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Do covariances between maternal behavior and embryonic physiology
drive sex-ratio evolution under environmental sex determination?

Abstract
Fisherian sex-ratio theory predicts sexual species should have a balanced primary sex ratio. However,
organisms with environmental sex determination (ESD) are particularly vulnerable to experiencing skewed
sex ratios when environmental conditions vary. Theoretical work has modeled sex-ratio dynamics for animals
with ESD with regard to two traits predicted to be responsive to sex-ratio selection: (1) maternal oviposition
behavior and (2) sensitivity of embryonic sex determination to environmental conditions, and much research
has since focused on how these traits influence offspring sex ratios. However, relatively few studies have
provided estimates of univariate quantitative genetic parameters for these two traits, and the existence of
phenotypic or genetic covariances among these traits has not been assessed. Here, we leverage studies on
three species of reptiles (two turtle species and a lizard) with temperature-dependent sex determination
(TSD) to assess phenotypic covariances between measures of maternal oviposition behavior and thermal
sensitivity of the sex-determining pathway. These studies quantified maternal behaviors that relate to nest
temperature and sex ratio of offspring incubated under controlled conditions. A positive covariance between
these traits would enhance the efficiency of sex-ratio selection when primary sex ratio is unbalanced. However,
we detected no such covariance between measures of these categories of traits in the three study species.
These results suggest that maternal oviposition behavior and thermal sensitivity of sex determination in
embryos might evolve independently. Such information is critical to understand how animals with TSD will
respond to rapidly changing environments that induce sex-ratio selection.
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Abstract 

Fisherian sex-ratio theory predicts sexual species should have a balanced primary sex ratio.  

However, organisms with environmental sex determination (ESD) are particularly vulnerable to 

experiencing skewed sex ratios when environmental conditions vary.  Theoretical work has 

modeled sex-ratio dynamics for animals with ESD with regard to two traits predicted to be 

responsive to sex-ratio selection: (1) maternal oviposition behavior and (2) sensitivity of 

embryonic sex determination to environmental conditions, and much research has since focused 

on how these traits influence offspring sex ratios.  However, relatively few studies have provided 

estimates of univariate quantitative genetic parameters for these two traits, and the existence of 

phenotypic or genetic covariances among these traits has not been assessed.  Here, we leverage 

studies on three species of reptiles (two turtle species and a lizard) with temperature-dependent 

sex determination (TSD) to assess phenotypic covariances between measures of maternal 

oviposition behavior and thermal sensitivity of the sex-determining pathway.  These studies 

quantified maternal behaviors that relate to nest temperature and sex ratio of offspring incubated 

under controlled conditions.  A positive covariance between these traits would enhance the 

efficiency of sex-ratio selection when primary sex ratio is unbalanced.  However, we detected no 

such covariance between measures of these categories of traits in the three study species.  These 

results suggest that maternal oviposition behavior and thermal sensitivity of sex determination in 

embryos might evolve independently.  Such information is critical to understand how animals 

with TSD will respond to rapidly changing environments that induce sex-ratio selection. 

Keywords: environmental change, microevolution, nesting behavior, pivotal temperature, 

quantitative genetics, reptile
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The sex-determining mechanism and the primary sex ratio are fundamentally intertwined.  In 

most organisms, an individual’s sex is permanently determined by its genotype at fertilization.  A 

typical equilibrium primary sex ratio of 1:1 (a la Fisher 1930) is thus readily achieved via 

random meiotic segregation of the primary sex-determining element.  In contrast, under 

environmental sex determination (ESD), an environmental factor after fertilization initiates the 

sex-determining cascade, which then permanently determines the individual’s sex (Refsnider and 

Janzen 2016).  In this case, the distribution of the environmental variable affects the primary sex 

ratio and, therefore, the efficacy of sex-ratio selection. 

This latter observation motivated Bulmer and Bull (1982) to mathematically model sex-

ratio dynamics under ESD.  They focused on the two core categories of traits involved in 

temperature-dependent sex determination (TSD, the most common form of ESD) that could be 

subject to sex-ratio selection: (1) maternal choice of nest thermal environment and (2) sensitivity 

of embryonic sex determination to temperature.  Bulmer and Bull (1982) developed these 

quantitative genetic models to explore the independent evolutionary impacts of these categories 

of traits.  Notably, potential covariances between them were not considered. 

Much empirical work since this theoretical advance has focused on quantifying 

phenotypic effects of single traits on offspring sex ratio in the field.  Fewer studies have 

estimated univariate quantitative genetic parameters for maternal behavioral and embryonic 

physiological traits that would be most germane to addressing microevolution of TSD and TSD-

like mechanisms in the context of the Bulmer and Bull (1982) models (Table 1).  Moreover, with 

one exception (St. Juliana et al. 2004), the existence of phenotypic or genetic covariances 

between these two categories of traits has not been assessed formally. 
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Remarkable phenotypic variation exists in these important traits.  Occurring in a variety 

of vertebrates (but primarily reptiles), TSD not surprisingly is accompanied by tremendous 

diversity in oviposition preferences with varying thermal characteristics, from relatively deep 

burrows to mounds of vegetation to sand beaches to leaf litter.  Variation in this nesting behavior 

is mirrored in the assortment of physiological patterns of TSD (Refsnider and Janzen 2016).  

Some species have pattern Ia TSD (cooler incubation temperatures yield male offspring and 

warmer incubation temperatures produce females), others have pattern Ib TSD (the mirror image 

of pattern Ia), and still others have pattern II TSD (females produced at the thermal extremes and 

males at intermediate temperatures).  Even intraspecifically, aspects of oviposition behavior and 

the pattern of TSD can vary within and among populations.  For example, shade levels over nests 

of a turtle with TSD are greater in southern populations and decline as latitude increases; the 

converse is observed for sensitivity of embryonic sex determination to temperature across this 

same geographic range (Ewert et al. 2005). Even within populations, choice of nest thermal 

properties (e.g., Janzen and Morjan 2001) and the slope and intercept of thermally-linked sex-

determining reaction norms (e.g., Rhen et al. 2011) vary considerably among individuals.  The 

diversity in these behavioral and physiological traits implies considerable evolutionary capacity 

to respond to sex-ratio selection under TSD.  But do these traits evolve independently or jointly 

to influence sex-ratio evolution? 

Quantifying covariances is important to advance understanding of the microevolutionary 

potential of suites of traits.  In particular, genetic covariances (among other possible factors; 

Futuyma 2010) arguably can restrain or facilitate the adaptive evolution of individual traits 

beyond the univariate effects of additive genetic variances alone (Lande and Arnold 1983; 

Agrawal and Stinchcombe 2009; but see Conner 2012).  For example, genetic correlations 
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between key traits in several plant populations are not aligned with the direction of selection 

induced by climate warming, thereby retarding the rate of adaptive multivariate evolution 

(Etterson and Shaw 2001).  Even phenotypic covariance estimates can be useful for exploring 

microevolutionary dynamics, as they frequently (but not universally) appear to mirror underlying 

genetic covariances (Cheverud 1988; Roff 1995; Kruuk et al. 2008; Dochtermann 2011; 

Brommer 2013). 

To address the capacity for multivariate microevolution of sex ratio under TSD, we 

quantified the covariation of maternal nesting behavior in the field and offspring sex ratios under 

controlled thermal conditions in three distantly-related species of reptiles with TSD: two turtle 

species (Chrysemys picta and Chelydra serpentina) and one lizard (Amphibolurus muricatus).  In 

these species, even small shifts in environmental temperatures dramatically alter offspring cohort 

sex ratio in the wild (e.g., Refsnider and Janzen 2016), thus inducing sex-ratio selection.  We 

calculated covariances under the expectation that, to facilitate evolution in response to such sex-

ratio selection, measures of maternal choice of nest thermal environment and sensitivity of 

embryonic sex determination to temperature should covary positively (i.e., evolution along lines 

of least resistance a la Schluter 1996).  That is, the maternal nesting propensity to yield offspring 

of a given sex should correspond with the embryonic propensity to be that sex across 

environments.  Alternatively, a negative covariance could be favored by selection to maintain a 

particular primary sex ratio if this sex ratio was currently in the vicinity of its optimum.  Lack of 

such covariances presumably would imply independent evolutionary trajectories for these two 

categories of traits affecting primary sex ratio under TSD. 

Methods 
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The data that we analyze here in a microevolutionary context were obtained in the course of 

experiments designed to address different questions and, accordingly, detailed methods can be 

found elsewhere (Mitchell et al. 2017; St. Juliana et al. 2004; Warner et al. 2008, respectively).  

Below, we provide methodological information from those experiments that is most apropos to 

the statistical analyses conducted for the present study and the interpretations of the results.  We 

also survey the literature and compile published estimates of quantitative genetic parameters for 

traits that influence offspring sex ratio in species with thermally-sensitive sex determination.  For 

studies with multiple estimates, we list each estimate and denote the treatment or data subset.   

Painted turtle (Chrysemys picta) 

Painted turtles are broadly distributed across southern Canada and from the northwestern United 

States through the eastern two-thirds of the country, occurring in mostly still or slow-moving 

freshwater habitats.  This species has pattern Ia TSD; the focal study population along the 

backwaters of the Mississippi River in northern Illinois has a pivotal temperature of sex 

determination (i.e., the constant incubation temperature at which a 1:1 sex ratio is produced) of 

~27.7°C (Refsnider et al. 2014).  Females at this field site annually lay 1-3 clutches of ~10 eggs 

each from late May through early July (Schwanz et al. 2010a). 

For this study (Mitchell et al. 2017), adult C. picta were captured from the field site and 

transported to the Iowa State University (ISU) Horticulture Station.  In the fall of 2011, the pond 

was emptied and turtles brought into the laboratory to hibernate in plastic water filled tubs 

maintained at 4°C.  Thereafter, half the turtles were released into the pond on 25 March 2012 and 

the other half on 13 April 2012.  In May and June 2012, the adjacent terrestrial area was 

observed for nesting turtles and fresh nests.  As a measure of nest-site choice, a hemispherical 
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photograph of the sky was taken for each nest to quantify percent of canopy openness, which is a 

proxy for nest temperatures and, correspondingly, offspring sex ratios for C. picta (Mitchell et al. 

2013).  Release date had no influence on nesting behaviors (Mitchell et al. 2017), so all 42 nests 

obtained from this experiment were pooled for statistical analyses in this paper. 

All eggs were removed from each nest, placed in damp soil, and transported to the 

laboratory the same day.  Eggs were assigned randomly to covered plastic shoeboxes filled with 

moistened vermiculite (-150 kPa), which were rehydrated weekly to maintain relatively constant 

hydric conditions.  Every other day, shoeboxes were rotated within an incubator set to maintain a 

constant 28°C to minimize potential effects of any thermal gradients.  After hatching, the sex of 

the neonates was assessed by macroscopic examination of the gonads. 

Common snapping turtle (Chelydra serpentina) 

This species is also wide ranging, inhabiting most bodies of fresh water in the eastern two-thirds 

of North America through Central America into northern South America.  Snapping turtles have 

pattern II TSD; the focal study population occupies the same aquatic locality as the C. picta 

population, but has pivotal temperatures of sex determination of ~21.5°C and ~27.5 °C (O’Steen 

and Janzen 1999), although the lower temperature is infrequently approached in field nests 

(Janzen 2008) and is near the minimum for successful development.  Females at this field site 

annually lay a single clutch of ~30-80 eggs from late May to late June (St. Juliana et al. 2004). 

As described in St. Juliana et al. (2004), a sand prairie was patrolled for nesting turtles 

and freshly constructed nests in June 2001.  Upon encountering a nest, a spherical densiometer 

was used to measure the proportion of overstory vegetation cover in the four cardinal directions, 

as this environmental factor is a proxy for nest temperatures and, correspondingly, offspring sex 
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ratios for C. serpentina (Kolbe and Janzen 2002).  As a measure of nest-site choice, the 

proportion of total shade values (i.e., the sum of all four densiometer readings for a nest) was 

subtracted from 1 and multiplied by 100 to calculate a value analogous to the “percent of canopy 

openness” measure recorded from hemispherical photography for C. picta nests. 

Twelve eggs were removed from each nest, 10 of which were placed in damp sand and 

transported to ISU within 1-4 days of oviposition.  Eggs were assigned randomly to covered 

plastic shoeboxes filled with moistened vermiculite (-150 kPa), which were rehydrated weekly to 

maintain relatively constant hydric conditions.  Every other day, shoeboxes were rotated within 

the incubator (set to maintain a constant 27.6°C) to minimize potential effects of any thermal 

gradients.  Inadvertently, the incubator deviated to ~30°C for about 10 days, such that the 

average temperature during incubation was 28.37±0.18°C, which still produced both sexes.  

After hatching, the sex of the neonates was assessed by macroscopic examination of the gonads. 

Jacky dragon (Amphibolurus muricatus) 

This lizard inhabits coastal heathland in southeast Australia.  Jacky dragons have a pattern of 

TSD similar to that of C. serpentina, but with a mix of males and females at intermediate 

temperatures (Harlow and Taylor 2000; Warner and Shine 2005).  A balanced primary sex ratio 

is produced at a constant 28°C, with female biases above and below this temperature, albeit 

natural nests rarely average temperatures above 28°C (Warner and Shine 2008; 2011).  Female 

jacky dragons lay 2-3 clutches of 3-9 eggs over a single nesting season, which lasts from October 

to February. 

Adult dragons were collected near Sydney in 2003 and 2004, and housed in 2mx2m field 

enclosures that each included a regularly watered mound of sand (5-20cm deep) covering a 
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0.5mx0.5m area (Warner et al. 2008).  Each sand mound was partially covered with vegetation, 

which gave dragons the ability to select among a relative continuum of shaded and open 

microenvironments.  Upon discovery of a nest, eggs were removed for laboratory incubation, a 

Thermocron iButton temperature logger was placed into the empty nest cavity, and the cavity 

was re-covered with sand.  Temperature was recorded hourly during the first two-thirds of 

incubation, which encompasses the developmental period when sex is determined in this species 

(Shine et al. 2007).  To measure nest-site choice, constant temperature equivalents (CTE) were 

first calculated for each nest site (Georges 1989), with a model parameterized for agamid lizards; 

the critical thermal minimum was 17.2°C (Warner and Shine 2011) and the critical thermal 

maximum was 36°C (Quinn et al. 2007).  Nests laid earlier in the season are cooler than those 

laid later, so residuals were computed from a quadratic regression of CTE on oviposition date.  

Positive residuals represent nest sites that were relatively warm, given their oviposition date, 

whereas negative residuals represent relatively cool nest sites.  These residual values were used 

as our metric for nest-site choice. 

At the University of Sydney, the eggs were half buried in moistened vermiculite (-200 

kPa) contained in covered glass jars.  The jars were rotated within and among incubators 

(maintained at 28°C) three times weekly to minimize potential effects of any thermal gradients.  

Upon hatching, offspring sex was evaluated by eversion of hemipenes. 

Statistics 

To address our primary question regarding multivariate microevolutionary potential, we assessed 

measures of behavior and physiology linked to sex-ratio control under TSD (sensu Bulmer and 

Bull 1982) for each species.  For maternal choice of nest thermal environment, we used the 

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/advance-article-abstract/doi/10.1093/jhered/esz021/5457717 by Iow

a State U
niversity user on 22 April 2019



11 

measure of canopy openness over the nest at oviposition for each female for the two turtle 

species and the relative warmth of the nest cavity for each female for the lizard species.  We 

calculated relative warmth by extracting the residuals from a quadratic regression of CTE on 

oviposition date (equation: CTE = -0.00078(oviposition day)
2 

+ 0.55(oviposition day) -70.89).

For sensitivity of clutch sex ratio to temperature, we used the proportion of male offspring for 

each nest produced near the (primary) pivotal temperature in the lab.  In doing so, note that this 

clutch-level trait can be viewed in substantial part as a property of the mother (see Discussion 

section for further consideration of this issue). 

In all, we had 42 data points for C. picta, 25 data points for C. serpentina, and 48 data points for 

A. muricatus.  To evaluate the covariance between the relevant measure of nest-site choice and 

clutch sex ratio near the pivotal temperature, we used a generalized linear model with a logit link 

function.  For the two species with pattern II TSD, we also fit a 2
nd

-order polynomial regression

to these data to assess a possible non-linear fit.  We performed statistical analyses in SAS 

(version 9.4) and created graphics in SigmaPlot (version 13.0). 

Results 

The ranges of values for nest-site choice for each species and for clutch sex ratio for each species 

were considerable in all cases.  The phenotypic variances for these traits, especially the nesting 

variables, were substantial (Table 2).  Thus, it is unlikely that our power to detect covariance 

patterns was restricted by distributionally-truncated data sets.  We also had substantive sample 

sizes for each species (Table 2). 
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Despite the richness of the three data sets, in no case was our measure of maternal choice 

of nest thermal environment related to our measure of sensitivity of embryonic sex determination 

to temperature at the clutch level (Table 3).  Estimated covariances between these two categories 

of traits were essentially zero, whether we fit to the data a logistic regression or, for the two 

species with pattern II TSD, a 2
nd

-order polynomial regression (Table 3, Fig. 1).  Nonetheless,

eggs deposited in nests with <70% canopy openness (i.e., with more overstory vegetation cover) 

at oviposition for both turtle species appeared to be predisposed in the laboratory to produce 

males in C. picta (Fig. 1A) and females in C. serpentina (Fig. 1B); in contrast, clutches of eggs 

produced by females of both species that were oviposited into less shaded locations yielded a 

broad range of offspring sex ratios when incubated in the laboratory. 

The collection of literature estimates of quantitative genetic parameters for traits that 

influence sex ratio in taxa with thermally-sensitive sex determination reveals the full gamut of 

outcomes (Table 1).  Repeatability of nesting behaviors for four turtles and one lizard were 

generally small but often statistically significant, which is notable in that 42 of 43 estimates 

derived from free-ranging animals in the wild.  Heritabilities for these same traits were available 

only for C. picta and were similar in magnitude to the small repeatabilities (McGaugh et al. 

2010).  For embryonic thermal sensitivity of sex determination, quantitative genetic estimates 

mainly (40 of 42) originated from laboratory studies (but see McGaugh et al. 2011) and tended to 

be substantive (h
2
 > 0.3) except where paternity or expected variable thermal conditions in nature

were incorporated explicitly.  Several studies that did not calculate explicit quantitative genetic 

parameters nonetheless detected evidence for inheritance of sex-ratio tendency in all but one 

instance (i.e., Valenzuela and Janzen 2001).  Finally, Janzen (1992) and Rhen and Lang (1998) 

explored genetic correlations between sex-ratio tendency of clutches at different incubation 
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temperatures within several species, nearly always calculating significant positive estimates.  It is 

worth noting that the vast majority of these results reported in the literature derive from reptiles, 

particularly from just three species of turtles. 

Discussion 

Our results provide evidence that maternal nesting behavior and the thermal sensitivity of 

embryonic sex determination at the clutch level do not covary phenotypically within three 

distantly related reptile species with TSD.  Assuming the concordant absence of genetic 

covariances as well, our findings suggest that both of these important factors for sex-ratio 

selection under TSD should be free to evolve independently of each other.  As nesting behavior 

and TSD reaction norms exhibit considerable phenotypic variance and show some level of 

heritability in various organisms with thermally-sensitive sex determination, microevolution in 

response to sex-ratio selection can conceivably occur via either of these cospecialized pathways 

(sensu Peiman and Robinson 2017). 

Bulmer and Bull (1982) concluded that, despite being expressed only in females, nesting 

behavior is more likely to respond evolutionarily to sex-ratio selection than is embryonic thermal 

sensitivity under TSD.  To a considerable extent, this is because heritability of the latter traits in 

the wild are limited by variation in temperature among nests.  For example, a nest constructed in 

completely unshaded (i.e., hot) or shaded (i.e., cold) habitat likely would produce a 100% single-

sex sibship regardless of the genetic predispositions of the offspring.  One might also expect 

behavior, more so than physiology, to be more responsive to selection via expressing within-

generation plasticity (e.g., Schwanz and Janzen 2008).  Indeed, if species with TSD can respond 

to sex-ratio selection via aspects of oviposition-site choice, then the opportunity for selection to 
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act on thermal sensitivity of embryos is mitigated (a la Huey et al. 2003; Muñoz and Losos 

2018).  Thus, as a null expectation, maternal behavioral changes conceivably should predominate 

as a phenotypic response to sex-ratio selection under TSD relative to embryonic physiological 

changes.  The literature, sparse as it is, seems to bear out this prediction (Bull et al. 1982a; Ewert 

et al. 2005; Doody et al. 2006; Refsnider et al. 2014; but see Conover and Van Voorhees 1990). 

The quantitative genetic literature to date affirms that the heritability of TSD-related traits 

in the wild—or adjusted for such—tends to be small but, often enough, significantly > 0 (Table 

1).  Thus, the capacity for TSD to exhibit a microevolutionary response to sex-ratio selection is 

frequently present but presumably minimal.  Moreover, for species with pattern II TSD, 

substantial positive genetic correlations for offspring sex ratio at different incubation 

temperatures imply a possible restraint on the capacity of such patterns of TSD (i.e., overall sex-

ratio reaction norms) to evolve swiftly (see also Janzen 2008).  Therefore, negligible quantitative 

genetic variation for various traits related to TSD, along with potential constraints on the 

architecture of sex-ratio reaction norms, suggest that the pace of evolution especially for 

embryonic traits related to TSD should be slow.  These findings reinforce the likely selective 

value of plasticity in oviposition behavior in taxa with TSD (see above) that experience disrupted 

thermal environments or other factors that alter primary sex ratio.  Nonetheless, the quantitative 

genetic literature on TSD-related traits is minimal and taxonomically biased, so more work on 

this topic on a broader, targeted set of taxa is warranted to best support generalizations. 

Our findings probably yield few insights into molecular mechanisms underpinning traits 

linked to TSD.  Still, the lack of phenotypic covariances between maternal and clutch-level 

embryonic TSD traits in our three targeted species suggests independent gene networks or 

modules involved.  Perhaps this conclusion is unsurprising given the maternal physiology likely 
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involved with “thermal” sensing of a nest site relative to that involved with embryos transducing 

a thermal cue to regulate a sex-determining developmental program.  Regardless, our 

understanding of the molecular basis of TSD is growing, as recent meticulous studies have 

identified genes involved in sex-determining pathways in several reptiles with TSD (e.g., 

Schroeder et al. 2016; Deveson et al. 2017; Ge et al. 2018).  It is unclear if research on the 

molecular basis of thermally-based oviposition-site choice in reptiles with TSD will be similarly 

successful.  However, as reptiles with TSD exhibit repeatable nesting behavior (Table 1) and can 

learn to navigate changing ultraviolet landscapes (e.g., Roth and Krochmal 2015), creative work 

on this topic using a thermal gradient (e.g., Bull et al. 1988) might provide an exemplar approach 

to begin dissecting such behavioral traits at the molecular level. 

It is important to acknowledge that our studies—the first of their kind in taxa with TSD—

have weaknesses that limit evolutionary inferences.  We have placed our analyses in a 

quantitative genetic framework, yet we do not have information on the genealogical relationships 

among the adult females within each study to explicitly estimate genetic (co)variances.  

Although phenotypic covariances often can reflect genetic covariances (Cheverud 1988; Roff 

1995; Kruuk et al. 2008; Dochtermann 2011; Brommer 2013), and therefore can provide insights 

into microevolutionary dynamics, perforce they are not the same thing.  Even so, we estimated 

covariances at the maternal/clutch level, not the individual level, which renders them closer to 

being genetic covariances.  Furthermore, the frequency of within-clutch multiple paternity in our 

three species is substantive (>30% in all cases; Pearse et al. 2002; Galbraith et al. 1993; Warner 

et al. 2010), thereby enhancing the likelihood that phenotypic and genetic estimates are similar.  

Moreover, the extensive phenotypic variances we detected are consistent with negligible 

constraint on direct sex-ratio evolution. 
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Other issues regarding the merit of our synthetic work include questions about the 

relevance of the phenotypes we measured to the maternal and embryonic traits that actually 

contribute to sex-ratio evolution under TSD in these species in the wild.  For example, is our 

gauge of sensitivity of embryonic sex determination to temperature (i.e., the intercept of the sex-

ratio reaction norm)—quantified under constant incubation conditions—an adequate or 

appropriate measure?  Should such sensitivity for each clutch instead be characterized by 

different traits such as the range of constant temperatures over which both sexes are produced 

(the slope of the sex-ratio reaction norm; e.g., Hulin et al. 2009), by the full sex-ratio reaction 

norm (e.g., Murren et al. 2014; Pezaro et al. 2017), or by fluctuating temperatures that reflect 

natural thermal environments in nests (e.g., Paitz et al. 2010)?  Even the cross-generational 

transmission of sensitivity of embryonic sex determination to temperature can be subject to 

potential epigenetic effects that alter traditional interpretations of the inheritance of these traits 

(e.g., Warner et al. 2013).  Regardless, positive genetic correlations between clutch sex ratio 

measured at adjacent incubation temperatures in C. picta and C. serpentina (Table 1) imply 

robustness for its use as a proxy measure of sensitivity of embryonic sex determination to 

temperature.  In addition, the among-clutch variation in sex ratios at pivotal temperatures 

(ranging from 0 – 100% male for C. picta and A. muricatus; Fig. 1) further illustrates that our 

measure of the thermal sensitivity of sex determination for each clutch is appropriate. 

Several other potential concerns are evident.  As with sensitivity of embryonic sex 

determination to temperature, the manner in which we characterized maternal choice of nest 

thermal environment may be incomplete or inadequate.  Beyond shade cover, the date on which 

a nest was laid (e.g., Ewert et al. 2005), the moisture environment of a nest (e.g., Lolavar and 

Wyneken 2017), and the depth, slope, aspect, and albedo of a nest (e.g., Hays et al. 2001) all can 
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influence the nest thermal environment and, hence, offspring sex ratio.  The maternal effects of 

among-female differential allocation of yolk hormones or epigenetic factors (e.g., Bowden et al. 

2000) also could affect nest sex ratio and therefore be subject to sex-ratio selection.  Even the 

experimental set-up to assess nesting behavior may be questionable for C. picta and A. 

muricatus, because we used semi-natural enclosures in both cases.  In the former instance, we 

cannot know if the nesting turtles perceived the artificial shade cover objects in the same way as 

natural vegetation cover when identifying nesting sites.  Similarly, for the lizards, variation 

detected in their nest-site choice could be attributable to random nesting and not to active 

decision-making.  Despite these potential issues, shade cover should provide females with a 

relatively reliable cue of the near-term thermal environment of a nest site.  Moreover, females of 

many reptiles with TSD return repeatedly to similar nest environments (Janzen and Morjan 2001; 

Freedberg et al. 2005; Refsnider et al. 2010; Jensen et al. 2018), suggesting the potential for 

covariances to arise between such traits and others conceivably involved in sex-ratio selection. 

Apart from any weaknesses with our work, the core question addressed in this paper is 

more than academic.  The majority of species with TSD are imperiled, hence ideal conservation 

and management efforts require the most informed understanding of their evolutionary potential 

in the context of TSD as overall climate and local habitats are rapidly being altered (Mitchell and 

Janzen 2010; Refsnider and Janzen 2016).  Indeed, a growing body of research is documenting 

the substantial sensitivity to climatic thermal variation of offspring sex ratios in wild populations 

of diverse species with TSD (Janzen 1994; Mitchell et al. 2008; Telemeco et al. 2009, Pen et al. 

2010; Schwanz et al. 2010b; Jensen et al. 2018) and the downstream effects on adult population 

structure (Schwanz et al. 2010a; Grayson et al. 2014; Holleley et al. 2015).  Our results suggest 

that thermally-linked maternal oviposition behavior and thermal sensitivity of sex determination 
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in embryos might evolve independently.  Nonetheless, low estimates of quantitative genetic 

parameters for these traits in species with thermally-sensitive sex determination imply that 

population responses to environmentally-induced sex-ratio selection typically may be 

accomplished more readily and swiftly via phenotypic plasticity.  Accordingly, conservation and 

management efforts should actively provide an array of thermal environments to allow the 

natural expression of variation in nest-site choice and subsequent embryonic sexual 

differentiation in species with TSD. 
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Table 1: Estimated quantitative genetic parameters for maternal behavioral traits and embryonic 

physiological traits potentially related to sex-ratio selection in animals with thermally-sensitive 

sex determination.  R=repeatability, h
2
=heritability, rG=genetic correlation.  Traits in bold were

measured under field conditions, whereas parameters in bold represent reports of P < 0.05.  

Consult original references for details of the studies and statistical analyses.  For studies 

containing multiple estimates, we listed each estimate and denoted the treatment or data subset.   

Taxon/species Trait Parameter, SE or CI Notes Reference 

Copepod 

   Tigriopus californicus 

Sex tendency h2 = 0.12, 0.39 15°C (summer) Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0, 0.17 22°C (summer) Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0.24, 0.058 15°C (fall) Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0.16, 0.045 22°C (fall) Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0.13, 0.04 Pooled Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0.10, 0.033 15°C (summer) corrected Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0, 0.014 22°C (summer) corrected Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0.19, 0.05 15°C (fall) corrected Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0.12, 0.039 22°C (fall) corrected Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0.10, 0.034 Pooled corrected Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0.31, 0.216 Voordouw and Anholt 2002 

   Tigriopus californicus Sex tendency h2 = 0.36, 0.225 Voordouw and Anholt 2002 

Fish 

   Dicentrarchus labrax Sex tendency h2 = 0.62, 0.12 Vandeputte et al. 2007 

   Dicentrarchus labrax Sex tendency h2 = 0.52, 0.13 Vandeputte et al. 2007 

   Dicentrarchus labrax Sex tendency h2 = 0.72, 0.20 Vandeputte et al. 2007 

   Oreochromis niloticus Sex ratio h2 = 0.63 High male sex ratio line Wessels and Hoerstgen-Schwark 2011 

   Oreochromis niloticus Sex ratio h2 = 0.84 Low male sex ratio line Wessels and Hoerstgen-Schwark 2011 

   Oreochromis niloticus Sex ratio h2 = 0.73 Divergence of the two lines Wessels and Hoerstgen-Schwark 2011 

   Menidia menidia Sex ratio NA Paternal effect Conover and Heins 1987 

   Menidia menidia Sex ratio NA Paternal effect Conover and Heins 1987 

   Menidia menidia Sex ratio NA Paternal effect Conover and Heins 1987 

   Menidia menidia Sex ratio NA Population effect Conover et al. 1992 

Crocodilian 
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   Alligator mississippiensis Sex ratio NA Family effect Rhen and Lang 1998 

   Alligator mississippiensis Sex ratio NA Temperature effect Rhen and Lang 1998 

   Alligator mississippiensis Sex ratio NA Family x temperature effect Rhen and Lang 1998 

   Alligator mississippiensis Sex ratio rG = -0.046 31.8°C x 33.8°C Rhen and Lang 1998 

   Alligator mississippiensis Sex ratio rG = 0.128 31.8°C x 34.3°C Rhen and Lang 1998 

   Alligator mississippiensis Sex ratio rG = 0.81 33.8°C x 34.3°C Rhen and Lang 1998 

Lizard 

   Eublepharis macularius Nest temperature R = 0.2 Bull et al. 1988 

   Eublepharis macularius Sex tendency h2 = 0.37, 0.33 30°C Rhen et al. 2011 

   Eublepharis macularius Sex tendency h2 = 0.09, 0.19 32.5°C Rhen et al. 2011 

   Eublepharis macularius Sex tendency h2 = 0.40, 0.27 30°C Rhen et al. 2011 

   Eublepharis macularius Sex tendency h2 = 0, 0.22 32.5°C Rhen et al. 2011 

   Eublepharis macularius Sex tendency h2 = 0.257, 0.115 30°C Rhen et al. 2011 

   Eublepharis macularius Sex tendency h2 = 0.061, 0.041 32.5°C Rhen et al. 2011 

   Eublepharis macularius Nest temperature NA Bragg et al. 2000 

   Hemitheconyx caudicinctus Nest temperature NA Bragg et al. 2000 

Turtle 

   Graptemys ouachitensis Sex ratio h2 = 0.82, 0.31-1 Bull et al. 1982b 

   Graptemys ouachitensis Sex ratio h2 = 0.315 McGaugh and Janzen 2011 

   Chelydra serpentina Sex ratio h2 = 0.60, 0.1008-1 27.5°C Janzen 1992 

   Chelydra serpentina Sex ratio h2 = 0.76, 0.3009-1 28.0°C Janzen 1992 

   Chelydra serpentina Sex ratio h2 = 0.34, 0-1 28.5°C Janzen 1992 

   Chelydra serpentina Sex ratio h2 = 0.56, 0.2569-1 Pooled Janzen 1992 

   Chelydra serpentina Sex ratio rG = 0.73, 0.47-0.99 27.5° C x 28.0° C Janzen 1992 

   Chelydra serpentina Sex ratio rG = 0.52, 0.07-0.96 27.5° C x 28.5° C Janzen 1992 

   Chelydra serpentina Sex ratio rG = 0.67, 0.37-0.97 28.0° C x 28.5° C Janzen 1992 

   Chelydra serpentina Sex ratio h2 = 0.193 McGaugh and Janzen 2011 

   Chelydra serpentina Sex ratio NA Family effect Rhen and Lang 1998 

   Chelydra serpentina Sex ratio NA Temperature effect Rhen and Lang 1998 

   Chelydra serpentina Sex ratio NA Family x temperature effect Rhen and Lang 1998 

   Chelydra serpentina Sex ratio rG = 0.22 27.5° C x 28.0° C Rhen and Lang 1998 

   Chelydra serpentina Sex ratio rG = -0.19 27.5° C x 28.5° C Rhen and Lang 1998 

   Chelydra serpentina Sex ratio rG = 0.62 28.0° C x 28.5° C Rhen and Lang 1998 

   Chelydra serpentina Sex ratio NA Female effect St. Juliana et al. 2004 

   Chrysemys picta Nest vegetation 

cover

R = 0.18 All females Janzen and Morjan 2001 
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   Chrysemys picta Nest vegetation 

cover

R = 0.21 Females with ≥ 3 nests Janzen and Morjan 2001 

   Chrysemys picta Sex ratio NA Valenzuela and Janzen 2001 

   Chrysemys picta Nest location R = 0.03 Mantel Valenzuela and Janzen 2001 

   Chrysemys picta Nest vegetation 

cover 

R = 0.01 Mantel Valenzuela and Janzen 2001 

   Chrysemys picta Nesting date R = 0.03 Schwanz and Janzen 2008 

   Chrysemys picta Nesting date R = 0.022, -0.083-0.124 Cold winters McGaugh et al. 2010 

   Chrysemys picta Nesting date R = 0.057, -0.083-0.197 Mild winters McGaugh et al. 2010 

   Chrysemys picta Nesting date R = 0.118, 0.014-0.222 Hot winters McGaugh et al. 2010 

   Chrysemys picta Nesting date R = 0.060, 0.026-0.095 Pooled McGaugh et al. 2010 

   Chrysemys picta Nesting date h2 = 0.060, -0.131-0.250 Cold winters McGaugh et al. 2010 

   Chrysemys picta Nesting date h2 = 0.103, -0.073-0.278 Mild winters McGaugh et al. 2010 

   Chrysemys picta Nesting date h2 = 0.166, 0.020-0.313 Hot winters McGaugh et al. 2010 

   Chrysemys picta Nesting date h2 = 0 Pooled McGaugh et al. 2010 

   Chrysemys picta Nest vegetation 

cover 

R = 0.260, 0.146-0.374 Cold winters McGaugh et al. 2010 

   Chrysemys picta Nest vegetation 

cover 

R = 0.072, -0.021-0.166 Mild winters McGaugh et al. 2010 

   Chrysemys picta Nest vegetation 

cover 

R = 0.181, 0.097-0.266 Hot winters McGaugh et al. 2010 

   Chrysemys picta Nest vegetation 

cover 

R = 0.140, 0.097-0.182 Pooled McGaugh et al. 2010 

   Chrysemys picta Nest vegetation 

cover 

NA Cold winters McGaugh et al. 2010 

   Chrysemys picta Nest vegetation 

cover 

NA Mild winters McGaugh et al. 2010 

   Chrysemys picta Nest vegetation 

cover 

h2 = 0.188, 0.104-0.271 Hot winters McGaugh et al. 2010 

   Chrysemys picta Nest vegetation 

cover 

h2 = 0.043, -0.126-0.211 Pooled McGaugh et al. 2010 

   Chrysemys picta Nest vegetation 

cover 

h2 = 0.057 McGaugh and Janzen 2011 

   Chrysemys picta Sex tendency h2 = 0.460, 0.043-1 Constant temperature McGaugh and Janzen 2011

   Chrysemys picta Sex tendency h2 = 0.517, 0.074-1 Fluctuating temperature McGaugh and Janzen 2011

   Chrysemys picta Sex tendency h2 = 0.446, 0.024-0.799 Constant temperature McGaugh and Janzen 2011

   Chrysemys picta Sex tendency h2 = 0.576, 0.228-1 Fluctuating temperature McGaugh and Janzen 2011

   Chrysemys picta Sex tendency h2 = 0.171 Constant temperature McGaugh and Janzen 2011

   Chrysemys picta Sex tendency h2 = 0.221 Fluctuating temperature McGaugh and Janzen 2011

   Chrysemys picta Sex tendency h2 = 0.186 Constant temperature McGaugh and Janzen 2011

   Chrysemys picta Sex tendency h2 = 0.240 Fluctuating temperature McGaugh and Janzen 2011

   Chrysemys picta Sex tendency h2 = 0.351, 0.164-0.832 McGaugh et al. 2011

   Chrysemys picta Sex tendency h2 = 0.173, 0-0.628 McGaugh et al. 2011

   Chrysemys picta Sex ratio NA Family effect Rhen and Lang 1998 

   Chrysemys picta Sex ratio NA Temperature effect Rhen and Lang 1998 

   Chrysemys picta Sex ratio NA Family x temperature effect Rhen and Lang 1998 
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   Chrysemys picta Sex ratio rG = 0.42 28.5° C x 29.0° C Rhen and Lang 1998 

   Dermochelys coriacea Nest distance to 

highest tide line 

R = 0.18 Females with ≥ 3 nests Kamel and Mrosovsky 2004 

   Dermochelys coriacea Nest distance to 

highest tide line 

R = 0.21 All females Kamel and Mrosovsky 2004 

   Dermochelys coriacea Nest distance to 

water line 

R = 0.20 Kamel and Mrosovsky 2004 

   Dermochelys coriacea Nest distance to 

water line 

R = 0.18 Kamel and Mrosovsky 2004 

   Eretmochelys imbricata Nest distance to 

water line 

R = 0.23 Kamel and Mrosovsky 2005 

   Eretmochelys imbricata Nest distance to 

forest 

R = 0.40 Kamel and Mrosovsky 2005

   Eretmochelys imbricata Nest location R = 0.62 Kamel and Mrosovsky 2005

   Eretmochelys imbricata Nest vegetation 

cover 

R = 0.71 Kamel and Mrosovsky 2005

   Eretmochelys imbricata Nest distance to 

water line 

R = 0.35 Within year Kamel and Mrosovsky 2006 

   Eretmochelys imbricata Nest distance to 

forest 

R = 0.36 Within year Kamel and Mrosovsky 2006

   Eretmochelys imbricata Nest location R = 0.49 Within year Kamel and Mrosovsky 2006

   Eretmochelys imbricata Nest vegetation 

cover 

R = 0.69 Within year Kamel and Mrosovsky 2006

   Eretmochelys imbricata Nest distance to 

vegetation 

R = 0.58 Within year Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

highest tide line 

R = 0.52 Within year Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

water line 

R = 0.54 Within year Santos et al. 2016 

   Eretmochelys imbricata Nest location R = 0.65 Within year Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

vegetation 

R = 0.55 Within and between years Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

highest tide line 

R = 0.52 Within and between years Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

water line 

R = 0.54 Within and between years Santos et al. 2016 

   Eretmochelys imbricata Nest location R = 0.68 Within and between years Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

vegetation 

R = 0.65 Excludes sand slope nests 
within years 

Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

highest tide line 

R = 0.58 Excludes sand slope nests 

within years 

Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

water line 

R = 0.55 Excludes sand slope nests 

within years 

Santos et al. 2016 

   Eretmochelys imbricata Nest location R = 0.69 Excludes sand slope nests 
within years 

Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

vegetation 

R = 0.61 Excludes sand slope nests 

within and between years 

Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

highest tide line 

R = 0.57 Excludes sand slope nests 

within and between years 

Santos et al. 2016 

   Eretmochelys imbricata Nest distance to 

water line 

R = 0.56 Excludes sand slope nests 
within and between years 

Santos et al. 2016 

   Eretmochelys imbricata Nest location R = 0.81 Excludes sand slope nests 

within and between years 

Santos et al. 2016 

   Caretta caretta Nesting date R = 0.03 Reneker and Kamel 2016 

   Podocnemis lewyana Sex tendency h2 = 0.75, 0.15-1 Gallego-Garcia and Paez 2016 
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Table 2: Basic statistics for observed nesting behaviors in the field (Chelydra serpentina) and 

outdoor enclosures (Chrysemys picta and Amphibolurus muricatus) (CTE=constant temperature 

equivalent) and for observed sex ratios from controlled laboratory incubation of eggs (see 

Methods section for details of variables). 

N mean variance minimum maximum 

Chrysemys picta 

percent canopy open 42 77 194 46 96 

proportion male 42 0.70 0.08 0 1 

Chelydra serpentina 

percent canopy open 25 79 457 25 100 

proportion male 25 0.20 0.05 0 0.71 

Amphibolurus muricatus 

CTE (
o
C) 48 25.72 2.35 22.6 28.6 

proportion male 48 0.39 0.08 0 1 

residuals 48 0 1.51 -2.2 2.7 
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Table 3: Parameter estimates of the relationship between nesting behavior and offspring sex 

ratio data for three species of reptiles with temperature-dependent sex determination (TSD), 

derived from a generalized linear model.  For Chrysemys picta and Chelydra serpentina, the 

slope is in units of percent canopy openness over a nest.  For Amphibolurus muricatus, the slope 

is in units of residuals from the regression of the constant temperature equivalent on the 

oviposition date of a nest.  For both C. serpentina and A. muricatus, which have pattern II TSD, 

we also ran quadratic models. 

Linear β ± SE P Quadratic β ± SE P 

Chrysemys picta -0.006±0.004 0.10 - - 

Chelydra serpentina 0.007±0.014 0.63 - - 

0.000±0.000 0.71 -0.023±0.078 0.77 

Amphibolurus muricatus -0.001±0.082 0.98 - - 

0.001±0.088 0.98 -0.029±0.067 0.66 
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Figure legends 

Fig. 1.  Relationships between thermal aspects of nests in the field and offspring sex ratio under 

controlled temperatures for three distantly-related reptile species with temperature-dependent sex 

determination.  The nest thermal trait for the two turtle species (A: Chrysemys picta and B: 

Chelydra serpentina) was canopy cover at oviposition and for the lizard species (C: 

Amphibolurus muricatus) was the residuals of the quadratic regression of the constant 

temperature equivalent on oviposition date (i.e., higher residuals represent warmer nests for a 

given oviposition date).  Offspring sex ratio data are untransformed for visualization purposes. 
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