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Abstract
Separating crosscutting concerns while preserving modular reasoning is challenging. Type-based interfaces
(event types) separate modularized crosscutting concerns (observers) and traditional object-oriented
concerns (subjects). Event types paired with event specifications have been shown to be effective in enabling
modular reasoning about subjects and observers. Similar to class subtyping there are benefits to organizing
event types into subtyping hierarchies. However, unrelated behaviors of observers and their arbitrary
execution orders could cause unique, somewhat counterintuitive, reasoning challenges in the presence of
event subtyping. These challenges threaten both tractability of reasoning and reuse of event types. This work
makes three contributions. First, we pose and explain these challenges. Second, we propose an event-based
calculus to show how these challenges can be overcome. Finally, we present modular reasoning rules of our
technique, and show its applicability to other event-based techniques including join point types.
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Abstract
Separating crosscutting concerns while preserving modular rea-
soning is challenging. Type-based interfaces (event types) sepa-
rate modularized crosscutting concerns (observers) and traditional
object-oriented concerns (subjects). Event types paired with event
specifications were shown to be effective in enabling modular rea-
soning about subjects and observers. Similar to class subtyping, or-
ganizing event types into subtyping hierarchies is beneficial. How-
ever, unrelated behaviors of observers and their arbitrary execution
orders could cause unique, somewhat counterintuitive, reasoning
challenges in the presence of event subtyping. These challenges
threaten both tractability of reasoning and reuse of event types. This
work makes three contributions. First, we pose and explain these
challenges. Second, we propose an event-based calculus to show
how these challenges can be overcome. Finally, we present mod-
ular reasoning rules of our technique and show its applicability to
other event-based techniques.

1. Introduction
Separation of crosscutting concerns has generated significant inter-
est over the past decade or so [1–15]. An interesting challenge in
separation of crosscutting concerns is to preserve modular reason-
ing and its underlying modular type checking. Recently some con-
sensus has been formed that a notion of explicit interfaces, between
modularized crosscutting concerns and traditional object-oriented
(OO) concerns, enables modular type checking [8–15] and modu-
lar reasoning [2–12].

Previous work, such as join point types (JPT) [15], join point
interfaces (JPI) [14], and Ptolemy’s typed events [16], just to name
a few, propose a type-based formulation of these interfaces to en-
able modular type checking. These type-based interfaces could be
thought of as event types which are announced, implicitly or ex-
plicitly, by traditional OO concerns, or subjects, where modular-
ized crosscutting concerns, or observers, register for the events and
run upon their announcement [17, 18]. Announcement of an event
type could cause zero or more of its observers to run in a chain
where observers can invoke each other. This event announcement
and handling model for separation of concerns has been popular-
ized by AspectJ [1] and is different from models in which the sub-
ject is responsible for invoking all of its observers, as in Java’s event
model and the Observer pattern.

[Copyright notice will appear here once ’preprint’ option is removed.]

Similar to OO subtyping, where a class can subtype another
class, an event type can subtype another event type. Event subtyp-
ing enables structuring of event types and allows for code reuse
[14–16]. Code reuse allows an observer of an event to run upon an-
nouncement of any of its subevents, i.e. observer reuse, and makes
the data attributes of the event accessible in its subevents, i.e. event
inheritance. Previous work [14–16] enables modular type checking
of subjects and observers in the presence of event subtyping.

Modular reasoning about subjects and observers, unlike their
modular type checking, is focused on understanding their behaviors
[3, 19], control effects [5, 7, 20], data effects [2, 21], and exception
flows [6]. In modular reasoning, a system is understood one mod-
ule at a time and in isolation, using only its implementation and
the interfaces, not implementations, of other modules it references
[10, 11]. Previous work, such as crosscutting programming inter-
faces (XPI) [3], crosscutting programming interfaces with design
rules (XPIDR) [20] and translucid contracts [5–7], enables modular
reasoning about subjects and observers using event specifications,
however, they do not support event subtyping.

Modular reasoning about behaviors of subjects and observers,
using event specifications of event types that can subtype each
other, where announcement of an event allows not only observers of
the event but also observers of all of its superevents, with possibly
unrelated behaviors, run in an arbitrary order, faces the following
unique challenges:

• Problem (1) – Combinatorial reasoning: unrelated behaviors of
observers may require a factorial number of combinations of
execution orders of observers of the event and observers of all
of its superevents, up to n! for n observers, to be considered in
reasoning about the subject, which makes reasoning intractable;

• Problem (2) – Behavior invariance: arbitrary execution orders
of observers may force observers of the event and observers
of all of its superevents to satisfy the same behavior, which
prevents reuse of event types, their specifications and observers.

In this work, we solve problem (1) by imposing a novel refin-
ing relation among specifications of an event and its superevents,
such that for each event in a subtyping hierarchy, its greybox spec-
ification [22] refines both behaviors and control effects of the grey-
box specification of its superevent. Our refining relation is the in-
verse of the classical refining for blackbox specifications [23] and
extends it to greybox specifications with control effect specifica-
tions. We solve problem (2) by imposing a non-decreasing rela-
tion on execution orders of observers of an event and observers
of its superevents, such that for each event in a subtyping hierar-
chy, observers of an event run before observers of its superevents.
With the refining and non-decreasing relations combined, subjects
and observers of an event could be understood modularly and in a
tractable manner using only the specification of their event, inde-
pendent of observers of the event, observers of its superevents and
their execution orders, while allowing reuse. This is only sound
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when we impose a conformance relation on subjects and observers
of an event such that each subject and observer of the event respects
behaviors and control effects of their event specifications.

We illustrate problems (1)–(2) in the event-based language
Ptolemy [16] by adding greybox event specifications to it, and pro-
pose our solution in the context of a new language design called
PtolemyS. The language PtolemyS has built-in support for the re-
fining, non-decreasing and conformance relations that together en-
able modular reasoning about behaviors and control effects of sub-
jects and observers. Our proposed solution could be applied to other
event-based systems especially those with event announcement and
handling models similar to AspectJ [1], including join point types
[15] and join point interfaces [14].

Contributions We make the following contributions:

• identification and illustration of problems (1)–(2) of modular
reasoning about subjects and observers, in the presence of event
subtyping;

• the refining relation for greybox event specifications, the non-
decreasing relation for execution orders of observers and the
conformance relation for behaviors and control effects of sub-
jects and observers of an event hierarchy, to solve problems (1)–
(2) and enable modular reasoning;

• PtolemyS, a language design and its sound semantics with sup-
port for the refining, non-decreasing and conformance relations;

• PtolemyS’s Hoare logic [24] for modular reasoning; and
• applicability of PtolemyS’s reasoning to AspectJ-like event-

based systems including join point types [15].

Implementation of PtolemyS’s compiler is publicly avail-
able at http://sourceforge.net/p/ptolemyj/code/HEAD/
tree/pyc/branches/event-inheritance/.

Outline Section 2 illustrates problems (1)–(2) of modular reason-
ing about subjects and observers using Ptolemy [16] and translucid
contracts [5]. Section 3 discusses the refining and non-decreasing
relations in the context of PtolemyS. Section 4 discusses mod-
ular reasoning using translucid contracts, and its soundness us-
ing the conformance relation. Section 5 shows the applicability of
PtolemyS’s reasoning technique to join point types [15]. Section 6
illustrates PtolemyS’s modular reasoning about control effects and
subject-observer control interference [25]. Section 7 discusses the
implementation and limitations of the approach. Section 8 presents
related work and Section 9 discusses future work and concludes.

Appendix Sections A and B discuss PtolemyS’s static and dynamic
semantics. Proofs for soundness of PtolemyS’s Hoare logic and
soundness of type system along with other details of PtolemyS can
also be found in appendices.

2. Problems
In this section we illustrate problems (1)–(2), discussed in Section 1,
using the event-based language Ptolemy [16].

As an example of modular reasoning about the behavior of a
subject, consider static verification of the JML-like assertion Φ

on line 8 of Figure 1. The assertion says that: the expression e

and its state remain the same after announcement and handling
of the event type AndEv, on lines 4–7, where AndEv is a subevent
of BinEv and ExpEv, in the event subtyping hierarchy of Figure 2.
The assertion assumes that e, e.left, and e.right are not null.
The method equals checks for equality of two objects and their
states, e.g. two expressions of type AndExp are equal, if their object
references, parents and their left and right children are equal.
The expression old refers to values of variables at the beginning

1 /* subject */
2 class ASTVisitor {
3 void visit(AndExp e) {
4 announce AndEv(e, e.left, e.right) {
5 e.left.accept(this);
6 e.right.accept(this);
7 }

8 assert e.equals(old(e)); Φ

9 }
10 void visit(TrueExp e) { announce TrueEv(e) {} } ..
11 }

Figure 1. Static verification of Φ in subject ASTAnnouncer.

12 /* event types */
13 void event ExpEv { Exp node; }
14 void event BinEv extends ExpEv {
15 BinExp node; Exp left, right;
16 }
17 void event AndEv extends BinEv { AndExp node; }
18 void event UnEv extends ExpEv { UnExp node; }
19 void event TrueEv extends UnEv { TrueExp node; }
20 /* data types */
21 class Exp {
22 Exp parent;
23 void accept(ASTVisitor v) { v.visit(this); }
24 }
25 class BinExp extends Exp { Exp left, right; .. }
26 class AndExp extends BinExp { .. }
27 class UnExp extends Exp { .. }
28 class TruExp extends UnExp { .. }

Figure 2. Event AndEv and its superevents BinEv and ExpEv.

of method visit, on line 3. To better understand the problems of
modular reasoning we first provide a short background on Ptolemy.

2.1 Ptolemy in a Nutshell
Ptolemy [16] is an extension of Java for separation of crosscut-
ting concerns [13] with support for event types, event subtyping
and explicit announcement and handling of events. In Ptolemy, a
subject announces an event and observers register for the event
and run upon its announcement. Announcement of an event causes
observers of the event and observers of its superevents to run in
a chain according to their dynamic registration order where ob-
servers can invoke each other.

Written in Ptolemy, Figures 1, 2 and 3 together show a simple
expression language with a tracer, type checker and evaluator for
boolean expressions such as AndExp, OrExp and numerical expres-
sions. We focus on the code for boolean expressions, however, the
complete code can be found at http://sf.net/p/ptolemyj/
code/HEAD/tree/pyc/branches/event-inheritance/
examples/100-Polymorphic-Expressions. A parser gener-
ates abstract syntax trees (AST) for expressions of the language
and provides a visitor to visit these abstract syntax trees.

The subject ASTVisitor, in Figure 1, uses announce expres-
sions to announce event types for each node type in the AST of
an expression, upon its visit. For example, it announces the event
type AndEv for visiting AndExp, on lines 4–7, with its event body
on lines 5–6. Observers Tracer, Checker, and Evaluator, in Fig-
ure 3, show interest in events and register to run upon their an-
nouncement. For example, Evaluator shows interest in AndEv, us-
ing a when− do binding declaration, on line 64, and registers for
it using a register expression, on line 57. Evaluator runs the
observer handler method1 evalAndExp, on lines 58–63, upon an-
nouncement of AndEv. The handler pops up values of the left and

1 Phrases ’observer’ and ’observer handler method’ are used interchangably.
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30 /* observers */
31 class Tracer {
32 Tracer() { register(this); }
33 void printExp(ExpEv next) {
34 next.invoke();
35 logVisitEnd(next.node());
36 }
37 when ExpEv do printExp;
38 }
39 class Checker{
40 Stack<Type> typeStack = ..
41 Checker() { register(this); }
42 void checkBinExp (BinEv next) {
43 next.invoke();
44 Bool t1 = (Bool) typeStack.pop();
45 Bool t2 = (Bool) typeStack.pop();
46 typeStack.push(new Bool());
47 }
48 when BinEv do checkBinExp;
49 void checkUnExp(UnEv next) {
50 next.invoke();
51 typeStack.push(new Bool());
52 }
53 when UnEv do checkUnExp;
54 }
55 class Evaluator {
56 Stack<Value> valStack = ..
57 Evaluator() { register(this); }
58 void evalAndExp (AndEv next) {
59 next.invoke();
60 BoolVal b1 = (BoolVal) valStack.pop();
61 BoolVal b2 = (BoolVal) valStack.pop();
62 valStack.push(new BoolVal(b1.val && b2.val));
63 }
64 when AndEv do evalAndExp;
65 void evalTrueExp (TrueEv next) {
66 next.invoke();
67 valStack.push(new BoolVal(true));
68 }
69 when TrueEv do evalTrueExp; ..
70 }

Figure 3. Observers Tracer, Checker and Evaluator.

right children of the visited AndExp node from a value stack, con-
joins them together to evaluate the value of the conjunct expression
and pushes the result back to the stack. For a binary boolean expres-
sion, Checker ensures that its children are boolean expressions by
popping and casting their boolean values from a type stack. Types
Type and Value and their subtypes, e.g. Bool and BoolVal, denote
types and values of boolean and numerical expressions.

Announcement of AndEv, on lines 4–7, could cause the observer
Evaluator of the event, and observers Checker and Tracer of
its superevents BinEv and ExpEv to run in a chain, if they are
registered. An observer of an event is bound to the event through
a binding declaration. For example, Evaluator is an observer of
AndEv because of its binding declaration whereas Checker is not,
though it may run upon announcement of AndEv. Observers are
put in a chain of observers as they register for an event with the
event body as the last observer. For example, the event body for
AndEv is the last observer of the event in the chain. The chain of
observers is stored inside an event closure represented by a variable
next and the chain is passed to each observer handler method.
For example, the chain is passed to evalAndExp on line 58. An
observer of an event can invoke the next observer in the chain using
an invoke expression which is similar to AspectJ’s proceed.
Dynamic registration of observers allows observers to register in
any arbitrary order which in turn means that an observer of an
event can invoke another observer of the same event, an observer
of any of its superevents, or any of its subevents. For example, the
observer Evaluator for the event AndEv can invoke, on line 59,
another observer of AndEv or any of its superevents or subevents.

Event types must be declared before they are announced by
subjects or handled by observers. An event declaration names a
superevent in its extends clause and a set of context variables in
its body. Context variables are shared data between subjects and
observers of an event. An event inherits contexts of its superevents
via event inheritance, can redeclare contexts of its superevents via
depth subtyping, or add to them via width subtyping. For example,
the declaration of AndEv extends BinEv as its superevent, inherits
its context variables left and right and redeclares its context
node. The declaration of BinEv, on lines 14–16, adds contexts left
and right, using width subtyping, to node that it inherits from
its superevent ExpEv. Contexts left and right serve illustration
purposes only, otherwise they could be projected from node. Values
of context variables of an event are set upon its announcement and
stored in its event closure. For example the contexts node, left and
right of AndEv are set with values e, e.left and e.right upon
announcement of AndEv, on line 4.

2.1.1 Event Type Specifications
To verify Φ in Figure 1, the behavior of the announce expression
for AndEv, on lines 4–7, must be understood, which in turn is de-
pendent on behaviors of observers of AndEv and observers of its su-
perevents, running upon its announcement. For such understanding
to be modular, only the implementation of the subject ASTVisitor,
on lines 2–11, and interfaces of modules it references, including
the event types AndEv and its superevents BinEv and ExpEv, are
available. However, neither ASTVisitor nor AndEv, BinEv, ExpEv
say anything about the behaviors of their observers, which in turn
makes modular verification of Φ difficult.

Previous work [5–7] proposes translucid contracts as event type
specifications to specify behaviors and control effects of subjects
and observers of an event and enables their modular reasoning
in the absence of event subtyping. We add translucid contracts to
Ptolemy’s event types and illustrate how unrelated event specifica-
tions of events in a subtyping hierarchy and arbitrary execution of
their observers could cause problems (1)–(2) in modular reasoning
about subjects and observers in the presence of event subtyping.

1 void event ExpEv { ..
2 requires node != null
3 assumes {
4 next.invoke();
5 requires true
6 ensures next.node().parent == old(next.node().parent);
7 }
8 ensures node.equals(old(node))
9 }

10 void event BinEv extends ExpEv { ..
11 requires left != null && right != null && node != null
12 assumes {
13 next.invoke();
14 requires next.node().left!=null&&next.node().right!=null

15 ensures next.node().parent == old(next.node().parent);

16 }

17 ensures true

18 }
19 void event AndEv extends BinEv { ..

20 requires left != null && right != null && node != null
21 assumes {
22 next.invoke();
23 requires next.node().left!=null&&next.node().right!=null
24 ensures next.node().parent == old(next.node().parent);
25 }
26 ensures node.equals(old(node))

27 }

Figure 4. Unrelated contracts of subtyping events.

In its original form [5], a translucid contract of an event is a
greybox specification [22] that specifies behaviors and control ef-
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fects of individual observers of the event, with no relation to be-
haviors and control effects of its superevents or subevents. Figure 4
shows translucid contracts of a few event types of Figure 2. The
translucid contract of AndEv, on lines 20–26, specifies behavior
and control effects of the observer Evaluator of AndEv and es-
pecially its observer handler method evalAndExp. The behavior
of evalAndExp is specified using the precondition requires, on
line 20, and the postcondition ensures, on line 26, which says
that the execution of the observer starts in a state in which the
context node, left and right are not null, i.e. le f t! = null &&
right! = null && node ! = null, and if the execution terminates,
it terminates in a state in which the node is the same as before the
start of the execution of the observer, i.e. node.equals(old (node)).

Control effects of evalAndExp are specified by the assumes
block, on lines 21–25, that limits its implementation structure. The
assumes block is a combination of program and specification ex-
pressions. The program expression next.invoke(), on line 22,
specifies and exposes control effects of interest, e.g. occurrence of
the invoke expression in the implementation of evalAndExp, and
the specification expression requires next.node().le f t! = null
&& next.node().right! = null ensures next.node().parent
== old (next.node().parent), on lines 23–24, hides the rest of
the implementation of evalAndExp, allowing it to vary as long as it
respects the specification. The assumes block of AndEv says that an
observer evalAndExp of AndEv must invoke the next observer in the
chain of observers, line 22, and then can do anything as long as it
does not modify the parent field of the context variable node, line
23–24. The expression next.node() in the contract retrieves the
context node from the event closure next for AndEv and the expres-
sion old refers to values of variables before event announcement.

Through the specification of behaviors of observers of an event,
the translucid contract of an event also specifies the behavior of
an invoke expression in the implementation of an observer of the
event. This is true because in the absence of event subtyping the
invoke expression causes the invocation of the next observer of
the same event. For example, the contract of AndEv specifies the
behavior of the invoke expression in the implementation of the
observer handler method evalAndExp to have the precondition
le f t! = null && right! = null && node! = null and the post-
condition node.equals(old (node)). The precondition of the in-
voke expression must hold right before its invocation and its post-
condition must hold right after it.

2.2 Combinatorial Reasoning, Problem (1)
Various execution orders of observers of an event and observers of
its superevents could yield different behaviors, especially if there
is no relation between behaviors of observers of the event and its
superevents and no known order on their execution. Combinatorial
reasoning forces all such variations of execution orders to be con-
sidered in reasoning about a subject of an event, which makes the
reasoning intractable [18].

To illustrate, reconsider static verification of Φ for announce-
ment of AndEv, on lines 4–7 of Figure 1, with an observer in-
stance evaluator registered to handle AndEv and an observer in-
stance checker registered to handle BinEv. Translucid contracts of
AndEv and BinEv in Figure 4 specify the behaviors of evaluator
and checker, respectively. Announcement of AndEv could cause
the observers evaluator and checker to run in two alternative
execution orders χ1: evaluator ⇀ checker or χ2: checker ⇀
evaluator, depending on their dynamic registration order. In χ1,
evaluator runs first, where it invokes checker using its invoke
expression, on line 59 of Figure 3, and the opposite happens in χ2.
Body of AndEv runs as the last observer in χ1 and χ2 (not shown).

For χ1, the assertion Φ could be verified using the contract of
AndEv for evaluator, on lines 20–26 of Figure 4, using its postcon-

dition node.equals(old (node)), on line 26. Recall that the precon-
dition and postcondition of AndEv are the precondition and postcon-
dition of its observer evaluator. To verify Φ, the postcondition of
AndEv is copied right after the announce expression, using the copy
rule [27], and its context variables node, left and right are re-
placed respectively with parameters e, e.left and e.right of the
announce expression [5]. This allows use of the postcondition of
the contract of AndEv in the scope of the method visit. Replacing
the context variables in the postcondition of AndEv produces the
predicate e.equals(old (e)) which is exactly the assertion Φ that
we wanted to prove.

In χ1 the assertion Φ could be verified using the postcondi-
tion of the translucid contract of AndEv alone. An example of a
more subtle interplay of behaviors of evaluator and checker

is a scenario in which translucid contracts of AndEv and BinEv

look like requires true assumes { establishes true;
next.invoke();} ensures true and requires true assumes
{establishes node.equals (old (node)); next.invoke();}
ensures true, respectively. The specification expression
establishes ep is a sugar for requires true ensures ep.
With these contracts, neither the postcondition of AndEv nor BinEv
alone are enough to verify Φ but their interplay results in a post-
condition that implies and consequently verifies Φ.

In contrast, Φ cannot be statically verified for χ2 because neither
the postcondition true of the contract of BinEv, on line 17 of
Figure 4, nor the interplay of behaviors of observers evaluator

and checker in χ2 provides the guarantees required by Φ.
As illustrated, in reasoning about a subject of an event, various

execution orders of its observers and observers of its superevents
must be considered. Generally for n observers of events in a sub-
typing hierarchy there can be up to n! possible execution orders
[6, 18] which in turn makes the reasoning intractable. Also depen-
dency of the reasoning on execution orders of observers threatens
the modularity of the reasoning. This is because any changes in
execution orders of observers could invalidate any previous reason-
ing. For example the already verified assertion Φ for the execution
order χ1 is invalidated by changing the execution order to χ2.

2.3 Behavior Invariance, Problem (2)
In reasoning about an observer of an event, arbitrary execution
orders of observers of the event and observers of its superevents in
a chain, could force observers of the event and observers of all of its
superevents in a subtyping hierarchy to satisfy the same behavior.
This could prevent reuse of event types, their specifications [28]
and their observers [14, 15].

To illustrate, consider reasoning about the behavior of the in-
voke expression in the observer evaluator, in Figure 3 line 59,
with an observer instance evaluator registered to handle AndEv

and observer instance tracer registered to handle its transitive su-
perevent ExpEv. Translucid contracts of AndEv and ExpEv in Fig-
ure 4 specify behaviors of evaluator and tracer, respectively.
Upon announcement of AndEv, observers evaluator and tracer

could run in two alternative execution orders of χ1: evaluator ⇀
tracer or χ2: tracer ⇀ evaluator.

Recall that the translucid contract of an event also specifies be-
haviors of invoke expressions in implementations of its observers.
In other words, the contract of AndEv specifies the behavior of the
invoke expression in its observer evaluator, on line 59. That is, the
precondition le f t!= null && right!= null && node!= null of
AndEv must hold right before the invoke expression in evaluator

and the postcondition node.equals(old (node)) must hold right af-
ter the invoke expression.

In χ1, for the invoke expression of evaluator to invoke
tracer, its precondition must imply the precondition node! =
null of tracer and the postcondition node.equals(old (node))
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of tracer must imply the postcondition of the invoke expres-
sion in evaluator. In other words, χ1 requires ω1 : P(AndEv)⇒
P(ExpEv) ∧Q(ExpEv)⇒Q(AndEv) to hold for evaluator to in-
voke tracer. Auxiliary functions P and Q return the precondition
and postcondition of an event type, respectively. In contrast, χ2 re-
quires ω2 : P(ExpEv)⇒P(AndEv) ∧ Q(AndEv)⇒ Q(ExpEv) to
hold for tracer to invoke evaluator. To allow both execution or-
ders χ1 and χ2, both conditions ω1 and ω2 must hold which in turn
requires preconditions and postconditions of AndEv and ExpEv and
consequently preconditions and postconditions of their observers
evaluator and tracer to be the same, i.e. invariant.

3. Solution
To solve combinatorial reasoning and behavior invariance problems
we propose to (1) relate behaviors of observers of an event and its
superevent by a refining relation among greybox event specifica-
tions in an event subtyping hierarchy and (2) to limit arbitrary ex-
ecution order of observers by a non-decreasing relation on execu-
tion orders of observers. This proposal constitutes a new language
design called PtolemyS with support for these relations. Figure 5
shows an overview of these relations in PtolemyS.

In Figure 5, for an event subtyping hierarchy, the refining rela-
tion guarantees that the specification (contract) of an event refines
the specification of its superevent and the non-decreasing relation
guarantees that upon announcement of an event by a subject, an
observer of the event runs before an observer of its superevent. The
conformance relation guarantees that each subject and observer of
an event conform to and respect their event specification.

Detailed formalization of PtolemyS’s sound static and dynamic
semantics can be found in Sections B and A.

event 

body

subtype

refine

specified

..

..

conform

non-decreasing

non-decreasing

2

event contractsubject observer observer

announce refine
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conform

..

conform

non-decreasing1 2
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Figure 5. Refining, non-decreasing and conformance relations.

3.1 PtolemyS’s Syntax
Figure 6 shows the expression-based core syntax of PtolemyS with
focus on event types, event subtyping, and event specifications.
Hereafter, term∗ means a sequence of zero or more terms and [term]
means zero or one term.

A PtolemyS program is a set of declarations followed by an
expression, which is like a call to the main method in Java. There
are two kinds of declarations: class and event type declarations. A
class can extend another class and it may have zero or more fields,
methods, and binding declarations.

Similarly, an event type declaration can extend (subtype) an-
other event type and has a return type, a set of context variable
declarations, and an optional translucid contract. The return type
of an event specifies the return type of its observers. An interesting
property of return types of subtyping events is that, because of the
non-decreasing relation, the return type of an event is a supertype
of the return type of the event it extends, see Section B. An event
type declaration inherits context variables of the event types it ex-
tends and can declare more through width subtyping. It can also

prog ::= decl* e
decl ::= class c extends d { form* meth* binding* }
| c event ev extends ev′ { form* [contract] }

meth ::= t m (form*) { e }
binding ::= when ev do m
e, se ::= var | null | new c() | cast c e

| e.m(e*) | e.f | e.f = e | form = e ; e
| announce ev (e*) { e } | e.invoke()
| register(e) | unregister(e)
| refining spec { e } | spec | either {e} or {e}

p, q ::= var | p.f | p == p | p < p | ! p | p && p | old(p)
contract ::= requires p [assumes { se }] ensures q
spec ::= requires p ensures q
t ::= c | thunk ev
form ::= t var

c, d ∈ C ∪{Object} set of class names
ev, ev′ ∈ E ∪{Event} set of event names

f ∈F set of field names
var ∈ V ∪{this,next} V is a set of variable names

Figure 6. PtolemyS’s core syntax, based on [5, 13, 16].

redeclare the context variables of the event types it extends through
depth subtyping [16] as long as the type of the redeclaring context
is a subtype of the type of the redeclared context. Figure 2 illus-
trates the declaration of the event type AndEv, on line 17.

3.2 Refining Relation of Event Specifications
PtolemyS relates behaviors and control effects of observers of
events in a subtyping hierarchy by relating their greybox event
specifications through a refinement relation E. In the refining re-
lation the specification of an event refines the specification of its
superevent, for both behaviors and control effects. PtolemyS’s re-
finement among greybox event specifications is the inverse of clas-
sical behavioral subtyping for blackbox method specifications [23],
however, blackbox specifications do not specify control effects.

In PtolemyS, a translucid contract [5, 6] of an event is a greybox
specification that, in relation to its superevents, specifies behaviors
and control effects of individual observers of the event and their
invoke expressions. A translucid contract of an event specifies
behaviors using the precondition requires and the postcondition
ensures. The behavior requires p ensures q says that if the
execution of an observer of the event starts in state σ satisfying p,
written as σ |= p, and it terminates normally, it terminates in a state
σ ′ that satisfies q, i.e. σ ′ |= q.

A translucid contract specifies control effects of its individual
observers using its assumes block. An assumes block is a com-
bination of program and specification expressions. A program ex-
pression exposes control effects of interest, e.g. invoke expressions,
in the implementation of an observer whereas a specification ex-
pression spec hides the rest of its implementation allowing it to
vary as long it respects its specification. The contract of an event
only names the context variables of the event and must expose in-
voke expressions in the implementation of its observers. Figure 4
illustrates the translucid contract of AndEv, on lines 20–26, with
its precondition, on line 20, postcondition, on line 26, program ex-
pression, on line 22 and specification expression, on lines 23–24.
PtolemyS relates translucid contracts of an event and its superevents
through the refining relation E.

DEFINITION 3.1. (refining translucid contracts). For event types
ev and ev′, where ev is a subevent of ev′, written as
ev �: ev′2, and their respective translucid contracts G = (
requires p assumes {se} ensures q) and G ′ = ( requires p′

2 The class subtyping relation 4 is different from PtolemyS’s event subtyp-
ing relation�:, discussed in Section B.
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assumes {se′} ensures q′), G ′ is refined by G , written as G ′EG ,
if and only if:

(i). requires p′ ensures q′ E requires p ensures q
(ii). se′E se

Figure 7 defines the refinement relation E for PtolemyS expressions.

Event specification refinement relation: Γ ` se′E se

(R-SPEC)
spec = requires p ensures q

spec′ = requires p′ ensures q′ p⇒ p′ q′⇒ q
Γ ` spec′ E spec

(R-INVOKE)
Γ ` se′E se

Γ ` se′.invoke() E se.invoke()

(R-VAR)
textualMatch(var′,var)

Γ ` var′ E var

(R-DEFINE)
Γ ` se′1 E se1 Γ, t : var ` se′2 E se2

Γ ` t var = se′1;se′2 E t var = se1;se2

(R-IF)
Γ ` sp′E sp Γ ` se′1 E se1 Γ ` se′2 E se2

Γ ` if(sp′){se′1} else{se′2} E if(sp){se1} else{se2}

Figure 7. Select rules for the refining relation E.

In Definition 3.1, for a translucid contract of an event to refine
the contract of its superevent, (i) its behavior must refine the behav-
ior of the contract of the superevent and (ii) its assumes block must
refine the assumes block of the translucid contract of its superevent.

In Figure 7, the rule (R-SPEC) shows the refinement of the be-
havior spec′ = requires p′ ensures q′ by the behavior spec =
requires p ensures q. For the behavior spec to refine spec′, its
precondition p must imply the precondition p′, i.e. p⇒ p′, and the
opposite must be true for their postconditions, i.e. q′ ⇒ q. That is
the subevent can strengthen the precondition of its superevent and
weaken its postcondition which is the inverse of classical refine-
ment in class subtyping [23] where a subclass weakens the precon-
dition of its superclass and strengthens its postcondition. Such in-
verse relation of behaviors is necessary in PtolemyS to allow an ob-
server of a superevent to run upon announcement of its subevents.
Also unlike PtolemyS’s refining, the classical refining is for black-
box contracts and does not directly apply to greybox translucid con-
tracts [22] and especially their assumes block [29] with control ef-
fect specifications.

The assumes block se of the translucid contract of an event re-
fines the assumes block se′ of the contract of its superevent, i.e.
se′E se, if: (a) each specification expression in se refines its cor-
responding specification expression in se′ and (b) each program
expression in se refines its corresponding program expression in
se. The rule (R-SPEC) for refinement of behaviors also applies for
refinement of specification expressions since they similarly are be-
havior specifications with a precondition and postcondition [29].
A specification expression in a subevent can strengthen the pre-
condition of its corresponding specification expression in its su-
perevent and weaken its postcondition. For a program expression
to refine another program expression, they must textually match.
The rule (R-VAR) checks for textual matching of variable names us-
ing the auxiliary function textualMatch. For other program expres-
sions, such as invoke and conditional, their refinement boils down
to the refinement of their subexpressions, as in rules (R-INVOKE),
(R-DEFINE) and (R-IF).

To illustrate, the translucid contract of AndEv, on lines 20–26
in Figure 4, refines the contract of ExpEv, on lines 2–8. This is

because (i) the precondition le f t! = null && right! = null &&
node! = null of AndEv implies the precondition node! = null of
ExpEv and the postcondition node.equals(old (node)) of ExpEv

implies the same postcondition of AndEv, and thus using the rule
(R-SPEC) the behavior of AndEv refines the behavior of ExpEv;
(ii) the program expression next.invoke() of AndEv, on line
22, refines its corresponding program expression of ExpEv, on
line 4, using (R-INVOKE) and (R-VAR) and specification expres-
sion requires next.node().le f t ==old (next.node().le f t)&&
next.node().right == old (next.node().right)
ensures next.node().parent == old (next.node().parent) of
AndEv, on lines 23–24, refines its corresponding specification
expression requires true ensures next.node().parent ==
old (next.node().parent) in ExpEv, on lines 5–6, using (R-SPEC).

However, the translucid contract of AndEv does not refine
the contract of BinEv, on lines 11–17, because the postcondi-
tion true of BinEv does not imply the postcondition of AndEv.
Changing the postcondition of BinEv to next.node().parent ==
old (next.node().parent) makes the contract of BinEv refine the
contract of ExpEv.

Textual matching of program expressions is a simpler alterna-
tive to complex higher order logic or trace verification techniques
with its tradeoffs [29]. Textual matching works because PtolemyS’s
semantics enforces depth subtyping, ensuring that a redeclaring
context variable in an event is a subtype of the redeclared context
in its superevents and a next variable in the contract of an event is
a subtype of the next variable in the contract of its superevent.

The refining relation E defines the refinement for correspond-
ing program and specification expressions, that is only structurally
similar contracts may refine each other. Two translucid contracts
are structurally similar if for each specification (program) expres-
sion in the assumes block of one, a possibly different specification
(program) expression exists in the assumes block of the other at
the same location. PtolemyS’s structural similarity for the refining
relation allows definition of PtolemyS’s event specification inheri-
tance, in [26], such that it statically guarantees the refining relation
by combining translucid contracts of an event and its superevents
in a subtyping hierarchy.

3.3 Non-Decreasing Relation of Observers’ Execution
PtolemyS limits the arbitrary execution order of observers of an
event and its superevents by enforcing a non-decreasing rela-
tion on execution orders of observers. In the non-decreasing or-
der , an observer of an event runs before an observer of its su-
perevent. PtolemyS’s semantics for announce, invoke, register
and unregister expressions and the relation of return types of
events in an event hierarchy guarantee the non-decreasing order.

In PtolemyS, a subject announces an event ev using the announce
expression announce ev(e*){e′}. The announce expression evalu-
ates parameters e* to values v*, creates an event closure for the
event ev and binds values v* to context variables of ev in the clo-
sure. The announce expression also creates, in the event closure, a
chain containing registered observers of ev and observers of all its
superevents and runs the first observer in the chain. To construct
the chain, the announce expression adds observers of the event ev
to an empty chain followed by adding observers of the direct su-
perevent of ev and recursively continues until it reaches the root
event Event3. The event body e′ is added to the end of the chain.

By construction, the announce expression ensures that an ob-
server of an event shows up before an observer of its superevent in
the chain which basically is the non-decreasing order of observers.

3 Event is not accessible to programmers and does not have observers,
as a simple design choice, to not allow programmers to affect behaviors of
events of a system by defining a specification for Event.
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Observers of the same event in the chain, maintain among them-
selves, the same order as their dynamic registration order, i.e. an
observer registered earlier shows up in the chain before the ones
registered later. This makes PtolemyS backward compatible with its
earlier versions [5, 6, 13] that do not support event subtyping. The
expression next is a placeholder for an event closure and the type
thunk ev is the type of the event closure of an event ev.

After construction of the chain and running the first observer
in the chain, by the announce expression, observers in the chain
can invoke each other using an invoke expression e.invoke(). The
invoke expression evaluates e to an event closure containing the
chain of observers and runs the next observer in the chain, which is
according to the non-decreasing order. For observers to run in the
non-decreasing order, the return type of an observer of an event
must be a supertype of the return type of the observers of its
superevent. PtolemyS’s static semantics, in Section B, guarantees
this by ensuring that the return type of an event is a supertype of
the return type of its superevent.

Upon announcement of an event, only registered observers of
the event and its superevents run. In PtolemyS, observers show in-
terest in events through binding declarations and register to handle
the events. A binding declaration when ev do m in an observer says
to run the observer handler method m when an event of type ev is
announced. The expression register(e) evaluates e to an object
and adds it to the list of observers A[ev] for each event type ev that is
named in binding declarations of the observer, and unregister(e)
removes the object e from the list of observers of those events. The
announce expression for an event ev recursively concatenates the
list of observers A[ev] of the event ev and the list of observers of its
superevents to construct the chain of observers.

3.4 Refining + Non-decreasing
Any of refining or non-decreasing relations alone cannot solve
both combinatorial reasoning and behavior invariance problems.
With the refining alone, because of the arbitrary execution order
of observers, still up to n! possible execution orders of n observers
of the event and observers of its superevents should be considered
in reasoning, which threatens its tractability; changes in execution
orders of observers of the event or observers of its superevents can
still invalidate any previous reasoning, which threatens modularity
of reasoning; and observers of events in a subtyping hierarchy
still could be forced to satisfy the same behavior, which threatens
reuse. A trivial refining relation in which events of a hierarchy
satisfy the same behavior enables modular reasoning, however it is
undesirable as it prevents reuse of event types, their specifications
[28] and observers [14, 15].

With the non-decreasing alone, because of unrelated behaviors
of observers, observers of events in a subtyping hierarchy may still
be forced to satisfy the same behavior and any changes in behaviors
of superevents of an event could invalidate any previous reasoning
about subjects and observers of the event.

Interestingly, reversing both refining and non-decreasing rela-
tions still allows modular reasoning. To reverse these relations,
the translucid contract of a superevent refines the contract of its
subevent and an observer of a superevent runs before any observer
of its subevent. We chose the current design, as it seemed more
natural, to us, for observers of an already announced event to run
before observers of its superevents.

4. Modular Reasoning
This section formalizes PtolemyS’s Hoare logic for modular reason-
ing, its conformance relation for subjects and observers and sound-
ness of its reasoning technique.

PtolemyS’s refining and non-decreasing relations enable its
modular reasoning about subjects and observers of an event, as

shown in Figure 8. The main idea is to use the translucid contract of
an event as a sound approximation of the behaviors of its observers
and observers of its superevents to reason about:

(1) a subject of the event, especially its announce expression,
independent of its observers and observers of its superevents
and their execution orders; and

(2) an observer of the event, especially its invoke expressions,
independent of its subjects as well as observers it may invoke
and their execution orders.

reasoning judgement: Γ ` {p} e {q}

(V-ANNOUNCE)
(c event ev extends ev′{(t var)* contract}) ∈ CT
contract = requires p assumes {se} ensures q

topContract(ev) = requires p′ assumes {se′} ensures q′

Γ ` {p′[e*/var*]} e′ {q′[e*/var*]}
Γ ` {p[e*/var*]} announce ev(e*){e′} {q[e*/var*]}

(V-INVOKE)
thunk ev = Γ(next)

(c event ev extends ev′{ f orm* contract}) ∈ CT
contract = requires p assumes {se} ensures q

Γ ` {p} next.invoke() {q}

(V-REFINING)
Γ ` {p} e {q}

Γ ` {p} (refining requires p ensures q { e }) {q}

(V-SPEC)
Γ ` {p} requires p ensures q {q}

(V-CONSEQ)
p⇒ p′ q′⇒ q {p′} e {q′}

Γ ` {p} e {q}

Figure 8. Select reasoning rules in PtolemyS’s Hoare [24] logic,
inspired by [7, 29].

Figure 8 shows PtolemyS’s Hoare logic [24] for modular reason-
ing about behaviors of subjects and observers. PtolemyS’s reasoning
rules use a reasoning judgement of the form Γ ` {p} e {q} that says
the Hoare triple {p} e {q} is provable using the variable typing en-
vironment Γ, which maps variables to their types. The judgement
Γ ` {p} e {q} is valid, written as Γ |= {p} e {q}, if for every state
σ that agrees with type environment Γ, if p is true in σ , i.e. σ |= p,
and if the execution of e terminates in a state σ ′, then σ ′ |= q. This
definition of validity is for partial correctness where termination is
not guaranteed. PtolemyS’s reasoning rules use a fixed class table
CT , which is a set of the program’s class and event type declara-
tions. The notation ep[e*/var*] denotes replacing variables var*
with e* in the expression ep. PtolemyS’s rules for reasoning about
standard object-oriented expressions remain the same as in previ-
ous work [24, 29–31] and are omitted.

In Figure 8, the rule (V-ANNOUNCE) reasons about the behav-
ior of an announce expression, in a subject. The rule says that the
behavior of an announce expression announcing an event ev is the
behavior requires p ensures q of the translucid contract of the
event ev. To use the precondition p of the contract and its postcon-
dition q in the scope of the announce expression, their context vari-
ables var* are replaced by arguments e* of the announce expres-
sion [27]. The rule (V-ANNOUNCE) does not require and is indepen-
dent of any knowledge of individual observers of ev or observers of
its superevents, their implementations or execution orders which in
turn makes it modular and tractable.
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To illustrate (V-ANNOUNCE), reconsider verification of the as-
sertion Φ for the announce expression of AndEv, on lines 4–7 of
Figure 1. Using the translucid contract of AndEv, on lines 20–26,
the conclusion of (V-ANNOUNCE), replaces parameters e, e.left
and e.right of the announce expression for context variables of
node, left and right of AndEv in the precondition and postcondi-
tion of the contract of AndEv and yields the Hoare triple:

Γ ` {e.le f t! = null && e.right! = null && e! = null}
announce AndEv(e, e.le f t, e.right)
{e.le f t.accept(this); e.right.accept(this);}
{e.equals(old (e))}

The above judgement says, if e, e.left and e.right are not null,
the expression e and its state remain the same after announcement
and handling of AndEv, i.e. e.equals(old (e)), which is exactly the
assertion Φ we wanted to verify.

The rule (V-INVOKE) reasons about the behavior of an invoke
expression, in an observer. The rule says that the behavior of an
invoke expression in an observer of the event ev, is the behavior of
the translucid contract of ev. The type of the event that the observer
handles, i.e. ev, is part of the type of the event closure next. The
function Γ(next) returns the type of the next expression in the
typing environment Γ. Recall that the event closure next is passed
as a parameter to each observer handler method. Again, the rule
(V-INVOKE) does not require and is independent on any knowledge
about subjects of the event ev or observers it may invoke in the
chain of observer next and thus is modular and tractable.

The rule (V-REFINING) says that the behavior of the body e of
a refining expression is the behavior of its specification expression
requires p ensures q. This is true, because the body of the refin-
ing expression claims to refine its specification. The rule (V-SPEC)
is straightforward [29] and the rule (V-CONSEQ) is standard [24].

4.1 Soundness of Reasoning
In PtolemyS’s the translucid contract of an event is a sound approx-
imation of behaviors of its subjects and observers independent of
observers of the event, observers of its superevents and their execu-
tion orders. This is sound because of the following:

1. Conformance of each observer and subject of an event to the
translucid contract of the event;

2. Refining relation among specifications of the event and its su-
perevents; and

3. Non-decreasing relation on execution orders of observers of the
event and observers of its superevents.

For a greybox translucid contract of an event, all subjects and
observers of the event must conform to the contract of the event.
This is different from a blackbox method specification, e.g. in JML,
in which only a single method has to respect a contract [6, 23].
PtolemyS’s semantics, in Appendices A and B, guarantees the con-
formance, using a combination of type checking and runtime asser-
tion checking. PtolemyS’s event specification inheritance [26], stat-
ically guarantees the refining relation and PtolemyS’s dynamic se-
mantics guarantees the non-decreasing relation. Figure 5 shows the
interplay of conformance, refining and non-decreasing relations.

4.1.1 Conforming Observers
DEFINITION 4.1. (Conforming observer) For an event type ev
with a translucid contract G = (requires p assumes {se}
ensures q), its observer handler method m with its implementa-
tion e is conforming if and only if there exists a typing environment
Γ such that:

(i). Γ |= {p} e {q}
(ii). sevs e

where Figure 9 defines the structural refinement relation vs be-
tween the assumes block se and the body e of its observer.

Structural refinement relation: Γ ` sevs e

(S-REFINING)
Γ ` spec vs refining spec {e}

(S-INVOKE)
Γ ` sevs e

Γ ` se.invoke()vs e.invoke()

(S-VAR)
textualMatch(var′,var)

Γ ` var′ vs var

(S-ANNOUNCE)
Γ ` se*vs e* Γ ` sevs e

Γ ` announce ev(se*){se} vs announce ev(e*){e}

(S-EITHEROR)
Γ ` se1 vs e∨Γ ` se2 vs e

Γ ` either {se1} or {se2} vs e

(S-DEFINE)
Γ ` se1 vs e1 Γ,var : t ` se2 vs e2

Γ ` t var = se1;se2 vs t var = e1;e2

(S-IF)
Γ ` spvs ep Γ ` se1 vs e1 Γ ` se2 vs e2

Γ ` if(sp){se1} else{se2} vs if(ep){e1} else{e2}

Figure 9. Select rules for structural refinement vs [5, 29].

Definition 4.1 says that for an observer handler method of an
event ev to be conforming, its implementation e must satisfy the
precondition p and postcondition q of the translucid contract of the
event, i.e. requirement (i). An expression e satisfies a precondition
p and a postcondition q in a typing environment Γ, written as
Γ |= {p} e {q}, if and only if for every program state σ that agrees
with the type environment Γ, if the precondition p is true in σ , and
if the execution of e terminates in a state σ ′, then q is true in σ ′.
Currently PtolemyS uses runtime assertions to check for satisfaction
of preconditions and postconditions of a contract by its observers.
Static verification techniques could also be used to check for such
satisfaction. Figure 10 shows the conforming observer Evaluator
and its observer handler method evalAndExp, on lines 21–32. In
evalAndExp, assertions on lines 22 and 31 check for preconditions
and postconditions of the contract of AndEv on lines 2 and 8.

Definition 4.1, also requires the implementation e of a con-
forming observer to structurally refine the assumes block se of its
translucid contract, i.e. requirement (ii). The structural refinement
vs guarantees that an observer of an event, in its implementation,
has the control effects exposed in its translucid contract [5, 6] using
its program expressions. Figure 9 shows select rules for PtolemyS’s
structural refinement.

The implementation e of an observer handler method struc-
turally refines the assumes block se of its translucid contract if: (a)
for each specification expression spec in se there is a corresponding
refining expression in e with the same specification and (b) for
each program expression in se, there is a corresponding textually
matching program expression in e. The rule (S-REFINING) checks
for structural refinement of a specification expression by a refining
expression. (S-VAR) checks for textual matching of variable names
using the auxiliary function textualMatch. For other program ex-
pressions, structural refinement boils down to structural refinement
of their subexpressions. The rule (S-EITHEROR) allows an observer
to choose between behaviors in its either-branch or its or-branch.
Similar to the refining relation, structural refinement requires struc-
tural similarity between the implementation of a conforming ob-
server and the assumes block of its contract.
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In Figure 10, the assumes block on lines 4–6 is struc-
turally refined by the implementation of the conforming observer
evalAndExp, on lines 23–32, because the program expression
next.invoke() on line 4 is structurally refined by the program
expression in the implementation on line 23 and the specification
expression on lines 5–6 is refined by a refining expression with the
same specification on lines 25–29. Structural refinement guarantees
that the implementation of evalAndExp has, in its implementation,
a next.invoke() expression as its control effect, as specified by
the program expression next.invoke() in its translucid contract.

A refining expression claims that its body satisfies its specifica-
tion. PtolemyS uses runtime assertions to check this claim. In Fig-
ure 10, runtime checks on lines 24 and 30 check that the body of
the refining expression satisfies its precondition and postcondition
on lines 26 and 27.

Though similar, in the structural refinement vs the implemen-
tation of an observer refines the assumes block of the translucid
contract of its event, whereas in the refining relation E the contract
of an event refines the contract of its superevent. A specification
expression in a contract is structurally refined by a refining expres-
sion in vs whereas it is refined by another specification expression
in E.

4.1.2 Conforming Subjects
DEFINITION 4.2. (Conforming subject) For an event type ev with a
translucid contract G = (requires p assumes {se} ensures q),
its subject with an announce expression announce ev(e*){e′} in
its implementation, is conforming if and only if:
Γ |= {p′} e′ {q′} where requires p′ assumes {se′} ensures q′
= topContract(ev)

The definition says that for a subject of ev to be conforming its
event body e′ must satisfy the precondition p′ and postcondition
q′ of the translucid contract of the event on top of the subtyping
hierarchy of ev, right before the root event Event. The auxiliary
function topContract returns the translucid contract of this event.
As shown in Figure 5, this is necessary for the non-decreasing rela-
tion in which observers of the event and observers of its superevent
run before the event body e′ in the chain of observers. Figure 10
shows the conforming subject ASTVisitor, on lines 10–19. Run-
time assertions on lines 13 and 16 check for satisfaction of the pre-
condition and postcondition of the top contract of AndEv, i.e. the
translucid contract of ExpEv, by the event body.

4.1.3 Soundness Theorem
Theorem 4.3 formalizes soundness of PtolemyS’s Hoare logic.

THEOREM 4.3. (Soundness of PtolemyS’s Hoare logic) PtolemyS’s
Hoare logic, in Figure 8, is sound for conforming PtolemyS pro-
grams. In other words, any Hoare triple provable using PtolemyS’s
logic, i.e. Γ ` {p} e {q}, is a valid triple, i.e. Γ |= {p} e {q}.

The proof is based on induction on the number of events in a
subtyping hierarchy and the number of their observers and uses
conformance, refining and non-decreasing relations. Full proof of
the theorem can be found in Section D.

4.2 Revisiting Reasoning about Announce and Invoke
PtolemyS’s reasoning rules (V-ANNOUNCE) and (V-INVOKE) are
sound because the conformance, refining and non-decreasing re-
lations allow, in any chain of observers, the implementation of an
invoked observer to be inlined in place of invoke expressions of
its invoking observer without violating the precondition and post-
condition of the invoking observer. This in turn allows the chain
of observers of an event and observers of its superevents, starting
from the event body at the end of the chain back to its beginning, to

1 void event AndEv extends BinEv { ..
2 requires left != null && right != null && node != null
3 assumes {
4 next.invoke();
5 requires next.node().left!=null&&next.node().right!=null
6 ensures next.node().parent == old(next.node().parent);
7 }
8 ensures node.equals(old(node))
9 }

10 class ASTVisitor {
11 void visit(AndExp e) {
12 announce AndEv(e, e.left, e.right) {

13 assert(e != null);

14 e.left.accept(this);
15 e.right.accept(this);

16 assert(node.equals(old(node)));

17 }
18 } ..
19 }
20 class Evaluator { ..
21 void evalAndExp (AndEv next) {

22 assert(next.node().left!=null&&next.node().right!=null
&&next.node()!=null);

23 next.invoke();

24 assert(next.node().left!=null&&next.node().right!=null);

25 refining
26 requires next.node().left!=null&&next.node().right!=null
27 ensures next.node().parent == old(next.node().parent){
28 BoolVal b1 = (BoolVal) valStack.pop();
29 }

30 assert(next.node().parent == old(next.node().parent));
31 assert(next.node().equals(old(next.node())));

32 }
33 when AndEv do evalAndExp; ..
34 }

Figure 10. Conforming Evaluator and ASTVisitor.

be recursively inlined in an announce expression without violating
the precondition and postcondition of the contract of the event.

To illustrate, reconsider reasoning about the behavior of
announce AndEv(e, e.le f t, e.right), in Figure 1. Upon announce-
ment of AndEv, if there are no observers of AndEv or observers of
its superevents BinEv or ExpEv in the chain of observers, then the
event body e.le f t.accept(this); e.right.accept(this) executes.
The subject ASTVisitor of AndEv is conforming and thus the
event body satisfies the behavior of the contract of ExpEv, which
is the top event in the hierarchy of AndEv. That is, the event body
satisfies the precondition node ! = null and the postcondition
node.equals(old (node)) of ExpEv after the context node is re-
placed with parameter e of the announce expression:

(H-BODY)
Γ |= {e ! = null}

e.le f t.accept(this); e.right.accept(this);
{e.equals(old (e))}

The refining relation guarantees that the behavior of AndEv re-
fines the behavior of ExpEv. That is the precondition of AndEv im-
plies the precondition of ExpEv, i.e. le f t! = null && right! =
null && node! = null ⇒ node ! = null, and the opposite
is true for their postconditions, i.e. node.equals(old (node)) ⇒
node.equals(old (node)). Using these implications, and the rule
(V-CONSEQ) and after replacing the context node with e, one can
conclude that the event body satisfies the behavior of AndEv:

Γ |= {e.le f t! = null && e.right! = null && e! = null}
e.le f t.accept(this); e.right.accept(this);

{e.equals(old (e))}
Since the event body is the only observer that executes upon

announcement of AndEv, the announce expression can be replaced
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with the event body:

(H-ANNOUNCE-BODY)
Γ |= {e.le f t! = null && e.right! = null && e! = null}

announce AndEv(e, e.le f t, e.right)
{e.le f t.accept(this); e.right.accept(this);}

{e.equals(old (e))}

The judgement (H-ANNOUNCE-BODY) says the announce ex-
pression of AndEv with event body as its only observer satisfies
the behavior of the translucid contract of AndEv.

However, the event body may not be the only observer of AndEv.
Consider observers evaluator and tracer of event AndEv and
ExpEv and the event body of AndEv, shown as B(AndEv), run in
a chain χ1 : evaluator ⇀ tracer ⇀ B(AndEv). Again, con-
formance of ASTVisitor means that the event body satisfies the
behavior of the contract of ExpEv, i.e. (H-BODY). Recall that an
observer of an event and the invoke expressions in its implemen-
tation have the precondition and postcondition of the contract of
the event. The precondition of the invoke expression in the imple-
mentation of tracer implies the precondition of the event body,
i.e. node! = null⇒ node! = null and the postcondition of the
event body implies the postcondition of the invoke expression,
i.e. node.equals(old (node))⇒ node.equals(old (node)). This in
turn allows the event body, in grey, to be inlined in the place of the
invoke expression in the implementation of tracer, in Figure 3,
without violating the precondition and postcondition of tracer:

(H-TRACER)
Γ |= {e ! = null}

e.le f t.accept(this); e.right.accept(this);
refining requires true
ensures e.parent == old (e.parent){..}

{e.equals(old (e))}

Using the refining relation, the precondition of AndEv implies
the precondition of ExpEv and the opposite is true for their post-
conditions. This means the precondition of the invoke expres-
sion in the implementation of evaluator implies the precondi-
tion of tracer, i.e. le f t! = null && right! = null && node! =
null ⇒ node ! = null, and the postcondition of tracer im-
plies the postcondition of the invoke expression in evaluator,
i.e. node.equals(old (node)) ⇒ node.equals(old (node)). This
allows the implementation of tracer in (H-TRACER) to be inlined,
in grey, in place of the invoke expression in evaluator without
violating its precondition and postcondition of evaluator:

(H-EVALUATOR)
Γ |= {e.le f t! = null && e.right! = null && e! = null}

e.le f t.accept(this); e.right.accept(this);

refining requires true

ensures e.parent == old (e.parent){..};
refining
requires e.le f t! = null && e.right! = null
ensures e.parent == old (e.parent){..};
{e.equals(old (e))}

Since the announcement of AndEv causes the chain χ1 to run,
the inlined chain of observers in (H-EVALUATOR) can be replaced
with the announce expression:

(H-ANNOUNCE-χ1)
Γ |= {e.le f t! = null && e.right! = null && e! = null}

announce AndEv(e, e.le f t, e.right)
{e.le f t.accept(this); e.right.accept(this);}
{e.equals(old (e))}

The judgement (H-ANNOUNCE-χ1) says that the behavior of
the announce expression of AndEv with the chain of observers χ1
satisfies the behavior of the contract of AndEv.

(H-ANNOUNCE-BODY) and (H-ANNOUNCE-χ1) say the behavior
a chain of observers of AndEv and observers of its superevents,
can be approximated with the precondition and postcondition
of the translucid contract of the AndEv which is what the rule
(V-ANNOUNCE) in PtolemyS’s reasoning logic says. A similar jus-
tification is true for the rule (V-INVOKE).

5. Applicability
Our proposed modular reasoning technique is not exclusive to
PtolemyS and could be adapted to similar AspectJ-like [1] event-
based systems such as join point types (JPT) [15] and join point
interfaces (JPI) [14]. Application of our reasoning technique to join
point interfaces could be found in Section C.

With join point types, a subject (base) exhibits a join point
type (event) using an exhibits statement and aspects (observers)
advise the event and handle it using advises statements. A join
point type can extend another join point type, inherit its context
variables, and add to them through width subtyping. Exhibiting a
join point type causes its aspects and aspects of its super join point
types to run in a chain where aspects can invoke each other, using
proceed statements. The execution order of aspects is specified
using precedence declarations. Join point types do not support
depth subtyping, however, this does not affect the applicability of
PtolemyS’s reasoning technique to them.

1 joinpointtype AndEv extends BinEv {

2 /*@ requires node!=null && left!=null &&right!=null;
3 @ model_program {
4 @ proceed(next);
5 @ requires node.left!=null && node.right!=null;
6 @ ensures node.parent == old(node.parent);
7 @ }
8 @ ensures node.equals(old(node)); */

9 }
10 class ASTVisitor exhibits AndEv,.. {
11 void visit(AndExp e) {
12 exhibits new AndEv(e, e.left, e.right) {
13 e.left.accept(this);
14 e.right.accept(this);
15 }; ..
16 } ..
17 }
18 aspect Evaluator advises AndEv,.. { ..
19 void around(AndEv jp) {
20 proceed(jp);
21 refining
22 requires node.left!=null && node.right!=null;
23 ensures node.parent == old(node.parent){
24 .. //same as before
25 }
26 } ..
27 }

Figure 11. Join point type AndEv and its translucid contract

Figure 11 shows parts of the expression language example
rewritten using join point types where the subject ASTVisitor ex-
hibits a join point instance AndEv, on lines 12–15, and the observer
Evaluator advises the join point, on lines 19–26. Evaluator in-
vokes the next observer in the chain of observers using a proceed
statement on line 20, which takes as argument a join point instance
jp of join point type AndEv. The join point type AndEv is declared
on lines 1–9 and extends the join point type BinEv.

Figure 11 shows the syntactic adaptation of the translucid con-
tract of the join point type AndEv, on lines 2–8, using a JML-like
syntax. JML syntax is specifically chosen to minimize required
syntactic changes. In a contract of a join point type, a JML model
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program [29] is similar to an assumes block and a proceed state-
ment is equivalent to an invoke expression [5]. A variable next
in the contract of a join point type is a placeholder for join point
instances of that type, which contains values of its contexts.

Although, a translucid contract of a join point type uses JML’s
syntax, its verification is completely different from JML. This is
because a JML contract specifies the behavior and structure of only
a single method whereas a translucid contract of a join point type
specifies all bases and aspects of the join point type. Consequently,
for the conformance relation, for each join point type, all of its
bases and aspects must conform to the translucid contract of their
join point type, i.e. structurally refine the contract and satisfy its
preconditions and postconditions. Type checking rules of join point
types could be augmented to check for structural refinement and
runtime assertions could be added to bases and aspects to check
for their satisfaction of preconditions and postconditions of their
contract and their specification expressions. In addition to syntactic
adaptations of structural refinement, the rule (S-VAR) should be
slightly modified to allow for structural refinement of placeholder
variables next by join point instance variables. Unlike PtolemyS in
which a variable next is structurally refined by a textually matching
variable next, in join point types a variable next in a contract of
a join point type is structurally refined by a join point instance
variable in the implementation of an observer if their types are the
same. For example, in Figure 11, the variable next in the translucid
contract of AndEv, on line 4, is structurally refined by the join point
instance variable jp in the observer Evaluator, on line 20, because
they both are of the same type AndEv.

Another difference between translucid contracts and JML con-
tracts is that, JML requires model programs of a type and its su-
pertype to be the same [29], whereas in translucid contracts the as-
sumes block of an event refines the assumes block of its superevent.
Consequently, for the refining relation, PtolemyS’s specification in-
heritance [26] could be adapted to join point types, mostly through
syntactic adaptations, to statically guarantee the refining relation
between translucid contracts of a join point type and its super type.

For the non-decreasing relation, precedence declarations of as-
pects could be statically checked to ensure that an aspect of a join
point type runs before aspects of its super join point type or execu-
tion of aspects can be reordered dynamically at runtime to guaran-
tee the non-decreasing relation.

A similar technique, with several adaptations, could be applied
to join point interfaces, due to similarities of event announcement,
handling and subtyping models of join point types and join point
interfaces [26].

6. Modular Reasoning about Control Effects
PtolemyS not only enables modular reasoning about behaviors of
observers of an event but also their control effects [5, 20] in the
presence of event subtyping. In PtolemyS, similar to Aspect-like [1]
languages, observers run in a chain and invoke each other using an
invoke expression. This in turn means an observer of an event can
skip the execution of other observers of the event or observers of its
superevents, including the event body, by not executing its invoke
expression. Understanding the invocations among observers of an
event and its superevents in a chain of observers, falls under the
category of modular reasoning about control effects of observers.

As an example of modular reasoning about control effects of
observers consider static verification of the control effect assertion
Ψ that says: upon announcement and handling of AndEv, its event
body, on lines 5–6 of Figure 1 will be executed and will not be
skipped4. This is important because if the execution of the event
body of AndEv is skipped, the right and left children of an AndExp

4 PtolemyS’ core does not support throwing or handling of exceptions [6].

expression and subtrees recursively rooted in these children are not
going to be visited. The execution of the body of AndEv, shown
as B(AndEv), could be skipped in a chain of observers if any
of observers of AndEv or observers of its superevents BinEv or
ExpEv, which run before the event body, skip the execution of their
invoke expression and break the invocation chain. For example,
in chain χ2: evaluator ⇀ tracer ⇀ B(AndEv), the execution
of B(AndEv) is skipped if any or both invoke expressions in the
implementations of evaluator, on line 59 of Figure 3, or tracer,
on line 43, goes missing.

To reason about control effects of announcement of an event,
the control effects of all of its observers and observers of its su-
perevents for their various execution orders must be understood, es-
pecially regarding the execution of their invoke expressions. Such
reasoning is dependent on control effects of individual observers
of the event and observers of its superevents and any changes in
these control effects can invalidate any previous reasoning, which
threatens its modularity.

PtolemyS’s translucid contracts enable modular reasoning about
control effects of observers of an event and observers of its su-
perevents, independent of observers and their execution orders.
This is sound because each conforming observer of an event has
the same control effects as the translucid contract of the event and
PtolemyS’s refining relation ensures that the contract of an event
refines the control effects of the contract of its superevent. Control
effects are specified by program expressions in translucid contracts.

In PtolemyS, the assertion Ψ could be verified using the translu-
cid contract of AndEv and especially its assumes block, on lines
21–25 of Figure 4. The program expression next.invoke(), on
line 22, guarantees that each observer of AndEv includes the in-
voke expression in their implementations; and the refining relation
ensures that each observer of superevents of AndEv contain the in-
voke expression in their implementations too. This means that the
invoke expression in the implementation of evaluator or tracer
in χ2 cannot go missing or otherwise these observers will not be
conforming to their translucid contracts. This in turn means that all
the observers in the chain χ2 including the event body at the end of
the chain are invoked and executed.

6.1 Control Interference of Subjects and Observers
Rinard et al. [25] classify the control interactions of a subject and
observer of an event into four categories: (i) augmentation, (ii) nar-
rowing, (iii) replacement and (iv) combination. These categories are
concerned about the number of invoke expressions and their exe-
cutions in an implementation of an observer. An augmentation ob-
server executes its invoke expression exactly once, narrowing ex-
ecutes it at most once, replacement does not execute any invoke
expressions and a combination observer executes its invoke expres-
sion zero or more times in its implementation.

PtolemyS’s translucid contracts allow modular reasoning about
control interference category of interactions of subjects and ob-
servers of an event, independent of observers of the event and ob-
servers of its superevents. To reason about the control interference
of subjects and observers of an event, one uses the translucid con-
tract of the event to decide about the the number of times invoke
expressions of the translucid contract may execute. An invoke ex-
pression surrounded by an if conditional executes at most once,
whereas an invoke expression surrounded by a loop may execute
zero times or more. Otherwise an invoke expression executes ex-
actly once. This is sound, because the structural refinement of the
conformance relation requires each observer of an event to have the
same control effects as its translucid contracts especially regarding
the number of invoke expressions in its implementation. Also the
refining relation ensures that the control effects of observers of an
event refine the control effects of observers of its superevents.
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Augementation interactions and observers To illustrate the aug-
mentation interaction, consider the observer Evaluator and sub-
ject ASTVisitor of the event AndEv. Using only the translucid
contract of AndEv, on lines 20–26 of Figure 4, one can conclude
that subjects and observers of AndEv have an augmentation inter-
action, in which Evaluator augments the behavior of its subject,
i.e. Evaluator is an augmentation observer. This is because, the
assumes block of the contract of AndEv contains an invoke expres-
sion, on line 22, which is not surrounded by any conditionals or
loops. This in turn means that the conforming observer Evaluator
has only one invoke expression in its implementation which ex-
ecutes exactly once. For observers Checker and Tracer of su-
perevents BinEv and ExpEv of AndEv, the refining relation ensures
that they also have only one invoke expressions in their implemen-
tations and thus they are augmentation observers too.

For an event with augmentation interactions and observers, one
can conclude that upon announcement of the event all observers of
the event and observers of its superevent including the event body
execute and no execution is skipped, similar to assertion Ψ.

Replacement interactions and observers To illustrate the replace-
ment interaction, consider the translucid contract of AndEv with
its translucid contract in Figure 4, but without its invoke expres-
sion. Using this translucid contract one can conclude that subjects
and observers of AndEv have a replacement interaction, in which
Evaluator replaces the body of its announce expression in a sub-
ject, i.e. Evaluator is a replacement observer. To structurally re-
fines its contract, Evaluator cannot have any invoke expression in
its implementation. The refining relation ensures that superevents
BinEv and ExpEv cannot have invoke expressions in their contracts
either and thus observers Checker and Tracer are replacement ob-
servers too.

For an event with replacement observers, one can conclude that
upon announcement of the event the first observer of the event or
its superevents executes and executions of the rest of the observers
including the event body are skipped. This is because none of the
observers have an invoke expression in their implementations.

7. Discussion

Implementation To prove the feasibility of the proposed lan-
guage, we implemented PtolemyS’s compiler on top of Ptolemy’s
compiler [16] which itself is an extension of the OpenJDK Java
compiler. To the previous compiler, we added: translucid contracts,
static structural refinement, static event specification inheritance,
runtime assertion checking of preconditions and postconditions of
contracts and their specification expressions, and a non-decreasing
execution order of observers of an event and its superevents. Com-
pared to Ptolemy’s compiler, maintaining separate lists for ob-
servers of separate events, rather than a single global list, sim-
plified implementation of event announcement and handling espe-
cially with dynamic (un)registration of observers.

Limitation A non-decreasing relation among observers of an event
and its superevent(s) limits execution order of observers and could
require a programmer to co-design the event subtyping hierarchy
of a program and execution order of their observers. Without such
a co-design, there could be some execution orders of observers that
may not be allowed by a specific event subtyping hierarchy. For ex-
ample, with the event hierarchy in our expression language exam-
ple, observer evaluator always runs before checker. Placement
of invoke expressions in observers play an important role in the
functionality of a system. For example, although evaluator runs
before checker, an expression is not evaluated unless it is first type
checked. This is enforced because evaluator invokes the handler
chain before evaluating.

8. Related Work

Modular type checking Previous work on join point types
(JPT) [15], join point interfaces (JPI) [14], and Ptolemy’s typed
events [16], enable modular type checking of subjects and ob-
servers of subtyping event types. EventJava [9] extends Java
with events and event correlation in distributed settings and Es-
cala [4] extends Scala with explicitly declared events as members
of classes. However, previous works are not concerned with mod-
ular reasoning about behaviors and control effects of subjects and
observers of events using specification of subtyping event types.

Modular reasoning Previous work on MAO [21], EffectiveAd-
vice [32], MRI [33] and the work of Khatchadourian et al. [19]
enables modular reasoning, however, it does not use explicit inter-
faces among subjects and observers and thus is not concerned about
their subtyping. Previous work on crosscutting programming inter-
faces (XPI) [3], crosscutting programming interfaces with design
rules (XPIDR) [20] and open modules [2] enables modular rea-
soning using explicit interfaces, however, it is not concerned about
subtyping of these interfaces. Translucid contracts [5–7] proposes
event type specifications to enable modular reasoning, however it
is not concerned with event subtyping.

Modular reasoning about dynamic dispatch Supertype abstrac-
tion [34] enables modular reasoning about invocation of a dynami-
cally dispatched method in the presence of class subtyping [34], re-
lying on a refinement relation among blackbox contracts of a super-
type and its subtypes [23, 35]. PtolemyS’s refining of event contracts
is the inverse of the refinement in supertype abstraction and extends
it to greybox contracts with control effects. Refinement in super-
type abstraction relies on known links among method invocations
and method names, whereas in PtolemyS there is no link among
subjects and observers of an event [6, 18]. Subjects and observers
do not know about each other and only know their event. Unlike
a method invocation which invokes exactly one method, announce-
ment of an event in PtolemyS by a subject could invoke zero or more
observers of the event and observers of its superevents where all
these observers and the subject must conform to their event specifi-
cations. The challenge in supertype abstraction is modular reason-
ing about a method invocation independent of the dynamic types
of its receiver, whereas in PtolemyS the challenge is tractable rea-
soning about announcement and handling of an event, independent
of its observers, observers of its superevents and their execution
orders, while allowing reuse of events.

9. Conclusion and Future Work
In this work, we identified two problems of combinatorial reason-
ing and behavior invariance in modular reasoning about subjects
and observers in the presence of event subtyping, that threaten
tractability of reasoning and reuse of events. We proposed a refin-
ing relation among greybox event specifications of events in a sub-
typing hierarchy, a non-decreasing relation on execution orders of
their observers, and a conformance relation among subjects and ob-
servers of an event and their translucid contract to solve these prob-
lems in the context of a new language design called PtolemyS. We
discussed PtolemyS’s modular reasoning and showed its applicabil-
ity to other AspectJ-like [1] event-based systems such as join point
types [15]. Future work includes performing a large experimental
study to further investigate benefits of PtolemyS’s event model and
its modular reasoning.
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A. Dynamic Semantics
In this section, we present a substitution-based small-step opera-
tional semantics for PtolemyS with special focus on announcing
and handling of events in an event inheritance hierarchy and the
non-decreasing relation on execution order of their observers.

A.1 Dynamic Semantic Objects

Added syntax:
e ::= loc | evalpost e q

| NPE | CCE | TCE
where loc ∈L , a set of locations

Evaluation contexts:
E ::= − | E.m(e . . .) | v.m(v . . .Ee . . .) | E . f | E. f=e

| if (E) { e } else { e } | cast c E | t var=E; e
| announce(v . . .Ee . . .){e} | invoke(E)
| register(E) | unregister(E)
| refining requires E ensures q

Evaluation relation: ↪→: 〈e,S,Π,A〉 → 〈e′,S′,Π′,A′〉

Domains:
Σ ::= 〈e,S,Π,A〉 “Configurations”
S ::= {lock 7→ svk}k∈K , “Stores”
v ::= null| loc “Values”
sv ::= or | ec “Storable Values”
or ::= [c.F ] “Object Records”
F ::= { fk 7→ vk}k∈K , “Field Maps”
ρ ::= {var 7→ vk}k∈K , “Environments”
ec ::= eClosure(H,e,ρ) “Event Closure”
H ::= h+H | • “Handler Records List”
h ::= 〈loc,m〉 “Handler Record”
A ::= {evk 7→ Ok} “Active Objects Map”
O ::= loc+O | • “Active Objects List”

where K is finite

Figure 12. Added syntax, evaluation contexts and configuration.

PtolemyS’s operational semantics relies on few additional ex-
pressions that are not part of its surface syntax, as shown in Fig-
ure 12, including loc to represent the locations in the store and
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evalpost e q to check that the expression e satisfies the postcon-
dition q. PtolemyS also uses three exceptions to represent derefer-
encing null references, i.e. NPE, runtime cast exceptions, i.e. CCE,
and violations of translucid contracts, i.e. TCE. In PtolemyS’s core
semantics, exceptions are terminal states [13]. Figure 12 also shows
the evaluation contexts used in PtolemyS’s dynamic semantics. An
evaluation context E specifies the evaluation order and the position
in an expression where the evaluation is happening. PtolemyS uses
a left-most inner-most call-by-value evaluation policy.

PtolemyS’s operational semantics, transitions from one con-
figuration to another. A configuration Σ, in Figure 12 contains
an expression e, store S, store typing Π and a mapping A from
events ev to their ordered list of observers O. A store maps lo-
cations to storable values sv which themselves are either an ob-
ject record or or an event closure ec. An object record has a class
name c and a map F from fields to their values. An event closure
eClosure(H,e,ρ) contains an ordered list of observer handlers H,
an expression e and an environment ρ for running e. An observer
handler method h contains a location loc that points to its observer
object and a its method handler name m. A value v is either a loca-
tion loc or null. A store typing is maintained and updated by the
dynamic rules only to be used in the soundness proof.

A.2 Dynamic Semantic Rules

Evaluation relation: ↪→: 〈e,S,Π,A〉 → 〈e′,S′,Π′,A′〉

(ANNOUNCE)
(c event ev extends ev′{(t var)* contractev}) ∈CT

loc 6∈ dom(S)
H = handlersOf (ev) ρ = {vari 7→ vi | vari ∈ var*∧ vi ∈ v*}

S′ = S] (loc 7→ eClosure(H,e,ρ)) Π
′ = Π] (loc : thunk ev)

〈E[announce ev (v*) {e}],S,Π,A〉 ↪→
〈
E[loc.invoke()],S′,Π′,A

〉
(INVOKEDONE)

eClosure(•,e,ρ) = S(loc)
〈E[loc.invoke()],S,Π,A〉 ↪→ 〈E[e],S,A,Π〉

(INVOKE)
eClosure(〈loc′,m〉+H,e,ρ) = S(loc)

[c.F ′] = S(loc′) (c2, t m(t1 var1){e′}) = methodBody(c,m)
e′′ = [loc1/var1, loc′/this]e′ loc1 6∈ dom(S)

S′ = S] (loc1 7→ eClosure(H,e,ρ)) Π
′ = Π] (loc1 : Π(loc))

〈E[loc.invoke()],S,Π,A〉 ↪→
〈
E[e′′],S′,Π′,A

〉
(REGISTER)
∀ev ∈ eventsOf (loc) . A′[ev] = A[ev]+ loc

〈E[register(loc)],S,Π,A〉 ↪→
〈
E[loc],S,Π,A′

〉
(UNREGISTER)

∀ev ∈ eventsOf (loc) . A′[ev] = A[ev]− loc
〈E[unregister(loc)],S,Π,A〉 ↪→

〈
E[loc],S,Π,A′

〉
(REFINING)

n 6= 0
〈E[refining requires n ensures q {e}],S,Π,A〉 ↪→

〈E[evalpost e q],S,Π,A〉

(EVALPOST)
n 6= 0

〈E[evalpost v n],S,Π,A〉 ↪→ 〈E[v],S,Π,A〉

(ECGET)
eClosure(H,e,ρ) = S(loc) v = ρ( f )
〈E[loc. f ],S,Π,A〉 ↪→ 〈E[v],S,Π,A〉

Figure 13. Select rules for PtolemyS’s dynamic semantics, based
on [13].

handlersOf (Event) = •

(c event ev extends ev′{ f orm* contractev}) ∈ CT
handlersOf (ev) = hbind(ev,S,A[ev])⊕handlersOf (ev′)

hbind(ev,S,•) = •

[c.F ] = S(loc) B = bindingsOf (c)
hbind(ev,S, loc+A[ev]) = match(B,ev,S, loc)⊕hbind(ev,S,A[ev])

bindingsOf (Object) = •

(class c extends d { f orm* meth* binding*}) ∈ CT
bindingsOf (c) = binding* ⊕ bindingsOf (d)

match(•,ev,S, loc) = •

match((when ev do m)+B,ev,S, loc) = (〈loc,m〉+match(B,ev,S, loc))

[c.F ] = S(loc) B = bindingsOf (c)
eventsOf (loc) = registeredFor(loc,B)

registeredFor(loc,•) = •

registeredFor(loc,(when ev do m)+B) = ev⊕ registeredFor(loc,B)

Figure 14. Select auxiliary functions for PtolemyS’s dynamic se-
mantics, based on [6, 13].

Figure 13 shows the dynamic semantic rules for PtolemyS-
specific expressions. In PtolemyS a subject announces an event us-
ing an announce expression, observers (un)register for the event
using (un)register expressions, and invoke each other using invoke
expressions.

The rule (ANNOUNCE), says that upon announcement of an event
ev an event closure eClosure(H,e,ρ) is constructed that contains
the list (chain) of observer handler methods of the event and the
observer handler methods of its superevent, in H, the event body e
and an environment mapping context variables var* of the event to
their values v*, in ρ . The list H is constructed using the auxiliary
function handlersOf , in Figure 14. The function handlersOf first
computes the list of observer handler methods of the event ev, us-
ing hbind, and concatenates it to the handlers of the superevents ev′
until the event Event is reached. This in turn ensures that the ob-
server handler methods of the event ev appear before the observer
handler methods of its superevent ev′ in the list of observer handler
methods H, according to the non-decreasing relation. The event
Event has no observers since is not part of PtolemyS’s surface syn-
tax and observers can not register for or handle it. The concatenate
operator ⊕ ignores empty • elements. The function hbind binds
the observer loc, in the beginning of the A[ev], to observer handler
method m, using the auxiliary function match and concatenates it to
the bindings for the rest of A[ev]. After construction, the event clo-
sure is mapped to a fresh location loc and the execution of the chain
of observer handler methods starts using the invoke expression, i.e.
loc.invoke().

(ANNOUNCE) also updates the store typing environment Π with
a new mapping from the location loc to the type thunk ev of the
event closure it points to. Recall that thunk types mark event closure
types. The operator ] is an overriding union operator.

When executing the chain of observer handler methods H,
(INVOKEDONE) executes the event body e, if there are no more ob-
server handler methods in the list, i.e. H is •. Otherwise, (INVOKE),
executes the next observer handler method m of the observer in-
stance loc′. The rule (INVOKE) finds the body e′ of the method
m, using the auxiliary function methodBody, replaces its parame-
ter loc1 and this with their values var1 and loc′ and executes the
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result expression e′′. The auxiliary function methodBody emulates
dynamic dispatch at runtime. After the execution of the observer
handler method at the beginning of the list H, the event closure
is updated to reflect the execution of the observer and the updated
event closure is stored at a fresh location loc1. (INVOKE) also up-
dates the store typing environment Π with a mapping between the
location loc1 of the new event closure and its type.

Announce and invoke expressions execute observers that are
registered for the event. The rule (REGISTER) adds the location
loc of an observer instance to the list A[ev] of active objects for
the event ev. An observer with multiple binding declarations is
register for all the events named in its binding declarations. The
auxiliary function eventsOf computes all events an observer is
registered for by computing all its bindings, using the auxiliary
function bindingsOf . Similarly, the rule (UNREGISTER) removes an
observer instance from the list of active objects for all events it was
registered to.

A refining expression claims that its body satisfies the precon-
dition and postcondition of its specification. The rule (REFINING)
ensures that the body e of a refining expression actually refines
its specification. If the precondition n is satisfied, i.e. n 6= 0, the
rule checks for the satisfaction of the postcondition q using an
evalpost expression. The rule (EVALPOST) ensures that the ex-
pression e satisfies the postcondition q. Violation of the precon-
dition or postcondition of a refining expression causes throwing a
TCE, in the rules (X-REFINING) and (X-EVALPOST) in Figure 15,
and termination of the program. In PtolemyS’s core semantics, ex-
ceptional states are terminal states. Figure 15 shows the dynamic
semantics of PtolemyS’s exceptional termination.

(X-REFINING)
n == 0

〈E[refining requires n ensures q {e}],S,Π,A〉 ↪→ 〈TCE,S,Π,A〉

(X-REGISTER)
〈E[register(null)],S,Π,A〉 ↪→ 〈NPE,S,Π,A〉

(X-UNREGISTER)
〈E[unregister(null)],S,Π,A〉 ↪→ 〈NPE,S,Π,A〉

(X-EVALPOST)
n == 0

〈E[evalpost v n],S,Π,A〉 ↪→ 〈TCE,S,Π,A〉

(X-CAST)
[c.F ] = S(loc) c 64 t

〈E[cast t loc],S,Π,A〉 ↪→ 〈CCE,S,Π,A〉

Figure 15. PtolemyS’s exceptional dynamic semantics.

PtolemyS also supports standard object-oriented expressions for
object creation, getting and setting the value of a field, if condition-
als, etc. Their semantics can be found in Section E.

B. Type Checking
In this section, we discuss PtolemyS’s static semantics with the
focus on event subtyping, the refining relation among greybox
event specifications and the non-decreasing relation.

B.1 Type Attributes
Figure 16 defines the type attributes used in PtolemyS’s typing rules.
The type attribute OK shows that a higher level declaration type
checks, whereas OK in c shows type checking in the context of
a class c. Other type attributes var t and exp t show variables
and expressions of type t, respectively. Variable and store typing
environments Γ and Π, respectively, map variables and locations

θ ::= “type attributes”
OK “program/top-level decl.”
| OK in c “method, binding”
| var t “var/formal/field”
| exp t “expression”

t ::= c | int | bool “types”

Γ ::= {var : t} “variable typing environment”
Π ::= {loc : t} “store typing environment”
Γ,Π ` e : θ “typing judgement”

Figure 16. Type attributes, based on [13]

to their types. The typing judgment Γ,Π ` e : θ says that in the
variable typing environment Γ and the store typing environment Π,
the expression e has the type θ . PtolemyS’s type checking rules use
a fixed class table CT , which is a set of program’s class and event
type declarations. Top-level names in a program are distinct and
inheritance relations on classes and events types are acyclic.

B.2 Static Semantics Rules
Figure 17 shows several typing rules for PtolemyS. The rest of
PtolemyS’s typing rules, which are mostly standard object oriented
rules could be found in Section B.

The rule (T-EVENT) type checks the declaration of an event ev.
Since ev extends another event ev′, the rule ensures that ev is a valid
subevent of ev′, i.e. ev�: ev′, and its translucid contract refines the
translucid contract of ev′, i.e. contractev′ E contractev. The refine-
ment of the translucid contract of ev′ by the contract of ev is stat-
ically guaranteed by PtolemyS’s specification inheritance. The rule
(T-EVENT) also checks, using the auxiliary function isClass, that
the return type and types of context variables of ev are valid class
types. Figure 18 shows the auxiliary functions used in PtolemyS’s
typing rules. The auxiliary function isClass simply ensures that its
parameter is a class declared in the class table CT .

(T-SUBEVENT) checks that an event ev is a valid subtype of
event ev′, regarding both width and depth subtyping. Width sub-
typing allows ev to declare context variables in addition to the
context it inherits from its superevent ev′, i.e. contextsOf (ev′) ⊆
contextsOf (ev). The auxiliary function contextsOf returns all the
context variables of an event along with their types, including con-
text inherited from all of its superevents. Depth subtyping allows
ev to redeclare a context variable of its superevent ev′. To redeclare
a context variable vari of type t ′i , the redeclaring context variable
must have the same name vari and its type ti must be a subtype of
t ′i , i.e. ti 4 t ′i . Similar to class subtyping, event subtyping is a re-
flexive, transitive relation declared among event types, with a root
event type of Event.

(T-SUBEVENT) also ensures that the return type of an event ev is
a supertype of the return type of its superevent ev′. This is necessary
for the non-decreasing relation on observers of an event and its
superevent, shown in Figure 5, which ensures that an observer of
an event runs before an observer of its superevents. The auxiliary
function returnType returns the return type of an event.

(T-ANNOUNCE) type checks an announce expression. It ensures
that the type of a parameter expression ei is a subtype of its corre-
sponding context variable vari, i.e. t ′i 4 ti. Recall that an event can
inherit context variables from its superevents and the announce ex-
pression must provide values for all context variables of the event.

(T-ANNOUNCE) also ensures that the type of the event body e′
is the same as the return type of the top event of its event. The top
event of an event in an inheritance hierarchy is the superevent of the
event right before the root event Event. For example, in Figure 2,
the event ExpEv is the top event of AndEv. The auxiliary function
topEvent returns the top event of an event. The relation between the
return type of the event body and the the return type of its top event
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(T-EVENT)
(c′ event ev′ extends ev′′ {(t ′ var′)* contractev′}) ∈CT

Γ,Π ` contractev′ E contractev
` ev�: ev′ isClass(c) ∀ti ∈ t* . isClass(ti)

` c event ev extends ev′ {(t var)* contractev} : OK

(T-SUBEVENT)
contextsOf (ev′)⊆ contextsOf (ev)

(t var)* = contextsOf (ev) (t ′ var′)* = contextsOf (ev′)
∀ (ti vari) ∈ (t var)*, (t ′i vari) ∈ (t ′ var′)* . ti 4 t ′i

returnType(ev′)4 returnType(ev)
` ev�: ev′

(T-ANNOUNCE)
(t var)* = contextsOf (ev)

∀ei ∈ e*, (ti vari) ∈ (t var)* . Γ,Π ` ei : exp t ′i ∧ t ′i 4 ti
c′′ event ev′extends Event{}= topEvent(ev)

c = returnType(ev) Γ,Π ` e′ : exp c′′

Γ,Π ` announce ev(e*) {e′} : exp c

(T-BINDING)
(c event ev extends ev′ { f orm* contractev}) ∈ CT

contractev = requires p assumes {se} ensures q
(c m(thunk ev var){e}) = methodBody(c′,m) seE e

` when ev do m : OK in c′

(T-INVOKE)
c event ev extends ev′ { f orm* contractev} ∈ CT

Γ,Π ` e : exp thunk ev
Γ,Π ` e.invoke() : exp c

(T-REGISTER)
Γ,Π ` e : exp t

Γ,Π ` register(e) : exp t

(T-UNEGISTER)
Γ,Π ` e : exp t

Γ,Π ` unregister(e) : exp t

(T-EVALPOST)
Γ,Π ` e : exp t Γ,Π ` q : exp t2

Γ,Π ` evalpost e q : exp t

(T-SPEC)
Γ,Π ` p : exp t1 Γ,Π ` q : exp t2

Γ,Π ` requires p ensures q : exp ⊥

(T-REFINING)
spec = requires p ensures q

Γ,Π ` spec : exp⊥ Γ,Π ` e : exp t
Γ,Π ` refining spec {e} : exp t

(T-PROGRAM)
∀decl ∈ decl* . ` decl : OK ` e : exp t

` decl* e : exp t

(T-CLASS)
∀meth ∈ meth* . ` meth : OK in c

∀binding ∈ binding* . ` binding : OK in c
isClass(d) ∀(t f ) ∈ f orm* . isClass(t)∧ f 6∈ dom(fieldsOf (d))

` class c extends d { f orm* meth* binding*} : OK

Figure 17. Select typing rules for PtolemyS [6, 16].

is necessary for the non-decreasing relation in which the event body
runs as the last observer, as in Figure 5.

(T-BINDING) type checks a binding declaration. It ensures that
the body e of the observer handler method m refines the assumes
block se of the translucid contract of its event ev, i.e. se E e, as
defined in Figure 9. The auxiliary function methodBody returns the
body of a method of a class defined in the class table CT . The rule

also ensures that the return type of the observer handler method m
is the same as the the return type of the event.

(T-INVOKE) type checks an invoke expression. The invoke ex-
pression invokes the next observer in the chain of observers. The
chain of observers is included in the event closure receiver object
e. The rule ensures that the event closure of an event ev is of type
thunk ev. A thunk type marks the type of an event closure. The
type of an invoke expression is the same as the return type c of its
event ev. This is sound because the non-decreasing relation ensures
that observers of an event run before observers of its superevent.

(T-REGISTER) type checks a register expression. The type of a
register expression is the same as the type of its parameter. The
rule (T-UNREGISTER), similarly type checks an unregister expres-
sion. (T-SPEC) type checks a specification expression. A specifica-
tion expression has the bottom type ⊥ which is the subtype of any
other type. The bottom type in turn allows a specification expres-
sion to be refined by a refining expression of any type. The rule
ensures that the precondition p and the postcondition q of the spec-
ification expressions type check too. (T-REFINING) type checks a
refining expression. The rule simply says that the type of a refining
expression is the same as the type of its body e. (T-EVALPOST) type
checks an evalpost expression and says that the type of an evalpost
expression is the same as the type of its body e. An evalpost expres-
sion, is used to check that an expression e satisfies a postcondition
q, as discussed in Section A.

(c event ev extends ev′ {(t var)* contractev}) ∈CT
(t ′ var′)* = contextsOf (ev′)

contextsOf (ev) = (t ′ var′)* ⊕ (t var)*

contextsOf (Event) = •

(c event ev extends ev′ { f orm* contractev}) ∈ CT
returnType(ev) = c

(c event ev extends ev′ { f orm* contractev}) ∈ CT
isEvent(ev)

class c extends d{ f orm* meth* binding*} ∈ CT
isClass(c)

t = thunk ev
isThunkType(t)

isClass(t)∨ isThunkType(t)
isType(t)

class c extends d{(t var)* meth* binding*} ∈ CT
fieldsOf (c) = (var : t)*

class c extends d{ f orm* meth* binding*} ∈ CT
(c′′ m (t var)* {e}) ∈ meth*

methodBody(c,m) = (c′′ m (t var)* {e})

class c extends d{ f orm* meth* binding*} ∈ CT
(c′′ m (t var)* {e}) 6∈ meth*

methodBody(c,m) = methodBody(d,m)

Figure 18. Select auxiliary functions for PtolemyS’s typing rules,
based on [6, 13].

B.3 Soundness of Type System
THEOREM B.1. (Soundness of PtolemyS’s Semantics) PtolemyS’s
semantics is sound regarding its progress and preservation [36].

The proof follows standard progress and preservation argu-
ments. Full proof of the theorem can be found in Section E.
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C. More on Applicability
Despite their differences [14], event announcement and handling
and event subtyping models of join point interface [14] and join
point types [15] are similar. This in turn allows use of syntax and
refinement rules similar to join point types for join point interfaces.

Figure 19 shows parts of the boolean expression example rewrit-
ten using join point interfaces. Unlike join point types or PtolemyS’s
event type declarations which are similar to type declarations, join
point interfaces are declared similar to method signatures. Also
context variables of join point interfaces are explicitly named in
aspects and their proceed statements, unlike join point types or
PtolemyS that use join point instances and event closures. For ex-
ample, line 31 of Figure 19, shows the declaration of join point in-
terface AndEv and explicit naming of context variables node, left
and right in the aspect Evaluator, on line 44, and its proceed
statement, on line 45.

1 /* join point interfaces */
2 /*@ requires node != null;
3 @ model_program {
4 @ proceed(node);
5 @ requires true;
6 @ ensures node.parent == old(node.parent);
7 @ }
8 @ ensures node.equals(old(node));
9 @*/

10 jpi void ExpEv(Exp node);

11 /*@ requires left != null && right != null;
12 @ model_program {
13 @ proceed(node, left, right);
14 @ requires node.left!=null && node.right!=null;
15 @ ensures node.parent == old(node.parent);
16 @ }
17 @ ensures node.equals(old(node));
18 @*/
19 jpi void BinEv(Exp node, Exp left, Exp right)
20 extends ExpEv(node);

22 /*@ requires left != null && right != null;
23 @ model_program {
24 @ proceed(node, left, right);
25 @ requires node.left!=null && node.right!=null;
26 @ ensures node.parent == old(node.parent);
27 @ }
28 @ ensures node.equals(old(node));
29 @*/

30 jpi void AndEv(Exp node, Exp left, Exp right)
31 extends BinEv(node, left, right);
32 /* subject */
33 class ASTVisitor exhibits AndEv,.. {
34 void visit(AndExp e) {
35 exhibit AndEv(e, e.left, e.right) {
36 e.left.accept(this);
37 e.right.accept(this);
38 };
39 } ..
40 }
41 /* observers */
42 aspect Evaluator {
43 Stack<BoolVal> valStack = ..
44 void around AndEv(Exp node, Exp left, Exp right){
45 proceed(node, left, right);
46 refining
47 requires node.left != null && node.right != null
48 ensures node.parent == old(node.parent){
49 .. // same as before
50 }
51 } ..
52 }

Figure 19. Join point interface AndEv and its translucid contract
on lines 22–29.

Translucid contracts can be added to join point interfaces in a
JML-like syntax, similar to join point types. Translucid contract of
a join point interface appears right before its declaration. Figure 19
shows the translucid contract for the join point interface AndEv.

For the refining relation, in addition to syntactic adaptations of
the refining rules, the rule (R-INVOKE) should be slightly mod-
ified to allow refinement of corresponding proceed statements
with varying number of context variables in the translucid con-
tracts of a join point interface and its supertype. A proceed state-
ment in a translucid contract of a join point interface, refines a
corresponding proceed statement in the translucid contract of its
supertype, if the number of context variables of subtype’s pro-
ceed is more than or equal to the number of context variables in
supertype’s proceed and types of context variables of the same
names are the same. Join point interfaces do not support depth sub-
typing of context variables. For example, the proceed statement
on line 13 of the translucid contract of BinEv refines its corre-
sponding proceed statement on line 4 of the contract of ExpEv, i.e.
proceed(node)E proceed(node, le f t,right). PtolemyS’s speci-
fication inheritance, in Section B, could be adapted to join point
interfaces, mostly through syntactic adaptations, to statically guar-
antee the refining between translucid contracts of a join point inter-
face and its super join point interface.

For the non-decreasing relation, similar to join point types,
precedence declarations of aspects could be statically checked to
ensure that an aspect of a join point interface runs before aspects
of its super join point interface or execution of aspects can be
reordered dynamically at runtime to guarantee the non-decreasing
relation.

For the conformance relation, similar to join point types, for
each join point interface, all of its subjects and observers must
conform to the translucid contract of the join point interface, i.e.
structurally refine its model program and satisfy its preconditions
and postconditions. Modified type checking rules of join point
interfaces and runtime probes could enforce conformance.

D. Soundness of Reasoning
THEOREM D.1. (Soundness of PtolemyS’s Hoare logic) PtolemyS’s
Hoare logic, in Figure 8, is sound for conforming PtolemyS pro-
grams. In other words, any Hoare triple provable using PtolemyS’s
logic, i.e. Γ ` {p} e {q}, is a valid triple, i.e. Γ |= {p} e {q}.

Proof: To prove the soundness of PtolemyS’s Hoare logic,
we must prove that each Hoare triple {p} e {q} that is provable
using PtolemyS’s logic in Figure 8, i.e. Γ ` {p} e {q}, is a valid
triple, i.e. Γ |= {p} e {q}, as defined in Section 4. The judgement
Γ ` {p} e {q} is valid, written as Γ |= {p} e {q}, if for every state
σ that agrees with type environment Γ, if p is true in σ , i.e. σ |= p,
and if the execution of e terminates in a state σ ′, then σ ′ |= q. This
definition of validity is for partial correctness where termination is
not guaranteed.

Previous work [24, 30, 31] proves the soundness of Hoare
logic for object-oriented programs. Thus to prove the sounsness
of PtolemyS’s Hoare logic, it is sufficient to prove the soundness
of PtolemyS’s specific expressions [7], i.e. announce, invoke, re-
fining and specificaiton expressions in the rules (V-ANNOUNCE),
(V-INVOKE), (V-REFINING) and (V-SPEC) in PtolemyS’s Hoare logic.

The proof is based on induction on the number of events, i.e.
number of superevents of an event, in a subtyping hierarchy and
the number of their observers and uses conformance, refining and
non-decreasing relations. The induction goes over the number of
superevents first and then number of observers.
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D.1 Invoke Expression
For the Hoare logic rule (V-INVOKE) for an invoke expression, it
should be proved that in an observer ob of an event ev if the
Hoare triple {p} next.invoke() {q} is provable for its invoke
expression, i.e. Γ ` {p} next.invoke() {q}, then it is a validt
Hoare triple, i.e. Γ |= {p} next.invoke() {q}. We assume an
arbitrary chain of observers χ0 ⇀ ob ⇀ χ in which χ0 contains
observers in the chain before ob and χ is the remainder of the chain
after ob with the event body at the end. The invoke expression in
ob invokes the next observer in χ .

The first induction goes over the number of superevents of ev
with base cases of zero and one superevent.

No superevent for ev For the induction over the number of
observers, we assume a base case with zero and one observer χ .

For the base case with zero observers, the invoke expression
in ob causes the execution of the event body, say e′, in χ . The
subject conformance relation, in Definition 4.2, guarantees that the
event body e′ respects the precondition p′ and postcondition q′ of
the top contract of ev, i.e. Γ |= {p′} e′ {q′}. The top contract of
ev is the same as the contract for ev, i.e. p = p′ and q = q′, be-
cause ev does not have any superevents. This in turn means that
(a) Γ |= {p} e′ {q}. Because the execution of next.invoke() in
ob results in the execution of the event body, then in the judge-
ment (a) the event body e′ could be replaced with the invoke
expression next.invoke() to arrive at the goal judgement Γ |=
{p} next.invoke() {q}.

For the base case with one observer ob1 in χ , the invoke ex-
pression in ob causes the execution of the body e1 of ob1. The
observer conformance relation, Definition 4.1, guarantees that the
body e1 of the observer ob1 respects the precondition p and post-
condition q of the contract of ev, i.e. (b) Γ |= {p} e1 {q}. And
because the execution of next.invoke() in ob results in the ex-
ecution, then in the judgement (b) the body e1 of ob1 could be
replaced with the invoke expression to arrive at the goal judgement
Γ |= {p} next.invoke() {q}.

For the inductive case over the number of observers, we
assume the induction hypothesis, i.e. the judgement Γ |=
{p} next.invoke() {q} holds for the invoke expression in the ob-
server ob with n observers in χ , and prove the judgement still holds
for n + 1 observers in χ . If the newly added observer is added,
right after ob, to the beginning of χ , then the observer confor-
mance relation guarantees that its body repsects the precondition
and postcondition p and q of ev and the rest of the proof contin-
utes as in the base case with one observer. If the newly added ob-
server, is not added to the beginning of χ and is added somewhere
down the chain χ , then using induction hypothesis the judgement
Γ |= {p} next.invoke() {q} holds mainly because the hypothesis
ensures the invoke expression causes the invocation of an observer
which respects p and q.

The inductive proof of the invoke expression for the case in
which there is no superevent for ev is similar to the proof of
soundness of reasoning using translucid contracts in previous work
[5], in the absence of event subtyping.

One superevent ev′ for ev For the induction over the number of
observers in χ , we assume base cases with (1) zero observer for ev
and ev′, (2) one observer for ev and zero observer for ev′, (3) zero
observer for ev and one observer for ev′ and (4) one observer for ev
and one observer for ev′.

The proof for base case (1) is similar to the previous case
with no superevent for ev and zero observers for ev. The subject
conformance relation guarantees that the body e′ of the event ev
respects the precondition p′ and postcondition q′ of the top contract
for ev, which is the contract of ev′, i.e. (a) Γ |= {p′} e′ {q′}.
The refining relation guarantees that the contract of ev refines the

contract of ev′, i.e. p⇒ p′ and q⇒ q′. Using these implications
among preconditions and postconditions, the judgement (a) and
the standard rule (V-CONSEQ) one can arrive at the conclusion
Γ |= {p} e′ {q} and replace e′ with the invoke expression.

The proof for case (2) is similar to the previous case with no
superevent for ev and one observer for ev.

For the case (3) the conformance relation guarantees that the
body e′1 of the only observer ob′1 of ev′ respects the contract of its
event, i.e. (b) Γ |= {p′} e′1 {q′}. The refining relation guarantees
that the contract of ev refines the contract of ev′, i.e. p⇒ p′ and
q⇒ q′. Using these implications, the judgement (b) and the rule
(V-CONSEQ) one can arrive at the goal conclusion Γ |= {p} e′1 {q}
and then replace e′1 with the invoke expression.

For the base case (4), the ordering relation guarantees that the
only observer ob1 of ev is before the only observer ob′1 of ev′ in
the chain χ . The observer conformance relation guarantees that
the body e1 of ob1 respects the precondition p and postcondition
q of ev. The rest of the proof is similar to the base case with no
superevent and one observer.

For the inductive case over the number of observers, we
assume the induction hypothesis, i.e. the judgement Γ |=
{p} next.invoke() {q} holds for the invoke expression in the ob-
server ob of event ev with n observers of ev and its superevent ev′
in χ , and prove the judgement holds for n+1 observers in χ . The
newly added observer can be an observer of ev or ev′.

If the newly added observer is an observer of ev and it is added
to the beginning of χ , the proof continutes similar to the inductive
case for no superevent case in which a new observer is added
to the beginning of χ . If the newly added observer of ev is not
added to the beginning of χ , then the ordering relation guarantees
that it is added before any observer of ev′, then the judgement
Γ |= {p} next.invoke() {q} holds mainly because the induction
hypothesis ensures the invoke expression causes the invocation of
an observer which respects p and q.

If the newly added observer is an observer of ev′ then the
ordering relation guarantees that it is added after any observer of
ev, then the judgement Γ |= {p} next.invoke() {q} holds mainly
because the induction hypothesis ensures the invoke expression
causes the invocation of an observer which respects p and q.

k superevents for ev For induction over the number of superevents,
we proved the base case with zero and one superevent for ev.
For the inductive case we assume the induction hypothesis, i.e.
the judgement Γ |= {p} next.invoke() {q} holds for the invoke
expression in the observer ob of event ev with n observers of ev
and its k superevents in χ , and prove the judgement holds for k+1
superevents with arbitrary number of observers for the newly added
superevent.

If there are no observers in χ , i.e. n = 0, and the newly added
superevent ev(k) has no observers too, then the proof is the same as
the case with no superevent and no observers. If ev(k) has observers
with n = 0 then the observer conformance relation guarantees that
its first observers respect its precondition pk and postcondition qk

and the refining relation guarantees that p⇒ pk and q⇒ qk. Using
these implications and the induction hypothesis we can arrive at
the goal judgement Γ |= {p} next.invoke() {q}, similar to the
case for one superevent with no observer for the event and one
observer for its superevent. If there are observers in χ , i.e. n 6= 0,
then the ordering relation guarantees that observers of newly added
superevent evk are added to the end of χ , and then the judgement
Γ |= {p} next.invoke() {q} holds mainly because the induction
hypothesis ensures the invoke expression causes the invocation of
an observer which respects p and q.
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D.2 Other Expressions

Announce expressions The proof for an announce expression is
similar to the proof for the invoke expression, especially that the
semantics of an announce expression is given in terms of invoke
expression in the (ANNOUNCE) in Figure 13. Both announce and
invoke expression cause execution of a chain of observers of an
event and its superevents.

Refining and specification expressions For the refining expres-
sion in the rule (V-REFINING), the assumption of the rule that the
body e of the refining expression satisfies its specification, i.e.
Γ ` {p} e {q} makes the conclusion valid. The validity of the rule
(V-SPEC) is trivially true [29] and the rule (V-CONSEQ) is standard
[24].

E. Soundness of Type System

(T-METHODDECL)
(var : t)*,this : c ` e : exp t ′′

t ′′ 4 t ′ class c extends d{..} override(m,d, t*→ t ′)
` t ′ m((t var)*) {e} : OK in c

(T-CALL)
Π ` e : exp t t ′′ m((t var)*) {e′}=CT (t,m)
∀ ei ∈ e* . Γ,Π ` ei : exp t ′i ∀ ti ∈ t*, t ′i . t ′i 4 ti

Γ,Π ` e.m(e*) : exp t ′′

(T-NEW)
isClass(c)

Γ,Π ` new c() : exp c

(T-CAST)
isClass(c) Γ,Π ` e : exp t

Γ,Π ` cast c e : exp c

(T-GET)
Γ,Π ` e : exp c f ieldsO f (c)( f ) = t

Γ,Π ` e. f : exp t

(T-SET)
Γ,Π ` e : exp c f ieldsO f (c)( f ) = t Γ,Π ` e′ : exp t ′ t ′ 4 t

Γ,Π ` e. f = e′ : exp t ′

(T-DEFINE)
Γ,Π ` e1 : exp t1

Γ,Π ,var : t ` e2 : exp t2 isType(t) t1 4 t
Γ,Π ` t var = e1;e2 : exp t2

(T-IF)
Γ,Π ` e1 : exp t Γ,Π ` e2 : exp t Γ,Π ` ep : exp t

Γ,Π ` if(ep){e1} else {e2} : exp t

(T-NULL)
isClass(c)

Γ,Π ` null : exp c

(T-VAR)
(var : t) ∈ Γ

Γ,Π ` var : var t

(T-LOC)
Π(loc) = t

Γ,Π ` loc : exp t

Figure 20. Standard PtolemyS’s type checking rules [13].

Soundness proof of PtolemyS’s type system follows standard
progress and preservation arguments [36] using the refining and
non-decreasing relations. Some details and definitions are adapted
from previous work [5, 6, 12, 13]. Figure 17, Figure 18, Figure 13,
Figure 14, Figure 20 and Figure 21 together show a complete list
of PtolemyS’s static and dynamic semantics rules.

E.1 Background Definitions and Lemmas
The following definitions are used in progress and preservation
arguments of PtolemyS’s soundness proof.

(NEW)
loc 6∈ dom(S)

S′ = S] (loc 7→ [c.{ f 7→ null | f ∈ dom(fieldsOf (c))}])
Π
′ = Π] (loc : c)

〈E[new c()],S,Π,A〉 ↪→
〈
E[loc],S′,Π′,A

〉
(GET)

[c.F ] = S(loc) v = F( f )
〈E[loc. f ],S,Π,A〉 ↪→ 〈E[v],S,Π,A〉

(SET)
[c.F ] = S(loc) S′ = S] (loc 7→ [c.F ] ( f 7→ v)])

〈E[loc. f = v],S,Π,A〉 ↪→
〈
E[v],S′,Π,A

〉
(DEF)

e′ = e[v/var]
〈E[t var = v;e],S,Π,A〉 ↪→

〈
E[e′],S,Π,A

〉
(CALL)
[c.F ] = S(loc) (c2, t m((t var)*){e}= methodBody(c,m)

e′ = e[v*/var*, loc/this]
〈E[loc.m(v*)],S,Π,A〉 ↪→

〈
E[e′],S,Π,A

〉
(CAST)
[c′.F ] = S(loc) c′ 4 t
〈E[cast t loc],S,Π,A〉
↪→ 〈E[loc],S,Π,A〉

(NCAST)
〈E[cast c null],S,Π,A〉

↪→ 〈E[null],S,Π,A〉

(IFTRUE)
v 6= 0

〈E[if(v){e1} else{e2}],S,Π,A〉 ↪→ 〈E[e1],S,Π,A〉

(IFFALSE)
v == 0

〈E[if(v){e1} else{e2}],S,Π,A〉 ↪→ 〈E[e2],S,Π,A〉

(X-GET)
〈E[null. f ],S,Π,A〉 ↪→ 〈NPE,S,Π,A〉

(X-SET)
〈E[null. f = v],S,Π,A〉 ↪→ 〈NPE,S,Π,A〉

Figure 21. PtolemyS’s operational semantics for standard OO ex-
pressions, based on [13].

DEFINITION E.1. (Location loc has type t in store S [13])
Location loc has type t in store S, written as S(loc) : t where
t = Π(loc), if one of the following conditions hold:

(I). type t is a class, i.e. isClass(t), and for some class name c with
a set of fields F all the following holds:
(a) S(loc) = [c.F ] and Π(loc) = t and c 4 t
(b) dom(F) = dom( f ieldsO f (c)) and

rng(F)⊆ (dom(S)∪{null})
(c) ∀ f ∈ dom(F) if F( f ) = loc′ and fieldsOf (c)( f ) = u and

S(loc′) = [u′.F ′] then u′ 4 u.
(II). type t is an event closure type, i.e. isThunkType(t), where t =

thunk ev for some event type ev with return type c, list of
handlers H, environment ρ , expression e and class name c′ all
the following holds:
(a) S(loc) = eClosure(H,e,ρ)
(b) Γ,Π ` e : c′ and c′ 4 c
(c) ∀ f ∈ dom(contextsOf(ev)), either ρ( f ) = null or ρ( f ) =

loc′′ where S(loc′′) = [c′′.F ′] and c′′ 4 contextsOf(ev)( f )
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(d) ∀h = 〈loc′,m〉 ∈H . Π(loc′) = c′′′ and (c2,c m(t1 var1)) =
methodBody(c′′′,m) then t1 = t

DEFINITION E.2. (Store S is consistent with store typing Π)
Store S is consistent with store typing Π and typing context Γ,
written as Γ,Π∼= S, if and only if all the following conditions hold:

(a). dom(S) = dom(Π)
(b). ∀loc ∈ dom(S),S(loc) : Π(loc), i.e. S(loc) has type Π(loc).

The following lemmas are used in progress and preservation
arguments of PtolemyS’s soundness proof. Proofs of these lemmas
could be easily adapted from previous work on MiniMAO0 [12]
and thus are skipped.

LEMMA 1. (Substitution)
If Γ,var1 : t1, ..,varn : tn,Π ` e : t and ∀i ∈ [1,n] . Γ,Π ` ei : t ′i
where t ′i 4 ti then Γ,Π ` e[var1/e1, ..,varn/en] : t ′ for some t ′ 4 t.

LEMMA 2. (Environment contraction)
If Γ,a : t ′,Π ` e : t and a is not free in e, then Γ,Π ` e : t

LEMMA 3. (Environment extension)
If Γ,Π ` e : t and a ∈ dom(Γ) then Γ,a : t ′,Π ` e : t

LEMMA 4. (Replacement)
If Γ,Π ` E[e] : t and Γ,Π ` e : t ′ and Γ,Π ` e′ : t ′ then
Γ,Π ` E[e′] : t.

LEMMA 5. (Replacement with subtyping)
If Γ,Π ` E[e] : t and Γ,Π ` e : u and Γ,Π ` e′ : u′ such that
u′ 4 u then Γ,Π ` E[e′] : t ′ where t ′ 4 t.

E.2 Progress
THEOREM E.3. (Progress)
Let 〈e,S,Π,A〉 be a configuration with a well typed expression e,
store S, store typing Π and active object map A, such that store S
is consistent with store type Π, i.e. Γ,Π ∼= S. If e has type t, i.e.
Γ,Π ` e : t, then either

• e = loc and loc ∈ dom(S)
• e = null, or
• one of the following holds:

〈e,S,Π,A〉 ↪→ 〈e′,S′,Π′,A′〉.
〈e,S,Π,A〉 ↪→ 〈x,S′,Π′,A′〉 and x ∈ {NPE,CCE,TCE}

Proof sketch: Proof is by cases on evaluation of expression e:

1. e = loc. Since e is well-typed and using (T-LOC), loc∈ dom(Π).
Using store consistency Γ,Π ∼= S, loc ∈ dom(S).

2. e = null. The case is trivial.

Proof of cases for PtolemyS’s announcement and handling of
events, and registration and unregistration of observers are adapted
from Ptolemy [13].

3. e = E[announce ev(v*)]. Using well-typedness of e and
(T-ANNOUNCE), event type ev is a declared event type in class
table CT . (T-ANNOUNCE) ensures all the context variables of ev
are passed to the announce expression with appropriate types
which in turn allows (ANNOUNCE) to construct the event closure
and take a step.

4. e = E[loc.invoke()]. Using (T-INVOKE) and store consistency,
loc ∈ dom(S) and Π(loc) = thunk ev which ensures loc is
pointing to an event closure in the store for event ev. If the
list of observer handlers H is not empty, then based on part
(d) of Definition E.1 location loc′, pointing to the first observer
handler in the event closure, is well-typed and thus loc′ ∈
dom(S) which allows (INVOKE) to take an step. Otherwise, if
H is empty, (INVOKEDONE) takes an step.

5. e = E[register(loc)]. Using (T-REGISTER) and store consis-
tency, (REGISTER) can take a step by adding a well-type loca-
tion loc to the list of active objects A[ev]. The rule (T-BINDING)
ensures that the event ev that observer instance loc is bound to,
in the auxiliary function eventsOf , is a valid event type declared
in class table CT .

6. e = E[unregister(loc)]. Similar to previous case, using
(T-UNREGISTER) and store consistency, (UNREGISTER) can take
a step by removing a well-typed location loc from the list of
active objects A[ev].

Proof of cases for PtolemyS’s checking of translucid contracts
are:

7. e = E[refining requires n ensures q]. The rule
(T-REFINING) ensures precondition is well-typed which in turn
allows (REFINING) to take an step and reduce to an evalpost
expression, if the precondition holds, i.e. n 6= 0. Otherwise,
(X-REFINING) takes a step.

8. e = E[evalpost n q]. The rule (T-REFINING) ensures well-
typedness of its postcondition q and body e, which in turn
allows (EVALPOST) to take an evaluation step, if its postcon-
dition holds, i.e. n 6= 0. In case the postcondition is violated,
(X-EVALPOST) takes a step.

The following cases takes a step into exceptional terminal states
and thus are trivial.

9. e = E[register(null)], e = E[unregister(null)], e =
E[null.m(e*)], e = E[null. f ], e = E[null. f = v], e =
E[cast c null].

The following cases for standard object-oriented expressions
either are trivial or could be easily adapted from MiniMAO0 [12].

10. e = E[loc. f ], e = E[loc. f = v], e = E[cast t loc], e =
E[loc.m(v*)].

11. e = E[t var = v;e], e = E[if(v){e1} else{e2}], e =
E[new c()] are trivial.

E.3 Preservation
THEOREM E.4. (Preservation)
Let e be an expression, S a store, Π a store typing and A a map
of active objects where store S is consistent with store typing Π,
i.e. Γ,Π ∼= S. If Γ,Π ` e : t and 〈e,S,Π,A〉 ↪→ 〈e′,S′,Π′,A′〉 then
Γ|Π′ ∼= S′ and there exists a type t ′ such that t ′ 4 t and Γ|Π′ ` e′ : t ′.

In the above definition Π′ is the store typing built and main-
tained in PtolemyS’s dynamic semantic rules.

Proof sketch: The proof is by cases on the evaluation relation
↪→ :

Proofs for expressions which announce and handle events and
(un)register observers are adapted from Ptolemy [6, 13].

1. (ANNOUNCE).
e =E[announce ev (v*) {e}] and e′ =E[loc.invoke()], where
(c event ev extends ev′{(t var)* contractev}) ∈ CT , loc 6∈
dom(S), H = handlersOf (ev), ρ = {vari 7→ vi | vari ∈ var*∧
vi ∈ v*}, S′ = S] (loc 7→ eClosure(H,e,ρ)), and Π′ = Π]
(loc : thunk ev).
To show the store consistency Γ|Π′ ∼= S′, part (a) of Defini-
tion E.2 holds since (ANNOUNCE) adds a fresh location loc to
domains of both store S and store typing Π. Part (b) of store
consistency definition holds for all locations loc′ 6= loc, accord-
ing to Γ,Π ∼= S. To show that part (b) holds for loc, we have to
show that part (II) of Definition E.1 holds for loc.
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Part (a), of part (II) of Definition E.1 holds, since S′(loc) =
eClosure(H,e,ρ) and Π′(loc) = thunk ev. Part (b) holds
since using (T-ANNOUNCE), the fact that because of the refining
relation the return type of the event body e is the same as the
top event of ev and considering that the return type c of ev is
the supertype of the return type of its top event, if Γ,Π ` e :
c′ then c′ 4 c. For part (c) for all f ∈ dom(contextsOf (ev)),
ρ( f ) = null or ρ( f ) = loc′′. Part (c) holds trivially if ρ( f ) =
null. Otherwise if ρ( f ) = loc′′ according to store consistency
Γ,Π ∼= S, loc′′ ∈ dom(S). If [c′′.F ] = S(loc′′) then Γ,Π `
loc′′ : c′′ and (T-ANNOUNCE) ensures c′′ 4 contextsOf (ev)( f ).
Then sing Lemma 3 we have Γ|Π′ ` loc′′ : c′′ where c′′ 4
contextsOf (ev)( f ).
Now we show E[loc.invoke()] : t ′ for some t ′ 4 t. Let
Γ,Π ` announce ev(v*){e} : t. Using (T-ANNOUNCE),
t event ev extends ev′{..} ∈ CT and using the relation be-
tween return types of the event body and the return type of
events in its hierarchy for the refining relation, if Γ,Π ` e : u
then u 4 t. Let Γ,Π ` loc.invoke() : t ′. Using (T-INVOKE),
Π(loc) = thunk ev where S(loc) = eClosure(H,e,ρ) such
that u 4 t ′. Thus we have u 4 t and u 4 t ′ which means t = t ′.
Since subtyping relation 4 is reflexive, t ′ 4 t.

2. (INVOKEDONE). e = [loc.invoke()] and e′ = E[e′′], where
eClosure(•,e′′,ρ) = S(loc).
Store consistency is trivial since neither store nor store typing
changes.
Now we show Γ,Π ` E[e′′] : t ′ for some t ′ 4 t. Let Γ,Π ` e′′ :
u′ and Γ,Π ` loc.invoke() : u. Using (T-INVOKE), Γ,Π `
loc : thunk ev for some ev with return type u. Using store
consistency and Definition E.1 part (II) item (b) and assumption
eClosure(•,e′′,ρ) = S(loc), we have u′ 4 u. Finally using
Lemma 4, t ′ 4 t.

3. (INVOKE).
e = E[loc.invoke()] and e′ = E[e1[loc1/var1, loc′/this]],
where eClosure(〈loc′,m〉 + H,e′′,ρ) = S(loc),
[c.F ′] = S(loc′), (c2, t m(t1 var1){e1}) = methodBody(c,m),
loc1 6∈ dom(S), S′ = S ] (loc1 7→ eClosure(H,e′′,ρ)), and
Π′ = Π] (loc1 : Π(loc)).
To show store consistency, Γ|Π′ ∼= S′ , part (a) of Defini-
tion E.2 holds since (INVOKE) adds a fresh location loc1 to
the domain of both store S and store typing Π. Part (b) of
store consistency definition holds for all locations loc 6= loc1,
using Γ,Π ∼= S. To show that part (b) holds for loc1 too,
we have to show part (II) of Definition E.1 holds for loc1.
Part (a), of part (II) of Definition E.1 holds, since S′(loc1) =
eClosure(H,e′′,ρ) and Π′(loc1)=Π(loc). Using (T-INVOKE),
Π(loc1) is an event closure thunk type thunk ev for some event
ev with return type c. Part (b) holds since using (T-ANNOUNCE),
if Γ,Π ` e′′ : c′ then c′ 4 c. For part (c) for all f ∈
dom(contextsOf (ev)), ρ( f ) = null of ρ( f ) = loc′′. Part (c)
holds trivially if ρ( f ) = null. Otherwise if ρ( f ) = loc′′ ac-
cording to store consistency Γ,Π ∼= S, loc′′ ∈ S. If [c′′.F ] =
S(loc′′) then Γ,Π ` loc′′ : c′′ and (T-ANNOUNCE) ensures c′′ 4
contextsOf (ev)( f ). Using Lemma 3 we have Γ|Π′ ` loc′′ : c′′
where c′′ 4 contextsOf (ev)( f ).
Now we show that E[e1[loc1/var1, loc′/this]] : t ′ for some
t ′ 4 t. Let Γ,Π ` loc.invoke() : u and e1 : u′, which also
hold in Γ|Π′ , using Lemma 3. Using (T-INVOKE), Γ|Π′ ` loc :
thunk ev for some ev with return type u. Location loc′ in the
event closure eClosure(〈loc′,m〉+H,e′′,ρ) = S′(loc) points
to the class which contains the next handler method m to be run
by the invoke expression. Expression e1 is the body of m where
using (T-BINDING) and (T-SUBEVENT), u′ 4 u. Using Lemma 1

Γ|Π′ ` e1[loc1/var1, loc′/this] : u′′ such that u′′ 4 u′. Since
u′ 4 u and u′′ 4 u′, then u′′ 4 u. Using Lemma 4, t ′ 4 t.

4. (ECGET). e = E[loc. f ], e′ = E[v] where eClosure(H,e′′,ρ) =
S(loc) and v = ρ( f ).
Showing store consistency is trivial.
Now we show Γ,Π ` E[v] : t ′ for some t ′ 4 t. Let Γ,Π `
loc. f : u and Γ,Π ` v : u′. Using store consistency and part(c)
of Definition E.1 part (II), u′ 4 u. And using Lemma 5, t ′ 4 t.

5. (REGISTER). e = E[register(loc)], and e′ = E[loc].
Store consistency is trivial.
Now we show Γ,Π ` E[loc] : t ′ for some t ′ 4 t. Let Γ,Π `
register(loc) : u and Γ,Π ` loc : u′. Using (T-REGISTER),
u′ = u. Using Lemma 5 we have Γ,Π ` E[loc] : t ′ for some
t ′ 4 t. Note that subtyping relation 4 is a reflexive transitive
relation.

6. (UNREGISTER). e =E[unregister(loc)], and e′ =E[loc]. Sim-
ilar to the case for (REGISTER).

Proofs for expressions that check translucid contracts are:

7. (REFINING). e = E[refining requires n ensures q {e}],
e′ = E[evalpost e q] where n 6= 0.
Store consistency is trivial again.
Now we show Γ,Π ` E[evalpost e q] : t ′ for some t ′ 4 t.
Let Γ,Π ` [refining requires n ensures q {e}] : u. Using
(T-REFINNING), Γ,Π ` e : u. Using (T-EVALPOST) Γ,Π `
evalpost e q : u. Using Lemma 4 and reflexivity of subtyping
relation we have t ′ 4 t.

8. (EVALPOST). e = E[evalpost v n], e′ = E[v] where n 6= 0.
Store consistency is trivial since neither store nor store typing
changes.
Now we show Γ,Π ` E[v] : t ′ for some t ′ 4 t. Let Γ,Π ` v : u.
Using (T-EVALPOST), Γ,Π ` evalpost v n : u. Using Lemma 1
and reflexivity of subtyping relation we have t ′ 4 t.

Proof for expressions that throw exceptions are the following.

9. (X-REFINING). e = E[refining requires n ensures q {e}],
e′ = TCE where n == 0.
Here e is reduced to an terminal condition TCE which is not
applicable to subject reduction theorem [12].

10. (X-SET), (X-GET), (X-CALL), (X-CAST),
(X-REGISTER), (X-UNREGISTER), (X-EVALPOST). The same ar-
gument above, for (X-REFINING), applies to these rules too.

Proofs for standard object-oriented (OO) expressions are as the
following:

11. Proofs for standard OO expressions as in rules (NEW), (SET),
(GET), (CAST), (NCAST) and (CALL) could be easily constructed
by adapting MiniMAO0 [12] proofs for the same rules.

21 2014/10/14


	8-4-2014
	Modular Reasoning in the Presence of Event Subtyping
	Mehdi Bagherzadeh
	Robert Dyer
	Rex D. Fernando
	Hridesh Rajan
	Jose Sanchez
	Recommended Citation

	Modular Reasoning in the Presence of Event Subtyping
	Abstract
	Keywords
	Disciplines


	Introduction
	Problems
	Ptolemy in a Nutshell
	Event Type Specifications

	Combinatorial Reasoning, Problem (1)
	Behavior Invariance, Problem (2)

	 Solution 
	PtolemyS's Syntax
	Refining Relation of Event Specifications
	Non-Decreasing Relation of Observers' Execution
	Refining + Non-decreasing

	Modular Reasoning 
	Soundness of Reasoning
	Conforming Observers
	Conforming Subjects
	Soundness Theorem

	Revisiting Reasoning about Announce and Invoke

	Applicability
	Modular Reasoning about Control Effects
	Control Interference of Subjects and Observers

	Discussion
	Related Work
	Conclusion and Future Work
	Dynamic Semantics
	Dynamic Semantic Objects
	Dynamic Semantic Rules

	Type Checking
	Type Attributes
	Static Semantics Rules
	Soundness of Type System

	More on Applicability
	Soundness of Reasoning
	Invoke Expression
	Other Expressions

	Soundness of Type System
	Background Definitions and Lemmas
	Progress
	Preservation


