Gaussian-beam modeling of ultrasonic transducers using near-field experimental data

Thumbnail Image
Date
1993
Authors
Hsieh, Chung-kao
Kostek, Sergio
Stanke, Fred
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

We wish to develop a model for the pitch-catch response of real transducers which is both accurate and efficient. Wen and Breazeale [1, 2] have shown that the fields of a uniformly active, planar disk transducer can be modelled by a small number of coaxial Gaussian beams (eg, 10 or 15). Margetan, Thompson and Gray [3] have similarly modelled the fields of a uniformly active, planar disk transducer in terms of Hermite Gaussian beams, and further picked the radius of the ideal transducer to match the main lobe of experimental data collected with a very small receiver,to approximate a point probe. Here we use the expansion of Wen and Breazeale and reciprocity to model the pitch-catch response of two transducers facing each other and having parallel axes, as a function of the displacement vector between the two transducers. Further, we fit this pitch-catch model directly to experimental pitch-catch data by choosing the parameters of the Gaussian beams, without assuming that the transducers are uniformly active, planar disks. Finally we show that the model developed by fitting over one set of displacements accurately describes the experiments over a disjoint set.

Comments
Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 1993