 ttttataatt ggaattctta ttgttttcca acattttcaag agacgAGAC 4600
4601 GCAATGATTTG TCCAGGTATTTA GAACTCAGAG TACACGAGC AGGAAATGCC 4650
4651 GATTTTAGAG TTGAAGGCCC CCGATTCGAC ATGAGCTTTA GTCTAGGTCG 4700
4701 GTACTTTGAG gtaaatcatt agcattatgt tcaagcaact ctttaacagct 4750
4751 ctcatactct ttctgtctct tctgtaattt tggtctttttg gttatgtttgg 4800
4801 gttaacagGGA TGGTTTAGAAG CATATCCATA TATGACATGG ATCAAGAACAC 4850
4851 CATCAAGTCA AGGCAAGAGTT AGGAATCGAA TTCTCTGAGG ATGGAAGAAGG 4900
4901 TGTCACACAC AGAACCAGCT CCGAAACATCC ATCAACACCT CCGAGAACAAC 4950
4951 TTGTGGCCCC CATGGCTGTG TTGGTAGCTA AGGTGCTTTTG CGAAACGAA 5000
5001 GCCAAAAGTAG ATCAAGGTCA ACCTATATTA GTCATAGGAG CAATGGAAGAT 5050
5051 GGAGgttagt atataaaacat cttcttacatcataaataa gaaaactttta 5100
5101 aatccattac gttttatcct cgttacagCAC GTGGTGAAGA CACCAACTCC 5150
5151 TGGAAGCATA CAGGACTTCA AAGTTAAAGC AGGCAACAGC GTTTCAGATG 5200
5201 GCAGTGCTCT ATTCAGGATC AAAGgttagt ggttaatcag taccagcatt 5250
5251 tttcttttta tacatcttttt atccatcttt tgaataacttt atcacaacctt 5300
5301 aatacttttta gagaGTAATA ACACGATTGG CATGGTACCA 5350
5351 ACCATTGCGT GGCTTCACCG AAACCTGAAC TAATAAAGCAT TGTTGTTGTA 5400
5401 ATATAAACG AAATCTTACA AAAGATAAAT AAATCCAAAG CTTTATaat 5450
5451 gtttttactg cctctatata gatctgtgag gcctagagatt gaaggttaact 5500
5501 tcttagtata caaaatggtg attacattaa tattcaagatt agtccgagcct 5550
5551 attttttgta tactaaacca gctttctctct tcttgagcttg agactcgctc 5600
5601 tgaaccttttg gagcttttggc cttataagca gttctgtgat acttcaagaa 5650
5651 gacatccgta tactttgtact tataaacaaaaa caatatatat tatctccatca 5700
5701 tctcccaacac ttctagttgct ccgggaaaaa acccgctctct aacaatgtgta 5750
5751 taagacaccg catcaagccta ccctctagatca aactttctccc gatgaagtgct 5800
5801 tgctgctattg gatatccctct cttccctataa ctcagttctct tgctgtratt 5850
5851 tactcccaaat ggctgcatat cctgtgacca tagaatgacaa agtttgagcct 5900
5901 tttggcgagaa gccaagatct tctctccttc tttaatgcct tctctgcatc 5950
5951 ctgcatcaaata ctttctttgc taataaaatgt gatcacatgtg tctccaatcat 6000
6001 gaacaccagc atccaaacct gtcactttcct tggattttctct caagagttttc 6050
6051 gacatgact gcgccctctgag gttttctctct cccctctttaa agagctcttc 6100
6101 aaatccacat tttcggctctg ttagatatcct ccgctctttct atttctctaa 6150
6151 acacattgag agctc

UPPERCASE: MCCase biotinylated subunit exons

bold lowercase underline: TATA box

BOLD UPPERCASE: Initial site

5' promoter deletions to -12 (relative to the translation start site) were indicated as **pBP8, pBP12, pBP13, pBP14, pBP20, pBP22**.
Figure A1. Schematic representation of the structure of T-DNA insertion in the *MCC-B* gene.

The physical map of the MCC-B gene is present. Black boxes represent the 10 exons. Introns are indicated by the solid black lines. Positions of the translational start codon (ATG) and stop codon (TAA) are indicated. The mutant alleles contains a concatameric T-DNA insertion in the fourth exon with LB at each junction. The 19 nt of *MCC-B* sequence deleted from the mutant allele is shown above the site of insertion (underlined) and positions are indicated. Primers specific for the *MCC-B* gene or T-DNA border sequence are indicated by arrows.
Figure A2. Schematic illustration of the 5' deletion mutants of MCC-A:GUS transgenes.

Six promoter-GUS fusion plasmids were constructed. The number under the constructs refer to 5' deletion points in the promoter and the translation start site (ATG) of MCC-A is denoted as position +1.
Figure A3. Deletion analysis \textit{MCC-A:GUS} promoter constructs.

GUS activities of the transgenic T2 seedlings grown for six days on MS medium containing the indicated. Seedlings were then transferred to darkness or maintained in constant illumination for another two days. The data are the mean ± SE from three replicates using three independent transgenic lines.
Figure A4. Biotin induces $CAC1$-promoter-mediated GUS expression.

$CAC1:GUS$ transgenic Arabidopsis seedlings either in a wild-type or homozygous $bio1$ genetic background were grown on MS agar medium for 13 days and then transferred for an additional 2 days to darkness or maintained under constant illumination with or without 5 ml 1mM biotin. Proteins were extracted from these seedlings and GUS activity determined. The bars represent the mean ± SE from three replicates.
Figure A5. The effect of biotin on the biotinylation status and the expression of heteromeric ACCase. Protein extracts were prepared from whole seedlings (A) or cotyledons (B and C) of wild-type and homozygous bio1 Arabidopsis plants at the indicated days after planting (DAP). Aliquots of extracts containing equal amounts of protein (150 μg) were subjected to SDS-PAGE, followed by western blot analysis with 125I-streptavidin (A) or immunological detection with antibodies to ACCase subunits (B and C). Biotin (0.25 mM) was supplemented to bio1 mutants 2 days before harvest. The data presented were gathered from a single experiment; three replicates of this experiment gave similar results.
ACKNOWLEDGMENTS

I would like to express my sincere appreciation of Dr. Basil J. Nikolau, my major professor, for his teaching, guidance and help in all aspects of my graduate works at Iowa State University. His encouragement, support and friendship will last forever.

I am also very grateful to Dr. Eve Syrkin Wurtele, Dr. Martin H. Spalding, Dr. Alan Myers, Dr. Andy Norris for serving on my committee and providing their opinions and helpful discussions in my work. In addition, I acknowledge their efforts of reviewing my papers and making suggestions in the preparation of their manuscript.

Besides, this dissertation is to the memory of Dr. James A. Olson who enthusiastically help me in my work. This memory will always live.

I would also like to thank all my colleagues in Dr. Nikolau’s laboratory for their cooperation, help and friendships.

Finally, I would like to dedicate this thesis to all my families for their love, understanding and support.