Gelation Suppression in RAFT Polymerization

Thumbnail Image
Date
2019-09-10
Authors
Lin, Fang-Yi
Yan, Mengguo
Cochran, Eric
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Cochran, Eric
Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

In this article, we extend the understanding of gelation suppression in reversible addition–fragmentation chain-transfer (RAFT) polymerization in systems with long primary chains and high crosslinker content, regimes which have been mostly overlooked to date. Using a model methacrylate system, the gel point, apparent propagation rate constants, and polymer architectures are seen to vary in a systematic fashion. By combining our experimental data with several related studies, we introduce a new phenomenological parameter, the “crosslinking tendency,” that incorporates monomer concentration and excess functionality to universally describe the gelation suppression in both RAFT- and atom-transfer radical polymerization (ATRP)-controlled radical polymerization systems. The ability of the crosslinking tendency to quantitatively account for a broad range of RAFT and ATRP systems suggests that factors such as monomer architecture and details of activation/deactivation mechanisms may play only a secondary role in gel-point suppression.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Macromolecules, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.macromol.9b00707. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections