Fall Versus Spring Tillage, Which is Better

Mahdi Al-Kaisi
Iowa State University, malkaisi@iastate.edu

H. Mark Hanna
Iowa State University, hmhanna@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation
http://lib.dr.iastate.edu/cropnews/359

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Fall Versus Spring Tillage, Which is Better

Abstract
Questions about the timing of tillage and the difference between fall and spring tillage are being asked frequently. As the growing season comes to a conclusion and harvest is under way, this is a good time to start thinking about other fall operations such as tillage. Even though tillage may be needed in certain situations and field conditions, well managed field and proper crop rotation generally may not call for tillage. Before we get into the differences between fall and spring tillage, we would like to stress a few facts that need to be considered in deciding whether or not to till.

Keywords
Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/359
Fall Versus Spring Tillage, Which is Better

By Mahdi Al-Kaisi, Department of Agronomy and Mark Hanna, Department of Agricultural and Biosystems Engineering

Questions about the timing of tillage and the difference between fall and spring tillage are being asked frequently. As the growing season comes to a conclusion and harvest is under way, this is a good time to start thinking about other fall operations such as tillage. Even though tillage may be needed in certain situations and field conditions, well managed field and proper crop rotation generally may not call for tillage. Before we get into the differences between fall and spring tillage, we would like to stress a few facts that need to be considered in deciding whether or not to till.

There are two main considerations for making a tillage decision – soil conditions and management.

1. Soil conditions include - soil drainage, top soil depth, soil slope, organic matter and soil texture. These factors can have significant effect on how successful the tillage system (no-till or conventional tillage system) is and what kind of effect tillage can have on soil quality, productivity and water quality.

2. The second consideration is management, which include sets of management decisions that are equally important - residue management, crop rotation, equipment availability and efficiency (proper setting of planter for different tillage systems, calibration of combine to ensure uniform residue distribution, etc.), tile drain for managing excess soil moisture, fertilizer program and soil testing, crop hybrids that are suitable to that area of the state, insect and disease control program, and a whole set of other management decisions that will determine the success level of crop production.

These two considerations are critical to achieving the intended results of any tillage system.

The decision to till in the fall or spring will be dictated by many factors that are not easy to control. The two main factors for tillage in the fall or spring are soil moisture conditions and soil temperature. These two factors can have significant impact on soil fracturing, tillage depth, clod size and level of soil compaction. Therefore, soil moisture and soil temperature can influence tillage practice, and ultimately yield and soil quality performance.

Normally, if there has been no excess rain during harvest, the fall soil moisture profile will be more suitable for tillage and soil fracturing than in spring when soil moisture is most often at field capacity or above. When soil moisture is above field capacity any travel on the field whether combining or tilling soil can cause maximum soil compaction.

Tilling soil during spring potentially may: lead to soil compaction, not be very effective in soil fracturing due to high soil moisture, potentially smear soil, and create large sized soil clods. These collectively will be very counter-
productive by reducing yield and soil quality. The decision to wait for
tillage until spring can carry certain risks due to time constraints, when rain
may prevent farmers from entering fields on time.

If tillage is necessary, fall tillage is a better option because soil moisture is
generally below field capacity, there is less potential for soil compaction; and
soil temperature is suitable. When soil temperature drops to the freezing point
it is not easy to fracture the soil, because the solid water (ice) in the soil
prevents it from breaking into small clods. Delaying tillage can have negative
consequences on soil condition and ultimately on yield performance.

However, tillage in general needs to be the last management option
considered for improving soil tilth and productivity. There are alternatives that
are equally as effective as conventional tillage. Site specific conditions, soil
quality consideration, water quality consideration and economics of tillage
need to be included in the decision whether to till.

Over the past 10 years, long-term tillage studies conducted across Iowa on
five tillage systems and three crop rotations show a wide range of yield
responses in corn and soybean for different regions in Iowa. These
differences in yields reflect various soil and climate conditions across the
state. The purpose was to document the most effective tillage and crop
rotation combination for each region. The main findings of this research so far
are that soybean yields after corn shows no significant difference between
tillage systems. In fact soybean in no-till preformed as good or better than any
tillage system (chisel plow, strip-tillage, deep ripping and moldboard plow).
The choice of tillage for corn is more complex, but as noted above, careful
consideration should be given to soil’s long-term health and productivity as
decisions are made.

Mahdi Al-Kaisi is an associate professor in agronomy with research and
extension responsibilities in soil management and environmental soil
science. He can be reached at malkaisi@iastate.edu or (515) 294-8304. Mark
Hanna is an extension agricultural engineer in agricultural and biosystems
engineering with responsibilities in field machinery. Hanna can be reached at
hmhanna@iastate.edu or (515) 294-0468.

This article was published originally on 9/23/2010 The information contained within the article may or
may not be up to date depending on when you are accessing the information;

Links to this material are strongly encouraged. This article may be republished without further
permission if it is published as written and includes credit to the author, Integrated Crop Management
News and Iowa State University Extension. Prior permission from the author is required if this article
is republished in any other manner.