Quack and wheat grasses.

L. H. Pammel
Iowa State College

Follow this and additional works at: http://lib.dr.iastate.edu/bulletin
Part of the Agriculture Commons, and the Botany Commons

Recommended Citation
Available at: http://lib.dr.iastate.edu/bulletin/vol7/iss83/1

This Article is brought to you for free and open access by the Extension and Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Bulletin by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
EXPERIMENT STATION

IOWA STATE COLLEGE OF
AGRICULTURE AND MECHANIC ARTS
AMES, IOWA

BOTANICAL SECTION

1. QUACK AND WHEAT GRASSES
2. SOME SOIL BINDING GRASSES OF IOWA
Board of Trustees

Ex-Officio:
His Excellency, A. B. Cummins, Governor of Iowa
Hon. J. F. Riggs, Superintendent of Public Instruction

Term Expires
First District—Hon. H. M. Letts, Columbus Junction 1910
Second District—Hon. Vincent Zmunt, Iowa City 1910
Third District—Hon. E. A. Alexander, Clarion 1908
Fourth District—Hon. Ellison Orr, Wankon 1910
Fifth District—Hon. W. R. Moninger, Galvin 1906
Sixth District—Hon. W. O. McElroy, Newton 1908
Seventh District—Hon. W. K. Boardman, Nevada 1906
Eighth District—Hon. George S. Allyn, Mt. Ayr 1910
Ninth District—Hon. James H. Wilson, Adair 1906
Tenth District—Hon. J. B. Hungerford, Carroll 1906
Eleventh District—Hon. W. J. Dixon, Sac City 1906

Officers of the Board
Hon. J. B. Hungerford, Carroll, Chairman
Prof. E. W. Stanton, Ames, Secretary
Herman Knapp, Ames, Treasurer

Station Staff
A. B. Storms, M. A., D. D., President
C. F. Curtiss, B. S. A., M. S. A., Director
W. J. Kennedy, B. S. A., Animal Husbandry and Vice Director
W. J. Rutherford, B. S. A., Assistant Professor of Animal Husbandry
A. T. Erwin, M. S., Associate Horticulturist
L. H. Pammel, B. Agr., M. S., Ph. D., Botanist
H. E. Summers, B. S., Entomologist
G. L. McKay, Dairying
P. G. Holden, M. S., B. Pd., Agronomy
W. H. Stevenson, A. B., Soils
H. P. Baker, M. F., Forestry
E. E. Little, B. S. A., M. S. A., Assistant in Horticulture
J. W. Jones, Assistant in Agronomy
Wayne Dinsmore, B. S. A., Assistant Professor of Animal Husbandry
W. W. Smith, B. S. A., Assistant in Animal Husbandry
F. W. Bouska, B. S. A., Dairy Bacteriologist
C. Larsen, B. S. A., Assistant in Dairying
C. E. Ellis, B. S. A., M. S. A., Assistant in Chemistry
R. E. Buchanan, B. S., Assistant in Botany
Charlotte M. King, Artist
E. S. Gardner, Photographer
Will H. Ogilvie, Bulletin Editor
The quack and wheat grasses of Iowa, eastern North America, and the Rocky Mountains are important, not only as weeds, but as forage plants. One of the most valuable of these is the western wheat grass, ranging from the eastern slopes of the Rockies into western Iowa. Besides this species there are several others more or less common in the western and northwestern portion in the state. Some of these are considered valuable as forage plants, yet during the past season many complaints have been made of the abundance and weedy nature of the quack grasses in North America. It seems wise, therefore, to consider the quack and wheat grasses not only as weeds, but also from the standpoint of their value as forage plants.

QUACK GRASS, AGROPYRON REPENS BEAUV.

DESCRIPTION.

Quack grass is a perennial, with a many-jointed, creeping rhizome (rootstock). Culm from eighteen inches to four feet high, bearing numerous leaves from five to twelve inches long, and from one-third to one-half inches wide, margins rough, very smooth beneath, slightly hirsute above; spikes six to twelve inches long, erect; spikelets on opposite sides of a jointed and channelled rachis, pubescent on the margin, erect, from four to eight flowered, lower or sterile glumes acute or short-awned, prominently five to seven nervèd, flowering glumes smooth, palet acute or somewhat rounded, smooth or slightly pubescent.

HISTORY AND DISTRIBUTION.

Quack grass has long been known as a troublesome weed in Europe and eastern North America, and has probably been common in the eastern part of the United States for a century. According to Flueckiger and Hanbury, the ancients were familiar with several grasses, and among them the common quack grass was well known. It was first described by Linnaeus, the botanist, as Triticum repens.

1. Sp. pl. 86, 1753.
thus placing it with the wheat. Beauvois,2 however, in 1812 transferred it to the genus
Agropyron, which was established by Gaertner3 in 1770.

This grass is common and widely distributed from Manitoba, Minnesota, and western Iowa to Arkansas and Texas. In the state of Iowa it has been found and reported in the following localities:
Afton Junction, Ames, Armstrong, Iowa and Minnesota line near
Ceylon, Elmore, Hamilton county, Hampton, Harcourt, Keokuk,
Mason City, Nora Springs, Ontario, and Pilot Mound. Common
especially in the loess soil from Carroll to Lyon county eastward.
It is found extensively along railroads. It is found especially in
northern Iowa from the Mississippi to the Missouri rivers.

The rootstocks of quack grass are used as medicine for the mucous

\begin{figure}
\centering
\includegraphics[width=\textwidth]{quack_grass.png}
\caption{Quack Grass (\textit{Agropyron repens} Beauv.). (a) spikelet; (b) parts of
spikelet displayed; (2) empty glumes. (Div. of Agros. U. S. Dept. Agrl.)}
\end{figure}

2. Aerost. 146, 1812.
discharge from the bladder. They also contain about three per cent of sugar and from seven to eight per cent of triticin.4

The rootstock contains, in addition, other gummy matter and some mannite.

WEEDY NATURE OF THE PLANT.

It has been regarded as a troublesome weed in many of the European countries. Many agricultural books and popular botanies of Europe mention it as a plant of weedy nature, and the same is true of the botanies and floras of eastern North America. During the past few seasons many requests have come from northern and northeastern Iowa with reference to quack grass. The following extracts taken from these letters indicate the seriousness of the pest:

Mr. W. H. Franke of Elmore, Minn., says: "Quack Grass is crowding on here quite fast."

A correspondent of Wallaces' Farmer says: "Please advise me through your paper if Quack Grass would make good pasture; if pastured out, is there any danger of its spreading over the farm?"

Mr. I. N. Drake of Hartley, Iowa, says: "I write to ascertain what can be done to kill Quack Grass. I believe it will gradually take this country. Many of the farmers do not realize what damage this grass is doing to the country."

J. S. Carr, Clear Lake, writes: "Can you send me information regarding the extermination of the Quack Grass? It is quite prevalent in this part of the state."

Mr. C. S. Allen of Laurens, Iowa, says: "We have a farm that has probably from 10 to 20 acres of Quack Grass started on it, and we are unable to get our tenants to destroy or kill it out. We would like to know if you have had any experience with this grass and what is the best plan to kill it out and destroy it."

Mr. C. E. Legg of Pontiac, Ill., writes as follows: "I have some

4. Pharmacographia, 729.

Formula—C12H22O11, a tasteless gummy substance which is easily transformed into sugar when kept at the temperature of 100 degrees C.
land in Northern Iowa on which there has lately started a grass, which the people in that part of the country call Quack Grass. It is spreading very rapidly, and I would be greatly obliged if you can give me some information as to the best method of getting rid of it. Enclosed find sample of grass."

These letters indicate how widespread this grass is in northern Iowa, and with what apprehension it is regarded.

The following note in response to urgent requests to give information on its pestiferous character was published in Wallace's Farmer:

Quack Grass may be recognized by its long, running, rootstocks; stems from one to three feet high, rather broad, smooth leaves, with numerous spikelets, from four to eight flowers in each spikelet. Spikes three to ten inches long. Quack Grass is a naturalized weed in many sections of this country. It is native to Europe, but is common in the Eastern states. Recently, while on a trip in Minnesota, the writer observed that this weed was extremely common on railway embankments, in fields and waste places. It is also abundant in the vicinity of La Crosse, Wisconsin, and other portions of that section of the state. I recall one particularly locality where a few years ago there was an area covered by it not much larger than a quarter of an acre; it now extends over fifteen or twenty acres. I notice also in the vicinity of Ames that the weed is spreading to the cultivated fields.

Quack grass has been condemned and commended by agricultural writers. Prof. Lamson-Scribner,1 in his book on the "Grasses of Tennessee," says:

Sparingly introduced in cultivated grounds. In some parts of the eastern and middle states it is abundant in open fields. It is a good grass for hay, but its strong creeping rhizomes, which spread rapidly in all directions, render it one of the worst weeds in cultivated lands, hardly less difficult to eradicate than Johnson Grass.

QUACK GRASS AS A FORAGE PLANT.

Quack grass has merit as a forage plant, but one should decide whether he desires to use his field for alternate husbandry or as a permanent meadow. If the former is desired, then quack grass has no merit whatever. It must be treated as a weed. If, however, the field is to be used for a pasture over a long period of years, then quack grass as a forage plant has some merit. The chemical analyses of quack grass, as determined by Dr. Weems, show the following composition, to which we append some analyses from other sources:

CHEMICAL COMPOSITION OF QUACK GRASS IN IOWA.

Sample 1.	Gathered April 18, 1896; height, 4 to 8 inches.
Sample 2.	Gathered May 6, 1896; height, 16 to 24 inches.
Sample 4.	Gathered June 1, 1896; height, 26 to 28 inches.
Sample 5.	Gathered June 15, 1896; height, 26 to 28 inches.

NATURAL CONDITION.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Water</th>
<th>Fat</th>
<th>Protein</th>
<th>Albuminoids</th>
<th>Crude Fiber</th>
<th>Ash</th>
<th>Nitrogen free Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>73.96</td>
<td>1.15</td>
<td>5.13</td>
<td>(4.57)</td>
<td>6.13</td>
<td>3.14</td>
<td>10.49</td>
</tr>
<tr>
<td>2</td>
<td>79.06</td>
<td>.81</td>
<td>4.41</td>
<td>(2.47)</td>
<td>5.66</td>
<td>3.11</td>
<td>6.95</td>
</tr>
<tr>
<td>3</td>
<td>79.56</td>
<td>1.51</td>
<td>4.64</td>
<td>(2.11)</td>
<td>4.96</td>
<td>2.09</td>
<td>7.24</td>
</tr>
<tr>
<td>4</td>
<td>75.84</td>
<td>1.47</td>
<td>4.23</td>
<td>(2.04)</td>
<td>6.68</td>
<td>2.66</td>
<td>9.12</td>
</tr>
<tr>
<td>5</td>
<td>80.56</td>
<td>1.28</td>
<td>1.35</td>
<td>(1.32)</td>
<td>5.05</td>
<td>2.12</td>
<td>9.64</td>
</tr>
</tbody>
</table>

WATER FREE SUBSTANCE.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Water</th>
<th>Fat</th>
<th>Protein</th>
<th>Crude Fiber</th>
<th>Ash</th>
<th>Nitrogen free Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.41</td>
<td>19.70 (17.57)</td>
<td>23.55</td>
<td>12.08</td>
<td>40.26</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.86</td>
<td>21.06 (11.80)</td>
<td>27.12</td>
<td>14.84</td>
<td>32.12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.37</td>
<td>22.71 (10.34)</td>
<td>24.48</td>
<td>10.24</td>
<td>35.40</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.08</td>
<td>17.52 (8.44)</td>
<td>27.56</td>
<td>11.00</td>
<td>37.84</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.59</td>
<td>6.96 (6.80)</td>
<td>25.97</td>
<td>10.93</td>
<td>45.55</td>
<td></td>
</tr>
</tbody>
</table>

CHEMICAL COMPOSITION OF QUACK GRASS FROM OTHER SOURCES.

<table>
<thead>
<tr>
<th>Sample 1, cut June 23</th>
<th>Water</th>
<th>Fat</th>
<th>Protein</th>
<th>Crude Fiber</th>
<th>Ash</th>
<th>Nitrogen free Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.30</td>
<td>1.40</td>
<td>3.67</td>
<td>8.22</td>
<td>3.65</td>
<td>24.76</td>
<td></td>
</tr>
<tr>
<td>Sample 2, time of cutting unknown, S. Dak. (2)</td>
<td>57.62</td>
<td>1.45</td>
<td>3.31</td>
<td>16.20</td>
<td>1.88</td>
<td>19.44</td>
</tr>
<tr>
<td>Sample 3, cut June 29, 1891, just coming in bloom</td>
<td>7.00</td>
<td>1.93</td>
<td>9.22</td>
<td>33.02</td>
<td>6.93</td>
<td>41.90</td>
</tr>
</tbody>
</table>

WATER FREE SUBSTANCE.

<table>
<thead>
<tr>
<th>Sample 1</th>
<th>Water</th>
<th>Fat</th>
<th>Protein</th>
<th>Crude Fiber</th>
<th>Ash</th>
<th>Nitrogen free Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.40</td>
<td>8.80</td>
<td>19.70</td>
<td>8.80</td>
<td>59.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td>3.40</td>
<td>7.80</td>
<td>35.50</td>
<td>4.50</td>
<td>45.90</td>
<td></td>
</tr>
<tr>
<td>Sample 3</td>
<td>2.07</td>
<td>9.91</td>
<td>35.51</td>
<td>7.45</td>
<td>45.05</td>
<td></td>
</tr>
</tbody>
</table>

Quack grass is therefore not only nutritious (not as much so, however, as the western wheat grass), but palatable as well. One factor, however, should be taken into consideration, namely, that the grass becomes sod-bound; and in order to renew the same it is occasionally necessary to run over the field with a disc harrow.

METHOD OF EXTERMINATION.

The grass can be exterminated by proper methods of culture. Some years ago an experiment was tried in the extermination of this grass on a portion of the college campus on an area of about one hundred by sixty feet. The writer found it was much easier to exterminate quack grass than horse radish. The field was plowed early in the spring, the season being a dry one; the crop was then given a harrowing, thus exposing all the root stocks, or as many as possible. The field was given a vigorous hoeing every time that the grass appeared. Of course, it must be admitted that the dry season favored the destruction of the plant. It is necessary to observe the precaution, however, that none of the leaves be allowed to appear. The rootstock consists of a series of joints, at the nodes of which little scales occur.
Wherever there is a node a new plant will form. It will be seen, therefore, that it is essential to remove as many rootstocks as possible. Mr. Henry Hatch\(^2\) says:

This grass grows from the roots as well as from the seed, and as the roots get a start very quickly in wet weather they should be disturbed only during a dry spell. No matter how small or short the root may be, it is sure to grow if torn loose from the parent plant and deposited in moist soil. Plow the field rather shallow, then harrow it thoroughly with a common lever harrow or a spring tooth till if one is handy. This will then leave a large share of the roots lying on the surface, and after a few drying days they can be raked into windrows and burned. If the work does not seem to be through in the spring, plow again and a little deeper than before, then harrow, rake and burn as before. Probably a few roots will escape and possibly a few seeds will yet be in the soil, so, if it can be done, some cultivated crop had better be grown in the field following this treatment, and all plants that survive cultivation be destroyed with hoes. This grass is as hard to destroy as almost anything that grows, and the only way to do it is to take everything out of the soil in the way of roots, seeds, etc., and completely destroy them by burning or rotting away in a pile.

Mr. V. E. Strayer of Fayette county, Iowa, has found a successful method of eradicating this grass. He describes it as follows in Wallace's Farmer:

Plow the ground very shallow early in the spring, then harrow until perfectly level, let it lie until about the 25th of June, when the quack grass and other weeds will have reached a large growth. Take three good horses and a sixteen-inch walking plow, and turn the ground over, plowing as deep as possible, using a heavy log chain attached to plow and whiffletree to pull the growth of vegetation into the furrow, so that it will be completely covered. Sow with buckwheat, and harrow lightly with slanting-tooth drag; harrow around the field, in the same direction in which it was plowed, so as not to uncover any of the vegetation that has been turned under or bring any of the quack grass roots to the surface. If the above treatment of ground that is infested with quack grass is carried out, little if any of the weed will be left, and the crop of buckwheat will more than pay for the trouble.

In answer to a query in Wallace's Farmer,\(^3\) the writer made the following statement:

The grass can be exterminated by proper methods of culture and treatment. For the extermination of quack grass the field should be plowed, the rootstocks exposed to the sun by giving the field a thorough harrowing, removed and burned. We should also remember that every severed rootstock of quack grass will give rise to a new plant, hence the importance of having these removed and the importance of preventing the leaves from appearing, as the latter furnish sustenance to the plant. This process of removal must be continued as long as quack grass appears. Various chemical substances have been recommended for its extermination, but, so far as I know, none of these are as successful as the hoe and the cultivator. I am positive that if the

\(^2\) Mr. Henry Hatch. Prairie Farmer, April 13, 1901.

\(^3\) Wallace's Farmer, October 2, 1903.
suggestions recommended are carried out the quack grass may be ex¬
terminated. I have seen it done on the College farm and elsewhere.

QUACK GRASS AS A SOIL BINDER.

Quack grass has frequently been recommended as a soil binder, not
only where the soil is subject to washouts, as in gulleys and ditches,
but also on railroad embankments. The persistent rootstocks make
this grass an excellent one for this purpose. It has been used to
advantage in parts of Wisconsin for this purpose where washouts are

Fig. 2—False Quack or Couch Grass (*Agropyron pseudo-repens*). (a) empty
glumes; (b) flowering glumes with flowers. (Div. Agros. U. S. Dept. Agri.)
frequent. We believe there is no better grass than quack grass as a soil binder.

Experiments made here at Ames show that it is an excellent grass for railroad embankments. Succeeding well on the sunny as well as on the shady slopes. This subject, however, is treated more in detail in another part of this bulletin.

FALSE QUACK GRASS, AGROPYRON PSEUDO-REPENS.4

This species is quite distinct from the common quack grass. It is widely distributed and referred to by botanists from the states west of the Mississippi river to the Pacific coast.

DESCRIPTION.

False quack grass is an erect rather stout perennial, one and one-half to four and one-half feet, from running rootstocks, with flat, scabrous leaves, and erect spikes four to eight inches long. Spikelets five to eight lines long, three to seven flowered, with linear-lanceolate, nearly equal and five-nerved empty glumes, with acuminate or awn-pointed flowering glumes.

FORAGE VALUE.

False quack grass is an excellent forage grass, being as valuable as the western wheat grass. It is not so tenacious, and is, therefore, much more desirable. Stock of all kinds eat this grass with avidity. Professor Williams5 comments as follows on this grass:

These grasses are very generally distributed over this region, and grown naturally on a variety of soils. All respond readily to cultivation. Usually all that is necessary to convert a piece of good sage brush or valley land into wheat grass meadow is to clear off the brush and large stones, keep off the stock, and water the land. The grasses will soon take complete possession. On nearly every well-kept ranch in the eastern Rocky mountain region can be seen fine natural meadows made in this manner.

WESTERN WHEAT GRASS, AGROPYRON OCCIDENTALE.

Agropyron occidentale, which has been variously referred to by American botanists, is closely related to quack grass, Agropyron repens; indeed, it was for long considered a variety of the latter.6

Scribner and Smith7 thought that this species was described by Pursh.

The name \textit{Agropyron spicatum} was adopted by Nash.8

The name \textit{Agropyron spicatum}, used by Scribner and Smith,9 is now also used by Shear and other agrostologists.

8 Britton's Manual, 154.

DESCRIPTION.

Western wheat grass is an erect, smooth, glaucus or pale green perennial, from sixteen inches to four feet tall; with long, slender, creeping rootstocks; leaves smooth, four to eight inches long, acuminate pointed sterile glumes somewhat shorter than the spikelet, hispidulous and with a serrate margin; keel pubescent flowering glume nearly one-half inch long, generally awned or acute, seven-nerved; palet pubescent, keel awnless. This species differs from *Agropyron repens* in its more numerous flowers to the spikelet and larger glumes and compressed ascending spikelets.

FORAGE VALUE.

This wheat grass has been cultivated on the college grounds since the organization of the station. Mr. R. P. Speer, the first director of the Experiment Station, set out a considerable area of this grass from seed obtained from Montana and the Northwest. The grass proved not only hardy, but gave splendid returns. Since then the writer has had this grass under observation, and can say that it is a promising species and well adapted to certain sections of the state.

During the season of 1900 it measured two feet and three inches; usually, however, it is from one and one-half to two feet high. It produces an abundance of leaves. The grass does not produce so large a bulk as timothy and slender wheat grass or brome grass. "A pound of western wheat grass contains more nutrient material than either blue grass or timothy. It stands drouth in a remarkable manner; the leaves and stems are bright and green during the driest weather." This grass is especially well adapted to drier soils. The loess soils of western Iowa are well suited to it, and so are the sandy soils in the Muscatine Islands, and the gravely knolls in the drift area of the state.

This grass has been cultivated on the college farm in an experimental way since 1889, both in plats and in rows. Even in one season from the seed the grass will produce a fair crop of hay of the best quality. In no instance has this grass given trouble after it was desired to cultivate the field. In one instance a row was planted across a ten-acre field, but one season’s thorough cultivation removed all vestige of this grass; and at other points where it has been planted the grass has been entirely removed. While it is true that it produces the same kind of rootstock as the quack grass, it is easier destroyed in

this humid climate than quack grass, unless it should develop characteristics more like this grass.

In 1900 Mr. W. N. Greenman sent to Professor C. F. Curtiss a grass that he found growing in the dryest kind of soil along the embankment of the C., R. I. & P. railway near Fruitland on Muscatine Island. The grass appeared so thrifty during the dry weather that he was desirous of knowing the name and whether it was of any value for forage purposes.

In response to this query, I suggested that the same be planted on the island; that it would prove a valuable forage plant under the conditions existing there. Later I received a communication from Mr. R. T. Hummel of the island, who had seen the grass growing in an experimental way by Mr. Greenman. I suggested to Mr. Hummel also the use of this grass for forage purposes on the island.

In a recent visit to the Island, I found that the grass grown by Mr. Greenman was doing admirably, and that he expected from 2 to 3 tons per acre when the seasons are favorable. With the dry seasons the yield would probably not be more than a ton or a ton and a half per acre. He states further that he has no difficulty in keeping a good stand by running a disc harrow through his pasture, but he has experienced a little difficulty from obtaining seeds from his plant.

The Division of Agrostology, U. S. Department of Agriculture, through the efforts of Mr. Hummel, has distributed some seed among the farmers on the island. In my judgment, this is one of the best grasses for the island and will greatly help the people of the island.

Where this grass is used for meadow purposes, it becomes sod-bound. It has been found in the Dakotas and Montana, and even here in Iowa where it has been cultivated after three or four cuttings the yield diminishes greatly, and to obviate this difficulty the meadow is dragged over with a sharp-toothed harrow, or occasionally disced. This breaks up the small rootstocks and gives the plant greater vigor. Every severed rootstock of the root makes a new plant. This grass will be found highly useful on the loess soils along the Missouri river and other sterile soils in different sections of the state. In a recent bulletin of the Nebraska Agricultural Station Professors Hitchcock and Lyon\(^\text{11}\) speak as follows concerning this grass:

Western Wheat Grass (\textit{Agropyron occidentale}) is a common grass in the western portion of the Great Plains, extending into the mountains. It propagates by stout creeping rootstocks, but does not form a close sod. In the west, from Colorado to Montana, it is called Bluestem, Colorado bluestem, or Colorado grass, and forms the bulk of the native hay of this region. It grows on bench land and though the yield per acre is not large, yet it furnishes more hay than any other common

\(^{11}\) Bull. 84 Neb. Agrl. Exp. Sta. 37.
grass of this region. The foliage is stiff and harsh, but the quality of
the hay is good and it is eaten by stock.

The trials on the Station plats were satisfactory. Where a good
stand was obtained, the plant showed that it could withstand drouth
and produce a good crop of hay. One plat of one-fifth acre, sown in
1901, and, on account of the poor stand, resown the following year, pro-
duced June 23, 1903, 457 pounds of hay, or at the rate of 2,485 pounds
per acre.

The writer12 made this statement:

This is in fact one of the most promising of our native hay grasses.
The seed is produced in abundance and is easily gathered. Experi-
ments at stations in the arid regions have usually given good reports.

Dr. Kennedy13 says:

While it does not produce as much hay to the acre as some other
species, stockmen value it highly for its nutritive qualities. In Mont-
tana and the neighboring states it furnishes a considerable amount of
native hay and pasturage and is there regarded as one of the most im-
portant forage plants. This grass would make an excellent hay, and
should be introduced into cultivation.

Professor Thomas A. Williams,14 in speaking of this grass, says:

Western Wheat Grass is usually more abundant than either of the
other sorts, and it is not an uncommon thing to see a meadow of 40,
80, or more acres composed almost exclusively of this grass. Without
irrigation it is rarely possible to cut more than one crop in two years,
as the grass requires time to recuperate. Even with irrigation it is
seldom possible to obtain good crops for many consecutive years with-
out cutting up the sod to overcome its “hidebound” condition and give
opportunity for the growth of new shoots. Under favorable conditions,
however, these meadows may yield good crops for a number of years
with nothing more than proper watering. Mr. Griffiths reports seeing
a meadow of about 40 acres in the past season, near Snoma, S. Dak.,
yielding a crop of about two tons of hay per acre, which had afforded a
good crop for five consecutive seasons.

Mr. Elias Nelson15 speaks of its valuable qualities as a forage plant,
as follows:

This Wheat Grass is highly esteemed by our stockmen both for
pasture and for hay. As a pasture grass it is of considerable im-
portance in this state on account of its drouth-resisting qualities and
great abundance. Some stockmen have succeeded in materially in-
creasing the forage value of their grazing land by gathering and scat-
tering seed of this grass over worn spots in pastures.

Professor Aven Nelson, in speaking of the grasses of the drier
regions, mentions as especially worthy the wheat grasses because they
produce a forage of great value, and they have a dual purpose; that
is, they may be used for pasture as well as for meadow purposes.
The western wheat grass is one of the most valuable native grasses

12 Bull. Iowa Geological Sur., Grasses of Iowa, 1:372.
of the Missouri river region, not only for hay, but also as a pasture grass. According to Dr. Weems, the chemical analyses of the grass is as follows:

CHEMICAL COMPOSITION.

Sample 1. June 10, 1896; wild along railroad, 30 to 32 inches high.
Sample 2. June 20, 1896; 32 to 34 inches high.

NATURAL CONDITION.

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Fat</th>
<th>Protein</th>
<th>Albuminoids</th>
<th>Crude Fiber</th>
<th>Ash</th>
<th>Nitrogenfree Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>62.64</td>
<td>1.76</td>
<td>4.56</td>
<td>(3.80)</td>
<td>10.91</td>
<td>3.34</td>
<td>16.79</td>
</tr>
<tr>
<td>Sample 2</td>
<td>64.63</td>
<td>.83</td>
<td>3.52</td>
<td>(3.07)</td>
<td>12.07</td>
<td>2.74</td>
<td>16.11</td>
</tr>
<tr>
<td></td>
<td>WATER FREE SUBSTANCE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.34</td>
<td>(8.69)</td>
<td>34.14</td>
<td>7.76</td>
<td>45.82</td>
</tr>
</tbody>
</table>

WESTERN WHEAT GRASS FOR RAILROAD EMBANKMENTS.

Western wheat grass has been widely established in different places in Iowa and elsewhere along railroad embankments. Its glaucus green appearance makes it easily recognizable from a distance. It has established itself along the highest and driest places, spreading along the high inclines in a most satisfactory way.

Several years ago an experiment was conducted along the right-of-way of the Chicago & Northwestern railroad, the rootstocks of this grass being used and also a sod four inches wide. The sod was planted in the fall on the sunny side of the railroad embankment and came through the winter in good shape. The small rootstocks also readily spread from the places where they were planted on the bank. As it is an easy matter to obtain this seed, and as the same germinates readily, the most feasible way to use western wheat grass for planting along railroad embankments is to sow the seed in the fall at the rate of forty-five pounds per acre.

SLENDER WHEAT GRASS, AGROPYRON TENERUM. VASEY.

HISTORY.

Slender wheat grass, *Agropyron tenerum*, was described by Vasey. Most American agrostologists and botanists have recognized it as a good species.

Slender wheat grass is an erect, caespitose, rather stout, smooth perennial, from three to four and one-half feet high with narrow,

flat leaves, and slender cylindrical spikes from four to seven and one-half inches long. Outer glumes five-nerved, hirsute; flowering glumes lanceolate four to five lines long, less hispid than the outer glumes, tipped with a straight, stiff awn from one-half to two lines long.

Distribution.

The slender wheat grass, though not a native of many parts of this state, originally found in northern and northwestern Iowa, has now been naturalized in many places, as in eastern and central Iowa.

![Hay stack of Slender Wheat Grass in Dakota. (L. H. Pammel, Photograph.]

This perennial grass produces an abundance of soft leaves and stems greatly relished by stock. It has been under cultivation at Ames with remarkable success. It starts early in the spring, surpassing blue grass, especially in its rapid growth and maturity. It is a deservedly popular grass in the Rocky Mountain region.

Forage Value.

This grass has received some attention because of its value for forage purposes. The writer saw a field of considerable size in the
vicinity of Fargo, North Dakota. The yield was not only excellent, but it produced hay of the best quality. It is likewise highly commended in other sections of the Dakotas.

Professor T. A. Williams, speaking of this grass, says:

This is one of the best wheat-grasses. It is not so aggressive as some of the other species, as it does not spread by means of underground stems. It responds quickly to cultivation and gives heavy yields of first-class hay. It should receive more attention from farmers and stock raisers.

Dr. P. Beveridge Kennedy, from the results of a large number of co-operative experiments with the Department of Agriculture, states:

It forms a close, uniform growth that yields as much per acre as an average field of timothy. Considering its high nutritive value no more profitable grass could be found for dry regions, especially on saline soils.

The United States Department of Agriculture sent out numerous packages of seeds, and from ten different states received very favorable reports from Colorado to South Dakota. Professor Aven Nelson, speaking of the value of this grass says:

It makes a meager growth in dry, sterile soil, but responds promptly to all cultural advantages even in soil that is somewhat impregnated with alkali, yielding as much per acre as the average yields of timothy.

Mr. Elias Nelson states:

The hay was not relished by the station horses accustomed to hay ration of alfalfa.

Professors Hitchcock and T. L. Lyon find that in Nebraska it succeeds well. They refer to its value especially for the northern states. The seeding habits of this grass are good, and it gives promise for meeting the requirements of a hay grass for the northwest.

From various experiments it seems certain that the best quality of hay can be obtained when it is coming into bloom, and from our own experience in this state and elsewhere we can recommend this grass for the northwestern sections of the state.

CHEMICAL ANALYSES.

The chemical analysis of slender wheat grass, as given by Professor Shephard,9 is as follows:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Air Dry Substance</th>
<th>Water Free Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>8.37</td>
<td>8.76</td>
</tr>
<tr>
<td>Ether Extract</td>
<td>2.90</td>
<td>3.00</td>
</tr>
<tr>
<td>Crude Fiber</td>
<td>30.61</td>
<td>32.00</td>
</tr>
<tr>
<td>Crude Protein</td>
<td>9.56</td>
<td>10.01</td>
</tr>
<tr>
<td>N.-free Extract</td>
<td>44.06</td>
<td>46.23</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1.53</td>
<td>1.60</td>
</tr>
<tr>
<td>Albuminoid Nitrogen</td>
<td>1.38</td>
<td>1.44</td>
</tr>
</tbody>
</table>

In dry soils throughout the Northwest it does well under cultivation, giving nearly as large yields as the Grima Grass. It is a close relative of the wheat and is more subject to red and black rust than wheat. The hay is high in nutriments according to the analysis. The hay was gathered from the Station plats, which were sown with seed obtained from the Experiment Station at Brandon, Manitoba.

SEEDING.

The best success will be obtained by sowing early in the spring or early in September. The ground should be in a good stage of tilth. It should be sown at the rate of forty pounds per acre. The seed may be obtained from several dealers in the northern states.

RICHARDSON'S WHEAT GRASS, AGROPYRON RICHARDSONI. SCHRAD.

HISTORY.

The Richardson wheat grass was described by Schrader in 1838. It has been known to American agrostologists for a long time under various names, such as *Agropyron unilaterale*, Cassidy,1 and was referred to as *Agropyron caninum*,2 but it is clearly distinguished from this species which we have described in another part of the bulletin; and Beal3 refers to this species as *Agropyron violacescens* (R. Pond).4 four feet high with somewhat roughened pointed involute leaves,5

DESCRIPTION.

Agropyron Richardsoni is an erect smooth perennial from three to four feet high with somewhat roughened pointed involute leaves,5

the erect usually one-sided bearded spikes fourteen to twenty inches long. Spikelets three to four-flowered; the outer glumes awned, hispidulous and roughened; flowering glumes hispidulous and roughened; long awned.

Fig. 6—Awned Wheat Grass (*Agropyron caninum*). (a) empty glumes; (b) flowering glume. (Charlotte M. King.)

DISTRIBUTION.

Native only to northwestern Iowa, occasionally naturalized farther eastward.

FORAGE VALUE.

Richardson's wheat grass is not as valuable as the slender wheat grass, though it has merit in places where it occurs in natural meadows. It should be said that this grass makes a leafy growth, the plants heading out rather late, maturing, therefore, later than slender wheat grass.
HISTORY.

This has been known to European botanists since early in the last century. It is undoubtedly closely related to Richardson's wheat grass.

DESCRIPTION.

Awned wheat grass is a slender perennial grass from one to three feet high without creeping rootstocks. Sheaths smooth; or the lower hairy, slender, flat leaves pubescent above, smooth below; the nodding spikes three to six inches long. Spikelets three to six-flowered, rather
distant; outer glumes acute or long-awned, five-nerved, flowering glumes long-awned.

DISTRIBUTION.

Common in the north, but in Iowa occurring only in northwestern section of the state. From New Brunswick, Saskatchewan, and British Columbia, south to Colorado; south through New England and middle states and west to Nevada and Wyoming.

FORAGE VALUE.

As a forage plant it has about the same value as the Richardson’s wheat grass.
SOIL BINDING GRASSES.

BY L. H. PAMMEL.

After a discussion of quack and wheat grasses it seems appropriate to consider the above subject, which is more or less intimately connected in the interior of our country with these grasses. Queries have frequently come to this section with reference to this matter, especially how to hold soils that are badly washed or gullied. The request has also come for information in regard to the large “fills” made by railroads to improve and better road beds. By making these “fills” heavy grades are avoided. Much of the soil in these “fills” is annually washed by our heavy rains, making it a matter of considerable expense to the railroads to replace the soil washed away by the rains.

HISTORY.

Much has been written on the subject, especially as it applies to the holding of shifting sands on the sea coast or larger lakes and the sand dunes in the interior of continents. Prof. F. Lamson-Scribner in an excellent popular treatise has given an account of the main facts pertaining to the subject, especially the grasses serviceable for the purpose.

Paul Gerhardt, of Germany, has published a book in which detailed accounts are given of the sand dunes of Germany. H. C. Cowles made a detailed study of the sand dunes of Lake Michigan. It is by far the best and most detailed of the ecological studies made on the subject in America. More recently the Division of Agrostology of the United States Department of Agriculture has taken up the matter of studying the sand dunes. Two papers have been published by the division, one by Prof. A. S. Hitchcock, entitled “Methods Used for Controlling and Reclaiming Sand Dunes.” Professor Hitchcock was sent by the government to study the methods used in Europe to find out how far those methods might be applicable to America. Mr. Westgate, assistant in the same division, in addition to his work on the Cape Cod region, where the government and the state of Massachusetts have spent large sums of money to protect the harbor,

is also studying the sand dunes in the interior of the country. In his paper on "The Reclamation of Cape Cod Sand Dunes" he treats not only the ecological phases, but the practical side of the question.4

QUACK GRASS AND WESTERN WHEAT GRASS AS SOIL BINDERS.

Fig. 8—Planting Quack Grass and Blue Grass on the grade of the C. & N. W. Railroad between Ames and Ontario. (Miss Barber, Photograph.)

Quack grass has been recommended as a soil binder for railroad embankments. The writer undertook an experiment in co-operation with the Chicago & Northwestern Railway Company to determine whether it would be possible to utilize this grass for such purposes. The point selected was a high "fill" between the city of Ames and Ontario. The first experiment consisted in collecting the rootstocks in the spring and planting them in rows run up and down the embankment. The first season the plants made very little growth. The second season they spread considerably. The plant makes much more satisfactory progress if planted on the north side than on the south; the western wheat grass is much better suited to such situations. This method is not economical, as it is a matter of considerable expense to plant the high "fills" in this way.

In the experiment undertaken we also used timothy, Hungarian

brome grass (*Bromus inermis*), Canadian blue grass (*Poa compressa*), sheep's fescue (*Festuca ovina*), blue grass (*Poa pratensis*), western wheat grass (*Agropyron occidentale*), *Bromus marginatus*, orchard grass (*Dutchis glomerata*), a sedge (*Carex*) growing on the edge of the “fill,” and red and white clover. It was not difficult to get a stand of the red and white clover. In fact, on the north side of the track the plant blossomed very well by the end of the season, but the cold weather destroyed many of the plants. Some, however, remained, and by sowing an additional quantity of red and white clover seed in the spring of 1904 we had an excellent stand on the north side of the track. On the south side it was difficult to get a start owing to the dryness of the soil. The Hungarian brome grass, which was sown just as the other grasses were, made an excellent start on the north side, and here and there a patch on the south side.

The sod material, obtained from Brookings, South Dakota, through the kindness of Prof. James Wilson, planted in the fall, came through the winter well and made an excellent growth. It is much more economical, however, to sow the brome grass seed late in the fall or very early in the spring.

The sedge was a total failure. The intense heat and dryness made it impossible for this plant to get a good start. The orchard grass grew well on the north slope but its habit of growth makes it undesirable. Blue grass was nearly a failure on the south slope, but succeeded much better on the north and shady slope.

From our experience we would advise the planting of brome grass and blue grass upon the north side of the track, and if properly handled this will make a good sod in the course of a few years, but the young plants should be protected with red and white clover. On the south side of the track we would advise the planting of western wheat grass and some Canadian blue grass.

Objection may be raised on the use of quack grass for this purpose, as it is likely to spread to the adjoining fields. This, of course, is true, and must be carefully considered by the railroad companies. The same objection from our experience does not apply to western wheat grass, which is naturalized at many points along our railroads. It succeeds well on the sunny side and may be destroyed much more easily than quack grass.

An important point in connection with this work is the matter of starting the grass. The sod or rootstock method of planting is rather laborious and expensive. The seed of Hungarian brome grass is on the market, while the western wheat grass seeds abundantly and it may be obtained in the market or arrangements can be made to collect it in the west.
HOLDING OF GULLIES.

As to the matter of protecting gullies or washouts in fields, there is no better grass than quack grass. This land is all waste and is of no use agriculturally. The best way to treat such places is to sow thickly with quack grass and re-enforce the banks with willow plantings. If this is not done more and more agricultural land will be consumed. This subject should be treated more at length at some future time by the botanical and forestry sections of the station.

HOLDING OF SHIFTING SANDS.

There are a few sand dunes in the state. Most of these are found in the eastern part of the state along the Mississippi river. Some complaint has been made by Muscatine Island farmers on the drifting sands of the islands. Through cultivation the native vegetation has been to a large extent removed. These “billows” of sand move and spread over the adjoining fields. Agriculturally these billows are worth but little. They are a menace to the better adjacent fields. These sands contain the following native plants: A species of sedge
(Carex Schweinitzii), bur grass (Cenchrus tribuloides), Polygonum tenue, Commelina Virginica Breweria Pickeringii, Ceanothus ovatus, Bouteloua hirsuta, Sporobolus cryptandrus. The open drifting sands should be planted with sand grass (Calamovilfa longifolia), which succeeds admirably in such places. The heavier soil covered with native plants and a little grass should be planted with western wheat grass. This succeeds well in poor soil. In time the whole will be redeemed to agriculture.
Index to Vol. VII.

A

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acclimation test</td>
<td>276-284</td>
</tr>
<tr>
<td>Cattle used in</td>
<td>276-277</td>
</tr>
<tr>
<td>Conclusion concerning</td>
<td>283</td>
</tr>
<tr>
<td>Duration of</td>
<td>277</td>
</tr>
<tr>
<td>Reasons for</td>
<td>276</td>
</tr>
<tr>
<td>Results of</td>
<td>281-283</td>
</tr>
<tr>
<td>Aeolian Soils</td>
<td>377</td>
</tr>
<tr>
<td>Agrostology, Division of</td>
<td>398, 403, 407, 410, 415, 417</td>
</tr>
<tr>
<td>Agropyron caninum</td>
<td>404, 407, 410, 419</td>
</tr>
<tr>
<td>Agropyron pseudo-repens</td>
<td>404</td>
</tr>
<tr>
<td>Agropyron repens</td>
<td>397, 404, 406, 410</td>
</tr>
<tr>
<td>Agropyron Richardsoni</td>
<td>413, 414</td>
</tr>
<tr>
<td>Agropyron teneram</td>
<td>413</td>
</tr>
<tr>
<td>Agropyron spicatum</td>
<td>409, 413</td>
</tr>
<tr>
<td>Agropyron unilaterale</td>
<td>413</td>
</tr>
<tr>
<td>Agropyron violascens</td>
<td>415</td>
</tr>
<tr>
<td>Alluvium Soils</td>
<td>375</td>
</tr>
<tr>
<td>Analysis of corn feeds</td>
<td>304</td>
</tr>
<tr>
<td>Storage, loss of</td>
<td>37</td>
</tr>
<tr>
<td>Trees in 1890 and 1900 in Iowa</td>
<td>32</td>
</tr>
<tr>
<td>Analysis of corn samples</td>
<td>119, 125, 126</td>
</tr>
<tr>
<td>Animal Husbandry Section, Experiments under supervision of</td>
<td>117, 226, 337</td>
</tr>
<tr>
<td>Apples, Cold storage of</td>
<td>34</td>
</tr>
<tr>
<td>Comparison of quality</td>
<td>34</td>
</tr>
<tr>
<td>Distribution by counties</td>
<td>33</td>
</tr>
<tr>
<td>Eastern</td>
<td>34</td>
</tr>
<tr>
<td>Handling of</td>
<td>35</td>
</tr>
<tr>
<td>Harvesting of</td>
<td>35</td>
</tr>
<tr>
<td>Importance of planting good keeping varieties of</td>
<td>32</td>
</tr>
<tr>
<td>Methods of storing</td>
<td>36</td>
</tr>
<tr>
<td>Packing</td>
<td>37</td>
</tr>
<tr>
<td>Production of in 1889-1899</td>
<td>32</td>
</tr>
<tr>
<td>Quantity of, grown in Iowa</td>
<td>32</td>
</tr>
<tr>
<td>Status of, in Iowa</td>
<td>32</td>
</tr>
<tr>
<td>Storage houses in Iowa</td>
<td>35</td>
</tr>
<tr>
<td>Wrapping of</td>
<td>36</td>
</tr>
<tr>
<td>Apples, Keeping qualities of</td>
<td>39</td>
</tr>
<tr>
<td>Varieties in storage</td>
<td>41-42</td>
</tr>
<tr>
<td>Armour and Co. purchasers of Cattle</td>
<td>280</td>
</tr>
<tr>
<td>Ash in Foods</td>
<td>196</td>
</tr>
<tr>
<td>Assessments on property</td>
<td>260</td>
</tr>
<tr>
<td>Awned wheat grass</td>
<td>415</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barber, Florence</td>
<td>416</td>
</tr>
<tr>
<td>Baron stalks</td>
<td>201</td>
</tr>
<tr>
<td>Beef Type, Explanation of</td>
<td>337, 370</td>
</tr>
<tr>
<td>Beef and Dairy types compared</td>
<td>338</td>
</tr>
<tr>
<td>Beef type vs. Dairy type, experiment</td>
<td>337, 344</td>
</tr>
<tr>
<td>Cattle used in</td>
<td>338</td>
</tr>
</tbody>
</table>

http://lib.dr.iastate.edu/bulletin/vol7/iss83/1
Condition of .. 339
Conclusions concerning 371
Duration of .. 338
Feeds used in .. 339-344
Reasons for .. 337
Tabulated results of ... 343-344
Beef, Method of cutting 345, 346
Illustrations of .. 315
Cuts in carcass .. 345, 346
Illustrations of .. 345, 346
Blossoming records of cherry; notes 33
Blossoming records of cherry, charts of 94, 95
Bowles Live Stock Commission Co., letter from ... 122
Bouteloua hirsuta .. 421
Branch stations on soil areas 382
Breakfast Foods ... 101
Ash in .. 107, 108, 109, 111
Carbohydrates in .. 107, 108
Chemical composition of 108, 109
Claims of manufacturers of 102, 103, 104, 105, 107, 110
Comparative cost of .. 111
Composition of materials used in 107
Conclusions regarding .. 114
Fat in .. 107, 108, 109, 111
Fiber in .. 107, 108, 109
Food material in 10c worth 111
Food value in 10c worth 111
Food value of, compared with beef 108
Investigation of .. 114
Manufacture of .. 106
Nutrient matter in 10c worth of 111
Protein in .. 107, 108, 109, 111
Breeding plots ... 178
Broken kernels ... 207
Bromus inermi .. 419
Bromus marginatus ... 419
Brookmont Farms, Experiments conducted at 226
Brown knot of cherry ... 58
Brown rot of cherry ... 58
Burr Grass .. 421
Brusseler Braune, group of cherries 61
Butter
Contest, purposes of .. 306
Causes of deterioration 4
Causes of deterioration as viewed by various inves-
tigators ... 5
Cheesy flavor in ... 18
Composition of .. 141
Danish ... 149
Deterioration of .. 3
Defects in .. 6
Dry appearing .. 144
Effects of water in, on keeping property of 7
Effects of washing ... 14
Effects of pasteurizing .. 29
Faults of .. 310
Faults of, acquired on standing 6
Faults of, due to manufacture 6
Faults found in, throughout experiments (fishy, chee-
sy, turpentine) .. 18
Gritty, causes of ... 329
Leaky ... 142
Salt in ... 324
Score and analysis of 221 samples 312
Variation of composition of butter, effects on
quality ... 307, 309
Water in .. 137, 139, 143
Water, effect of, on quantity and quality 139
Butting and tipping seed ears 222

C

Calamovilfa langfolia 421
Calibrating planter plates 226
Canadian blue grass 419
Carex ... 419
Carex Schweinitzii 421
Cattle feeding, Conditions influencing generally.. 267
Condition of in 1901-1903 120
Margin on ... 274
Cattle in light, medium and heavy grain ration test,
Lot I, Detailed report of 271
Lot II, Detailed report of 272
Lot III, Detailed report of 273
Cattle, fed on soft corn and gluten feed 118
Fed on corn fodder and pasture 118
Number of, in soft corn feeding test 118
Rations for .. 118
Ceanothus ovatus 421
Cenchrus tribuloides 421
Chemical composition of—
Quack Grass .. 400
Slender wheat grass 413
Western wheat grass 409
Chemical section, assistance of 127
Questions sent out by 127, 128
Replies to ... 129
Churning, effect on butter 147
Classification of Breakfast Foods 101
Classification of cherry 60, 61
Sweet (Prunus avium) 60, 61
Sour (Prunus avium) 60, 61
Classification of cherry in groups
Montmorency group 61
Morella group .. 61
Brusseler Braune group 61
Clay, Robinson and Co., letter from 121
Colorado, Steers purchased from 276
Collateral data to soft corn feeding test 120, 125-130
Commission firms, correspondence with 121
Commelina Virginica Breweria Pickeringii ... 421
Compositions of corn kernel 212
Conclusions ... 228
Conclusions on,
Acclimation test 283, 284
Beef type vs. Dairy type 371
Light, medium and heavy grain ration test 276
Soft corn feeding test 130, 131
Supplementary feed test 302-304
Conclusions of investigation on overrun in butter. 165
Conclusions of purifying water for butter making ... 30
Condition of Farm Lands in Iowa 244
Condition of Seed Corn 1904-1905 170
Cook, A. E., Cattle furnished by 266
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn, analysis of</td>
<td>304</td>
</tr>
<tr>
<td>Corn</td>
<td></td>
</tr>
<tr>
<td>Amount and kind used in soft corn experiment</td>
<td>269</td>
</tr>
<tr>
<td>Composition of</td>
<td>126, 127</td>
</tr>
<tr>
<td>Used in soft corn feeding test</td>
<td>119-120</td>
</tr>
<tr>
<td>Corn, Mature Analysis of</td>
<td>125, 126</td>
</tr>
<tr>
<td>Comparison with soft corn</td>
<td>125-127</td>
</tr>
<tr>
<td>Shrinkage of</td>
<td>125-129</td>
</tr>
<tr>
<td>Valuation of</td>
<td>122-124</td>
</tr>
<tr>
<td>Corn, Soft</td>
<td></td>
</tr>
<tr>
<td>Cause of</td>
<td>117, 130</td>
</tr>
<tr>
<td>Chemical analysis of</td>
<td>126</td>
</tr>
<tr>
<td>Comparison with mature corn</td>
<td>125-127</td>
</tr>
<tr>
<td>Feeding test of</td>
<td></td>
</tr>
<tr>
<td>Conclusions from</td>
<td>125, 130-131</td>
</tr>
<tr>
<td>Conditions of</td>
<td>117, 118</td>
</tr>
<tr>
<td>Results of</td>
<td>119, 123-124</td>
</tr>
<tr>
<td>Why made</td>
<td>117</td>
</tr>
<tr>
<td>Feeding value of</td>
<td>125</td>
</tr>
<tr>
<td>Market value of</td>
<td>117, 122</td>
</tr>
<tr>
<td>Meaning of</td>
<td>119</td>
</tr>
<tr>
<td>Moisture content of</td>
<td>125, 126, 128</td>
</tr>
<tr>
<td>Need of information concerning</td>
<td>117</td>
</tr>
<tr>
<td>Per cent of corn to cob</td>
<td>128</td>
</tr>
<tr>
<td>Questions concerning</td>
<td>127</td>
</tr>
<tr>
<td>Questions answered</td>
<td>128</td>
</tr>
<tr>
<td>Corn cobs, composition of</td>
<td>126, 127</td>
</tr>
<tr>
<td>Corn fodder, feeding value in various stages</td>
<td>118</td>
</tr>
<tr>
<td>Costs of Breakfast Foods</td>
<td>106</td>
</tr>
<tr>
<td>Cotton-seed meal, Analysis of</td>
<td>304</td>
</tr>
<tr>
<td>Value as a supplemental feed</td>
<td>293, 303</td>
</tr>
<tr>
<td>Cover crops for cherry</td>
<td>54</td>
</tr>
<tr>
<td>Nitrogenous crops for</td>
<td>54</td>
</tr>
<tr>
<td>Hairy vetch (Vicia Villosa)</td>
<td>54</td>
</tr>
<tr>
<td>Cow peas (Vigna catjang)</td>
<td>54</td>
</tr>
<tr>
<td>Soy beans (Glycine hispida)</td>
<td>54</td>
</tr>
<tr>
<td>Non-nitrogenous crops for</td>
<td>54</td>
</tr>
<tr>
<td>Dwarf Essex Rape</td>
<td>54</td>
</tr>
<tr>
<td>Oats</td>
<td>54</td>
</tr>
<tr>
<td>Rye</td>
<td>54</td>
</tr>
<tr>
<td>Cultivation of cherry</td>
<td>53</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>419</td>
</tr>
<tr>
<td>Dairy type, explanation of</td>
<td>338</td>
</tr>
<tr>
<td>Dairy and beef types compared</td>
<td>338</td>
</tr>
<tr>
<td>Defects in butter</td>
<td>6</td>
</tr>
<tr>
<td>Deterioration of butter</td>
<td>3</td>
</tr>
<tr>
<td>Digestion of Breakfast Foods</td>
<td>106</td>
</tr>
<tr>
<td>Discarding poor ears of corn</td>
<td>220</td>
</tr>
<tr>
<td>Distance apart to plant cherry</td>
<td>52-53</td>
</tr>
<tr>
<td>Diseases of cherry, fungus</td>
<td>57</td>
</tr>
<tr>
<td>Leaf spot</td>
<td>57</td>
</tr>
<tr>
<td>Drainage Conditions in Iowa</td>
<td>287</td>
</tr>
<tr>
<td>Drainage, Contracts for</td>
<td>261</td>
</tr>
<tr>
<td>Drainage Engineering, Notes and Tables</td>
<td>255</td>
</tr>
<tr>
<td>Drainage increases productive capacity</td>
<td>238</td>
</tr>
<tr>
<td>Drainage increases profits from rolling land</td>
<td>247</td>
</tr>
<tr>
<td>Drainage Law, New</td>
<td>267</td>
</tr>
<tr>
<td>Drainage lessens the cost of crop production</td>
<td>249</td>
</tr>
</tbody>
</table>
Predigested value of .. 113, 114
Prepared .. 101
Principal part of .. 106
Unprepared .. 104
Required by man at moderate work........................... 109
Fungus diseases of cherry 57
Leaf Spot .. 57

G

Geest, Area of ... 375
Geest Soils .. 374
Geographical distribution of trees in Iowa............... 46, 47
Germination box .. 176
Germination tests of Iowa seed corn 1904-1905 171
Glacial Soils ... 374
Gluten feed, analysis of .. 303
Value of, as a supplemental feed 295, 303
Good shape of ears of corn 207
Gosling, John, Meat demonstration by 337
Comment on steers by .. 345-348
Comment on dressed carcasses by 349-369
Grasses
Agropyron caninum ... 413, 415, 416
Agropyron occidentale .. 404, 407, 410, 419
Agropyron pseudo-repens .. 404
Agropyron repens .. 397-404, 406, 410
Agropyron Richardsonii .. 413, 414
Agropyron spicatum .. 405
Agropyron tenerum .. 409-413
Agropyron unilaterale .. 413
Awned wheat grass .. 415
Blue grass ... 419
Bouteloua hirsuta .. 431
Bromus inermi .. 419
Bromus marginatus .. 419
Burr grass ... 421
Calamagrostis longifolia ... 421
Cenchrus tribuloides ... 421
False quack grass ... 404
Festuca ovina .. 419
Hungarian brome grass .. 418
Orchard grass .. 419
Poa compressa ... 419
Poa pratensis .. 419
Quack grass ... 397-404, 406-410, 417-421
Richardson’s wheat grass .. 413, 414
Sand grass .. 421
Sheep’s fescue grass .. 409
Timothy ... 420
Triticum repens ... 397
Western wheat grass .. 409-404-419
Greenman, W. H .. 407
Gullies, holding of .. 420

H

Height of ears on stalk ... 203
Hitchcock, A. S ... 407, 412, 417
Hogs, number used to follow steers 268, 277
Average gains of .. 272, 273, 281, 282
Income from ..272, 273, 281, 282
Hummel, R. T. ..407
Hungarian brome grass ...419

I

Illinoisan Drift ...389
Importation of cherry ...48
Importing seed corn ..182
Individual ears ...176
Insect enemies of cherry ..56, 57
Plum curculio, illustrated ..56
Method of leaf spraying ...56
Iowan Drift Area ..388
Iowa Experiment Station Bulletins131-133

K

Kansas Drift Area ...389
Kennedy P. B. ...408, 412
Kernels, Backs of ..209
 Broken ...207
 Different sizes of ..216
 Different sizes of ..189
 Good and bad ...188
 Maturity of ..208
 Shapes of ..196
 Types of ...216
King, Charlotte M ..414, 420

L

Leaf Spot ..57
Leaky Butter ..142
Loess, General Remarks on381
Loess, Nature of ...377
Loess, Mississippi ..380
Loess, Missouri ...379
Loess Soil ...377
Loess, Southern Iowa ..379
Lyon, T. L. ..407, 412

M

Map of Principal Soil Areas, (following)382
Maturity of Kernels ...208
Meat Demonstration ...359-371
Methods of grafting cherry51
Method of spraying insect enemies of cherry56
Minn. Experiment station, Experiments of275
Mississippi Loess ..380
Missouri Loess ...380
Moisture, amount in soft corn119, 120
Montmorency group of cherries61
Morello group of cherries61
Mottles in butter, gritty, salt as cause330

N

Nelson, Aven ...408, 412
Nelson, Elias ...408, 412
Nelson Morris and Co., letter from121
Nitrogenous cover crops for cherry54
Hairy vetch (Vicia Villosa)54
Cow peas (Vigna Catjang)54
Soy beans (Glycine hispida)54
Non-nitrogenous crops for cherry54
Dwarf Essex Rape ..54
Oats ..54
Rye ...54
Nubbins ..183
Number of cherry trees in each County 1890-1900 .. .46, 47

O

Oil meal, analysis of...304
Value of as a supplemental feed.........................291-303
Oklahoma and Indian Territory, Steers purchased from277
Ontario Agricultural College, Experiments of275
Open Ditches of Given Size, Acres Drained by256
Orchard Grass ..419
Overrun, calculation of ..137
Overrun, viewed from producers and consumers stand-point 139
Composition of butter affecting...................................397

P

Packing houses, correspondence with..................................121
Pasteurizing water and cream, effects of.................................12
Method of pasteurizing ..20
Cost of pasteurizing ..27
Effects of on water in butter ..159
Peas and Beans as food ...107
Place for storing seed corn ...185
Placing corn on tables to be studied219
Placing kernels in germination box175
Planter tests ..179
Poa compressa ..419
Poa pratensis ..419
Polygonum temu ...421
Preparing corn for planter ...181
Principal soil areas of Iowa ...373
Product of single hill ..200
Profit and Loss Statement of240
Propagation of cherry ..49
Protecting cherries from birds ...58, 59, 60
Varieties of, protected—yield of58
How to protect, netting ..60
Planting Russian mulberries and dewberries58
Pruning of cherry ...49
Low Headed Trees; Illustration55
Purifying well water ..55
Purpose of ..26
Prunus avium ..60, 61
Prunus cerasus ..60, 61

Q

Quack Grass ...397-404, 406, 410, 417-421
As a forage plant ...400
Soil, Loess .. 377
Soil Problems .. 392
Soils, Classification of 373
Soils, Till ... 382
Sour cherry (prunus cerasus) 60, 61
Southern Iowa Loess .. 377
Space between rows of corn 211
Space between kernels at cob 215
Speer, R. P. ... 406
Stand of corn .. 171
Status of cherry in Iowa 48, 49
Steers in Acclimation test
Averages of details concerning 283
Dressed weights of ... 281-282
Comparison of western and southern 276, 277
Cost per steer ... 281-282
Feed consumed by ... 281-282
Lot I Southern ... 281
Lot II Western .. 282
Number of ... 276, 277
Rations of ... 277-279, 281, 282
Selling price of .. 280-283
Shrinkage of, in shipping 281-282
Steers in beef vs Dairy type test 343-344
Beef and Dairy type compared 338, 343-344
Angus ... 340
Hereford ... 339-340
Holsteins ... 341
Jerseys .. 342
Number of ... 338
Rations of ... 339-344
Steers in grain and ration test
Amount of feed consumed by 271-273
Average of details concerning 275
Comparison of ... 274, 275
Cost of .. 272-273
Dressed weight of ... 272-273
Gains of, amount per steer 271-273
Total Amount of ... 271-273
Selling price of .. 271-273
Shrinkage of in shipping 272, 273
Steers in slaughter test, comments on 347, 348
Comparative tables concerning 358
Tables concerning, after slaughtering 349-358
Steers in soft corn feeding experiment
Amount of feed necessary to produce pound gain
Lot I ... 123
Lot II .. 123
Varieties of Cherries
Boquet Morello .. .64
Bowers' Seedlings64
Brussler Braune (Gelotte du Nord)65
Compass Cherry66
Corning .. .66
Doplette Natte67
Double Natte Riga (18)67
Duchess de Anjouleme67
Dyehouse67
Early Amarelle67
Early Morello68
<table>
<thead>
<tr>
<th>Variety</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Morello</td>
<td>69</td>
</tr>
<tr>
<td>Fouche’s Morello</td>
<td>69</td>
</tr>
<tr>
<td>Frauendorger</td>
<td>69</td>
</tr>
<tr>
<td>Frauendirfer Welchsel (Brauendorfer)</td>
<td>69</td>
</tr>
<tr>
<td>Galopin</td>
<td>70</td>
</tr>
<tr>
<td>Geo. Glass</td>
<td>70</td>
</tr>
<tr>
<td>Glass</td>
<td>70</td>
</tr>
<tr>
<td>Goodspeed</td>
<td>70</td>
</tr>
<tr>
<td>Griotte, Du Nord</td>
<td>70</td>
</tr>
<tr>
<td>Griotte Pricoe</td>
<td>70</td>
</tr>
<tr>
<td>Griotte Imperial</td>
<td>71</td>
</tr>
<tr>
<td>Griotte Kliparite</td>
<td>71</td>
</tr>
<tr>
<td>Herformize Welchsel</td>
<td>71</td>
</tr>
<tr>
<td>Homer</td>
<td>71</td>
</tr>
<tr>
<td>June Amarelle</td>
<td>72</td>
</tr>
<tr>
<td>Juneat Amarelle</td>
<td>72</td>
</tr>
<tr>
<td>June Morello</td>
<td>72</td>
</tr>
<tr>
<td>King’s Amarelle</td>
<td>72</td>
</tr>
<tr>
<td>King's Morello</td>
<td>72</td>
</tr>
<tr>
<td>Lancaster</td>
<td>72</td>
</tr>
<tr>
<td>Long Stemmed Montmorency</td>
<td>72</td>
</tr>
<tr>
<td>Large Montmorency</td>
<td>72</td>
</tr>
<tr>
<td>Late Richmond</td>
<td>73</td>
</tr>
<tr>
<td>Leib</td>
<td>73</td>
</tr>
<tr>
<td>Lithaur Wiechsel</td>
<td>73</td>
</tr>
<tr>
<td>Louis Phillipie</td>
<td>73</td>
</tr>
<tr>
<td>Lutovka (Galopin)</td>
<td>74</td>
</tr>
<tr>
<td>Montmorency Ordinaire (Long Stemmed Montmorency)</td>
<td>75</td>
</tr>
<tr>
<td>Montmorency (Short Stemmed) (Large Montmorency)</td>
<td>75</td>
</tr>
<tr>
<td>Morello Fouche (Fouche’s Morello)</td>
<td>75</td>
</tr>
<tr>
<td>Northwest (Weirs No. 29)</td>
<td>75</td>
</tr>
<tr>
<td>Olivet</td>
<td>76</td>
</tr>
<tr>
<td>Orel 23 (Early Morello)</td>
<td>77</td>
</tr>
<tr>
<td>Orel 24</td>
<td>77</td>
</tr>
<tr>
<td>Orel No. 26</td>
<td>78</td>
</tr>
<tr>
<td>Ostheim d’Cerise (Ostheimer)</td>
<td>78</td>
</tr>
<tr>
<td>Ostheim (Griotte d’Ostheim)</td>
<td>79</td>
</tr>
<tr>
<td>Richmond Early</td>
<td>80</td>
</tr>
<tr>
<td>Riga No. 18</td>
<td>73</td>
</tr>
<tr>
<td>Rocky Mountain, Improved Dwarf</td>
<td>80</td>
</tr>
<tr>
<td>Russian Seedling Cherries</td>
<td>80</td>
</tr>
<tr>
<td>Russian Seedling No. 8</td>
<td>80</td>
</tr>
<tr>
<td>Russian Seedling No. 42</td>
<td>81</td>
</tr>
<tr>
<td>Russian Seedling No. 49</td>
<td>81</td>
</tr>
<tr>
<td>Russian Seedling No. 54</td>
<td>81</td>
</tr>
<tr>
<td>Russian Seedling No. 109</td>
<td>81</td>
</tr>
<tr>
<td>Russian Seedling No. 128</td>
<td>81</td>
</tr>
<tr>
<td>Russian Seedling No. 169</td>
<td>81</td>
</tr>
<tr>
<td>Russian Seedling No. 199</td>
<td>81</td>
</tr>
<tr>
<td>Schatten Amarelle</td>
<td>81</td>
</tr>
<tr>
<td>Shadow Amarelle (Shadow Morello)</td>
<td>82</td>
</tr>
<tr>
<td>Short Stemmed Montmorency</td>
<td>82</td>
</tr>
<tr>
<td>Shubianka</td>
<td>83</td>
</tr>
<tr>
<td>Silver Thorne</td>
<td>83</td>
</tr>
<tr>
<td>Silanka</td>
<td>83</td>
</tr>
<tr>
<td>Spate Amarelle</td>
<td>84</td>
</tr>
<tr>
<td>Strauss Welchsel (Strauss)</td>
<td>84</td>
</tr>
<tr>
<td>Suda Hardy (Suda)</td>
<td>85</td>
</tr>
<tr>
<td>Susse Früh Welchsel</td>
<td>85</td>
</tr>
<tr>
<td>Terry</td>
<td>85</td>
</tr>
<tr>
<td>Timme</td>
<td>85</td>
</tr>
<tr>
<td>Tubbs</td>
<td>85</td>
</tr>
</tbody>
</table>

http://lib.dr.iastate.edu/bulletin/vol7/iss83/1
Utah Hybrid ... 86
Villeneuve ... 86
Vladimir ... 87
Wheeler ... 87
Weir's No. 2 ... 87
Weir's No. 12 ... 87
Weir's No. 13 ... 87
Weir's No. 24 ... 88
Weir's No. 29 ... 88
Weir's No. 44 ... 88
Wragg ... 89
Yellow Glass ... 89
Varieties of cherry attacked by leaf spot 57

Water in butter
 Condition affecting .. 145
 Effects of on keeping property 7
 Effects of pasteurizing water 8
 Germs in ... 19
 Purity of ... 19
Western wheat grass .. 404-409, 419
 Chemical composition of 409
 Forage value of .. 406-408
For railroad embankments .. 409
Westgate J. M. ... 417
Wild Bird Cherry (prunus pennsylvanica) 51
Williams, T. A. ... 408, 412
Wilson, James, on Drainage in Iowa 237
Wisconsin Drift Area ... 386
Working butter, effects of ... 7

Published by Iowa State University Digital Repository, 1903