Complexity and Opportunities in Liquid Metal Surface Oxides

Thumbnail Image
Date
2020-09-14
Authors
Martin, Andrew
Du, Chuanshen
Chang, Boyce
Thuo, Martin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer EngineeringMaterials Science and EngineeringMicroelectronics Research Center (MRC)
Abstract

The ability of metal alloys to rapidly oxidize in ambient condition presents both a challenge and an opportunity. Herein, we focus on opportunities buried in the passivating oxide of liquid metal particles. Recently described sub-surface com-plexity and order present an opportunity to frustrate homogeneous nucleation hence enhanced undercooling. Plasticity of the underlying liquid metal surface offers an autonomously repairing sub-surface hence the lowest E0 component domi-nates the surface unless stoichiometrically limited. This plasticity provides an opportunity to synthesize organometallic polymers that in situ self-assemble to high aspect ratio nanomaterials. An induced surface speciation implies that under the appropriate oxidant tension, the oxide thickness and composition can be tuned, leading to temperature-dependent composition inversion and so-called chameleon metals. The uniqueness of demonstrated capabilities points to the need for more exploration in this small but rather complex part of a metal alloy.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Chemistry of Materials, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.chemmater.0c02047. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020
Collections