2018

Demonstrating Cover Crop Mixtures on Iowa Farmland: Management, Soil Health, and Water Quality Benefits

Mark Licht
Iowa State University, lichtma@iastate.edu

Liz Juchems
Iowa Learning Farms

Jacqueline Comito
Iowa Learning Farms

Matthew Helmers
Iowa State University, mhelmers@iastate.edu

Sarah Carlson
Practical Farmers of Iowa

Follow this and additional works at: https://lib.dr.iastate.edu/farmprogressreports

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Bioresource and Agricultural Engineering Commons

Recommended Citation
Licht, Mark; Juchems, Liz; Comito, Jacqueline; Helmers, Matthew; and Carlson, Sarah (2018) "Demonstrating Cover Crop Mixtures on Iowa Farmland: Management, Soil Health, and Water Quality Benefits," Farm Progress Reports: Vol. 2017 : Iss. 1 , Article 9. Available at: https://lib.dr.iastate.edu/farmprogressreports/vol2017/iss1/9

This Armstrong Research and Demonstration Farm is brought to you for free and open access by the Research and Demonstration Farms at Iowa State University Digital Repository. It has been accepted for inclusion in Farm Progress Reports by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Demonstrating Cover Crop Mixtures on Iowa Farmland: Management, Soil Health, and Water Quality Benefits

RFR-A1759

Mark Licht, assistant professor
Department of Agronomy
Liz Juchems, events coordinator
Jacqueline Comito, program director
Iowa Learning Farms
Matthew Helmers, professor
Agricultural and Biosystems Engineering
Sarah Carlson, Midwest Cover Crop research coordinator
Practical Farmers of Iowa

Introduction
Iowa landowners and farmers increasingly are seeing the value of single species cover crops. However, in Iowa and the Upper Midwest, there has been limited research on using cover crop mixtures. In theory, cover crop mixtures have the same advantages as diverse species ecosystems like prairies. The most important advantage would be greater and more stable total plant growth. Mixing species with complimentary features can take advantage of multiple niches and environmental conditions in space, weather, time, and seasons.

The project’s goal is to evaluate management techniques to increase growth, and improve the overall environmental benefits of cover crops in improving soil health and reducing nutrient losses.

Materials and Methods
Cover crop plots were established at six ISU Research and Demonstration sites in fall 2013. The project was continued at four sites in fall 2016. These four sites were seeded for the fifth year in 2017.

The plots compare three different treatments for each cash crop: single species, mixture, and no cover crop. Each treatment is replicated four times at each site, for a total of 24 plots at each farm. The plots range from 6 to 12 rows wide and all are 50 ft in length. Before corn, the single species is oats and the mixture contains hairy vetch, oats, and radish. Before soybean, the single species is cereal rye and the mixture contains rapeseed, cereal rye, and radish. For all project sites, spring and fall cover crop biomass, late spring nitrate-nitrogen, and cash crop yield data were collected to evaluate the establishment of the cover crops and potential yield impacts.

Results and Discussion
Corn grain yields were not statistically affected by the single species or mixture cover crop treatments (Table 1). In only 1 of 22 site-years was a corn yield difference found. That was Crawfordsville in 2016 where the no cover and cover crop mixture yielded more than the single species oat cover crop. Late spring nitrate levels were not statistically different within any site-year. Total fall biomass dry matter was significant in 2 of 14 site-years. These were locations in southern Iowa where the cover crop mixture had greater biomass compared with the single species oat cover crop (Table 3).

Soybean grain yields were not statistically different in 20 of 22 site-years (Table 2). June soil nitrate-nitrogen levels were significant in 7 of 16 site-years. In each of those site-years, the no cover treatment had higher soil nitrate-nitrogen. Total fall biomass dry matter was significant in 4 of 16 site-years (Table 4). In 3 of the 4 site-years, the single species cereal rye cover crop had more biomass than the cover crop mixture treatment.
Acknowledgements
This project is funded by USDA-NRCS through a National Conservation Innovation Grant and The Leopold Center for Sustainable Agriculture. Partners on the project include: Iowa Learning Farms, Practical Farmers of Iowa, NRCS, Conservation Districts of Iowa, and Iowa Cover Crop Working Group.

Table 1. Corn grain yield and late spring nitrate-nitrogen concentration for a no cover crop control, single species (oats), and cover crop mixture (oats, radish, hairy vetch) at multiple locations across Iowa.¹

<table>
<thead>
<tr>
<th>Location</th>
<th>Treatment</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>Late spring nitrate test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bu/ac</td>
<td>bu/ac</td>
<td>bu/ac</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Sutherland</td>
<td>No cover</td>
<td>187.2</td>
<td>228.9</td>
<td>235.7</td>
<td>40.4</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>186.1</td>
<td>218.7</td>
<td>233.1</td>
<td>32.1</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>192.5</td>
<td>226.8</td>
<td>235.7</td>
<td>39.1</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.702</td>
<td>0.506</td>
<td>0.925</td>
<td>0.823</td>
<td>0.105</td>
</tr>
<tr>
<td>Kanawha</td>
<td>No cover</td>
<td>145.1</td>
<td>214.0</td>
<td>213.1</td>
<td>220.8</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>141.9</td>
<td>209.4</td>
<td>216.6</td>
<td>233.6</td>
<td>46.6</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>148.5</td>
<td>211.1</td>
<td>212.2</td>
<td>229.0</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.605</td>
<td>0.698</td>
<td>0.789</td>
<td>0.246</td>
<td>0.797</td>
</tr>
<tr>
<td>Nashua</td>
<td>No cover</td>
<td>161.6</td>
<td>244.7</td>
<td>211.3</td>
<td>227.2</td>
<td>47.1</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>170.1</td>
<td>246.3</td>
<td>205.7</td>
<td>231.1</td>
<td>54.5</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>167.3</td>
<td>246.4</td>
<td>208.3</td>
<td>224.9</td>
<td>45.7</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.660</td>
<td>0.871</td>
<td>0.676</td>
<td>0.568</td>
<td>0.929</td>
</tr>
<tr>
<td>Lewis</td>
<td>No cover</td>
<td>227.6</td>
<td>238.4</td>
<td>212.3</td>
<td>223.2</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>216.3</td>
<td>245.0</td>
<td>219.8</td>
<td>208.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>220.0</td>
<td>257.4</td>
<td>223.5</td>
<td>208.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.499</td>
<td>0.365</td>
<td>0.691</td>
<td>0.227</td>
<td>0.126</td>
</tr>
<tr>
<td>Chariton</td>
<td>No cover</td>
<td>211.2</td>
<td>231.2</td>
<td>193.5</td>
<td>23.5</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>221.2</td>
<td>231.6</td>
<td>199.0</td>
<td>29.6</td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>232.3</td>
<td>234.4</td>
<td>195.6</td>
<td>34.8</td>
<td>28.4</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.531</td>
<td>0.963</td>
<td>0.942</td>
<td>0.410</td>
<td>0.566</td>
</tr>
<tr>
<td>Crawfordsville</td>
<td>No cover</td>
<td>221.2</td>
<td>234.3</td>
<td>216.1a</td>
<td>156.2</td>
<td>64.3</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>212.2</td>
<td>239.5</td>
<td>198.0b</td>
<td>147.5</td>
<td>61.3</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>209.5</td>
<td>237.1</td>
<td>215.6a</td>
<td>151.9</td>
<td>59.4</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.506</td>
<td>0.395</td>
<td>0.018</td>
<td>0.523</td>
<td>0.730</td>
</tr>
</tbody>
</table>

¹Statistically significant site-years are denoted by bold font. Means followed by different letters differ.
Table 2. Soybean grain yield and soil nitrate for a no cover crop control, single species (winter cereal rye), and cover crop mixture (winter cereal rye, rapeseed, radish) at multiple locations across Iowa.1

<table>
<thead>
<tr>
<th>Location</th>
<th>Treatment</th>
<th>Soybean yield</th>
<th>Soil nitrate test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutherland</td>
<td>No cover</td>
<td>61.5a</td>
<td>70.4a</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>57.9b</td>
<td>63.7b</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>58.9b</td>
<td>68.0ab</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.002</td>
<td>0.041</td>
</tr>
<tr>
<td>Kanawha</td>
<td>No cover</td>
<td>36.8</td>
<td>55.7</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>42.1</td>
<td>48.9</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>44.9</td>
<td>53.4</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.244</td>
<td>0.225</td>
</tr>
<tr>
<td>Nashua</td>
<td>No cover</td>
<td>70.9</td>
<td>75.8</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>71.4</td>
<td>75.4</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>71.0</td>
<td>74.1</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.954</td>
<td>0.5450</td>
</tr>
<tr>
<td>Lewis</td>
<td>No cover</td>
<td>79.2</td>
<td>76.3</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>77.4</td>
<td>72.3</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>78.7</td>
<td>72.5</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.864</td>
<td>0.541</td>
</tr>
<tr>
<td>Chariton</td>
<td>No cover</td>
<td>74.6</td>
<td>58.9</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>71.7</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>73.6</td>
<td>48.9</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.771</td>
<td>0.435</td>
</tr>
<tr>
<td>Crawfordsville</td>
<td>No cover</td>
<td>62.9</td>
<td>57.9</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>63.4</td>
<td>57.5</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>62.1</td>
<td>59.9</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.911</td>
<td>0.624</td>
</tr>
</tbody>
</table>

1Statistically significant site-years are denoted by bold font. Means at the same location and in the same column followed by different letters differ.
Table 3. Fall cover crop biomass growth for a no cover control, single species (oats), and cover crop mixture (oats, radish, hairy vetch) ahead of a corn cash crop at multiple locations across Iowa in 2015, 2016, and 2017.

<table>
<thead>
<tr>
<th>Location</th>
<th>Treatment</th>
<th>2015 Total biomass</th>
<th>2016 Total biomass</th>
<th>2017 Total biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oat</td>
<td>Radish</td>
<td>Vetch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb biomass/acre</td>
<td>lb biomass/acre</td>
<td>lb biomass/acre</td>
</tr>
<tr>
<td>Sutherland</td>
<td>Single</td>
<td>453.3</td>
<td>453.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>575.7</td>
<td>490.9</td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.160</td>
<td>0.624</td>
<td></td>
</tr>
<tr>
<td>Kanawha</td>
<td>Single</td>
<td>303.9</td>
<td>303.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>272.3</td>
<td>225.7</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.578</td>
<td>0.293</td>
<td></td>
</tr>
<tr>
<td>Nashua</td>
<td>Single</td>
<td>267.1</td>
<td>267.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>363.2</td>
<td>307.4</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.168</td>
<td>0.558</td>
<td></td>
</tr>
<tr>
<td>Lewis</td>
<td>Single</td>
<td>139.1</td>
<td>139.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td>300.9</td>
<td>183.8</td>
<td>88.4</td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td>0.102</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>Chariton</td>
<td>Single</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crawfordsville</td>
<td>Single</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pr > F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Statistically significant site-years are denoted by bold font.
2In Nashua 2016, there was some oat (74.1 lb/ac) and vetch (173.1 lb/ac) biomass due to spring germination and growth.
3In Crawfordsville 2016, there was some oat (single, 43.5 lb/ac; mix, 251.6 lb/ac) and vetch (mix, 162.3 lb/ac) biomass due to spring germination and growth.
Table 4. Cover crop biomass growth for a no cover control, single species (winter cereal rye), and cover crop mixture (winter cereal rye, rapeseed, radish) ahead of a soybean cash crop at multiple locations across Iowa in 2015, 2016, and 2017.1

<table>
<thead>
<tr>
<th>Location</th>
<th>Treatment</th>
<th>2015 Total Fall biomass</th>
<th>2015 Fall brassica</th>
<th>2015 Fall rye</th>
<th>2015 Spring rye</th>
<th>2016 Total Fall biomass</th>
<th>2016 Fall brassica</th>
<th>2016 Fall rye</th>
<th>2016 Spring rye</th>
<th>2017 Total Fall biomass</th>
<th>2017 Fall brassica</th>
<th>2017 Fall rye</th>
<th>2017 Spring rye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutherland3</td>
<td>Single</td>
<td>102.2</td>
<td>102.2</td>
<td>5,230.0</td>
<td>761.4</td>
<td>761.4</td>
<td>2,615.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td></td>
<td>120.9</td>
<td>65.8</td>
<td>55.2</td>
<td>3,085.9</td>
<td>680.0</td>
<td>267.8</td>
<td>412.2</td>
<td>2,169.2</td>
<td>12,615.8</td>
<td>0.020</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>Pr > F</td>
<td></td>
<td>0.627</td>
<td></td>
<td></td>
<td></td>
<td>0.156</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanawha</td>
<td>Single</td>
<td>199.7</td>
<td>199.7</td>
<td>8,745.3</td>
<td>130.1</td>
<td>130.1</td>
<td>2,186.6</td>
<td>455.8</td>
<td>3,677.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td></td>
<td>160.4</td>
<td>52.5</td>
<td>107.9</td>
<td>7,422.4</td>
<td>85.0</td>
<td>37.5</td>
<td>47.5</td>
<td>1,847.5</td>
<td>2,67.8</td>
<td>0.024</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>Pr > F</td>
<td></td>
<td>0.089</td>
<td>0.112</td>
<td>0.002</td>
<td>0.772</td>
<td>0.405</td>
<td>0.891</td>
<td></td>
<td>0.069</td>
<td>0.081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nashua4</td>
<td>Single</td>
<td>187.1</td>
<td>187.1</td>
<td>2,197.2</td>
<td>76.3</td>
<td>76.3</td>
<td>1,613.9</td>
<td>126.8</td>
<td>126.8</td>
<td>2,842.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td></td>
<td>178.5</td>
<td>50.6</td>
<td>127.9</td>
<td>1,430.0</td>
<td>66.8</td>
<td>19</td>
<td>47.9</td>
<td>876.5</td>
<td>124.6</td>
<td>32.5</td>
<td>92.1</td>
<td></td>
</tr>
<tr>
<td>Pr > F</td>
<td></td>
<td>0.677</td>
<td>0.112</td>
<td>0.002</td>
<td>0.772</td>
<td>0.405</td>
<td>0.891</td>
<td></td>
<td>0.069</td>
<td>0.081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis2,5</td>
<td>Single</td>
<td>471.0</td>
<td>471.0</td>
<td>1,647.1</td>
<td>365.9</td>
<td>365.9</td>
<td>1,368.9</td>
<td>752.2</td>
<td>752.2</td>
<td>813.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td></td>
<td>435.0</td>
<td>250.8</td>
<td>184.3</td>
<td>1,186.0</td>
<td>244.5</td>
<td>75.4</td>
<td>169.1</td>
<td>1,399.7</td>
<td>965.2</td>
<td>637.0</td>
<td>328.2</td>
<td></td>
</tr>
<tr>
<td>Pr > F</td>
<td></td>
<td>0.179</td>
<td>0.016</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.002</td>
<td></td>
<td>0.001</td>
<td>0.055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chariton3</td>
<td>Single</td>
<td>93.0</td>
<td>93.0</td>
<td>1,450.3</td>
<td>149.3</td>
<td>149.3</td>
<td>750.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td></td>
<td>85.2</td>
<td>0.0</td>
<td>85.2</td>
<td>868.1</td>
<td>187.4</td>
<td>140.8</td>
<td>46.5</td>
<td>596.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr > F</td>
<td></td>
<td>0.837</td>
<td>0.749</td>
<td>0.203</td>
<td>0.558</td>
<td>0.132</td>
<td>0.449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crawfordsville5</td>
<td>Single</td>
<td>80.4</td>
<td>80.4</td>
<td>850.3</td>
<td>362.6</td>
<td>362.6</td>
<td>1,634.8</td>
<td>233.6</td>
<td>5,544.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td></td>
<td>43.1</td>
<td>12.5</td>
<td>30.6</td>
<td>425.1</td>
<td>286.8</td>
<td>75.3</td>
<td>211.5</td>
<td>1,126.1</td>
<td>173.2</td>
<td>126.4</td>
<td>46.8</td>
<td></td>
</tr>
<tr>
<td>Pr > F</td>
<td></td>
<td>0.089</td>
<td>0.075</td>
<td>0.014</td>
<td>0.271</td>
<td>0.001</td>
<td>0.059</td>
<td>0.492</td>
<td>0.492</td>
<td>0.062</td>
<td>0.152</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Statistically significant site-years are denoted by bold font.
2Lewis 2015, radish 1.5 times greater than rapeseed otherwise quantities are roughly the same.
3Sutherland and Chariton 2016, radish 1.5 times and 2.5 times, respectively, greater than rapeseed otherwise quantities are roughly the same.
4Nashua 2016, had 58.2 lb/acre of spring rapeseed biomass from spring germination and growth.
5Lewis and Crawfordsville 2017, radish was 8.6 times and 12.5 times, respectively, greater than rapeseed whereas there was no rapeseed identified at Kanawha and Nashua.