Towards a Successful Harvest: Stalk Rots and Standability Issues

Alison E. Robertson
Iowa State University, alisonr@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Pathology Commons

Recommended Citation
http://lib.dr.iastate.edu/cropnews/377

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Towards a Successful Harvest: Stalk Rots and Standability Issues

Abstract
It's hard to believe the 2010 growing season is almost over. Most of the corn across the state is nearing or at black-layer, which means it is time to scout fields for stalk rots in an effort to evaluate standability and plan a successful harvest. Stalk rots are likely to be an issue this growing season. We have seen significant blighting of the leaves in the upper canopy predominantly from Goss's wilt, northern corn leaf blight, gray leaf spot and anthracnose top dieback. When significant leaf blight occurs in the upper canopy, the risk of stalk rots increases. Furthermore, overcast conditions, such as we had throughout most of the grain filling period, favor stalk rot development. Since stalk rots reduce standability, fields in which greater than ten percent of plants are affected by stalk rots, should be scheduled for an early harvest.

Keywords
Plant Pathology

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences | Plant Pathology

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/377
Towards a Successful Harvest: Stalk Rots and Standability Issues

By Alison Robertson, Department of Plant Pathology

It’s hard to believe the 2010 growing season is almost over. Most of the corn across the state is nearing or at black-layer, which means it is time to scout fields for stalk rots in an effort to evaluate standability and plan a successful harvest.

Stalk rots are likely to be an issue this growing season. We have seen significant blighting of the leaves in the upper canopy predominantly from Goss’s wilt, northern corn leaf blight, gray leaf spot and anthracnose top dieback. When significant leaf blight occurs in the upper canopy, the risk of stalk rots increases. Furthermore, overcast conditions, such as we had throughout most of the grain filling period, favor stalk rot development. Since stalk rots reduce standability, fields in which greater than ten percent of plants are affected by stalk rots, should be scheduled for an early harvest.

In Iowa this year, we have had reports of bacterial, anthracnose, Fusarium and Diplodia stalk rots. Incidence (percent infected plants) ranges from field to field and is likely a function of genetics. It’s a good idea to identify what stalk rot is predominant in the field to help with hybrid selection in subsequent years.

While all stalk rots result in roting and shredding of the pith tissue, they each have their own identifying characteristics.

Bacterial stalk rot
This stalk rot rarely occurs in Iowa, however this year we have had several reports of the disease from across the state. Bacterial stalk rot is favored by high temperatures, high relative humidity and heavy rainfall or irrigation. The most characteristic symptom of this stalk rot is the foul odor when you spilt the stalk.

Anthracnose stalk rot
Dark streaks on the outside of the stem are characteristic of this stalk rot (Fig. 1, below).

Fusarium stalk rot
No discoloration occurs on the outside of the stalk, but the nodes may appear white due to growth of the fungus on the outside of the stalk. A pink discoloration (Fig. 2, below) may be seen in the pith of infected plants when the stalks are split open. Sometimes Fusarium stalk rot may be confused with Gibberella stalk rot (because of the pink pith tissue) or with Diplodia stalk rot, however no black specks can be found on the outside of the stalk tissue.

Diplodia stalk rot
The identifying characteristic of Diplodia stalk rot are tiny black specks (pycnidia) buried in the outer rind of the stalk at the lower nodes (Fig. 3, below). Diplodia may be mistaken for Gibberella stalk rot because of the black specks; however, the black specks associated with Gibberella stalk rot can be easily scraped off with a thumb nail. Furthermore, the pith tissues of
Gibberella stalk rot are often discolored pink to red.

Scouting Tips
- Target fields that have had significant foliar disease.
- Target hybrids with low stalk rot and/or standability scores.
- Evaluate at least 100 plants per field (20 plants in 5 locations).
- Use the “push test” or the “pinch test” to determine standability. If 10 to 15 percent of plants lodge or are rotted, schedule an early harvest.

Figure 1. Black blotches and streaks on the outside of the corn stalk are diagnostic for anthracnose stalk rot.

Figure 2. Light pink discoloration of the pith tissues may be evident with Fusarium stalk rot.
Figure 3. Pycnidia (tiny black fruiting bodies) buried in the rind at the lower internodes are diagnostic for Diplodia stalk rot.

S. tritici is an obligate parasite that infects the photosynthetic cells of the plant. When a plant is infected, it exhibits symptoms such as brown spots on the leaves and stem. The disease spreads rapidly through the plant, affecting the yield and quality of the crop. The presence of Diplodia stalk rot can result in a significant loss of crops, especially in the early stages of growth. Early detection and management strategies are crucial in minimizing the impact of this disease on agricultural production.