2-19-2010

Loading gantry vs. traditional chute - Effect on fresh pork loin quality attributes when properly loaded

Nicholas Berry
Cargill, Inc.

Anna Johnson
Iowa State University, johnsona@iastate.edu

Steven Lonergan
Iowa State University, slonerga@iastate.edu

Tom Baas
Iowa State University, tjbaas@iastate.edu

Jeff Hill
Innovative Livestock Solutions

Follow this and additional works at: https://lib.dr.iastate.edu/ans_pubs

Part of the Agriculture Commons, Large or Food Animal and Equine Medicine Commons, and the Meat Science Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ans_pubs/399. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Loading gantry vs. traditional chute - Effect on fresh pork loin quality attributes when properly loaded

Abstract
A major factor affecting fresh pork quality is the implementation of management technologies that improve swine movement at the time of loading. Two experiments were conducted to evaluate the effects of the loading system at the farm (traditional chute T vs. prototype loading gantry P) on the quality attributes of fresh pork loins. Two marketing groups were utilised. Experiment 1 used 100 pig loins per treatment, when pigs came from the first pull (FP; defined as pigs harvested from the first marketing group of a barn), while Experiment 2 used 120 pig loins per treatment from pigs marketed from the close out (CO; defined as pigs harvested from the last marketing group from a barn). Loins from FP pigs loaded with the P loading gantry had higher (P<0.05) pH upon initiation of chilling and 24h pH and tended (P=0.08) to have higher Japanese colour score (JCS) values. These observations were consistent with lower L* values in loins from pigs loaded with P loading gantry (P=0.03). Loins from CO pigs loaded with the P loading gantry had higher (P=0.01) pH upon initiation of chilling and JCS rib values. Loins from pigs loaded on the P loading gantry tended to have lower (P=0.06) L* values. In conclusion, this investigation demonstrates that loading systems that reduce the incidence of poor pork quality attributes can be designed.

Disciplines
Agriculture | Animal Sciences | Large or Food Animal and Equine Medicine | Meat Science

Comments

Authors
Nicholas Berry, Anna Johnson, Steven Lonergan, Tom Baas, Jeff Hill, Collette Schultz Kaster, John Matthews, Locke Karriker, and Ken Stalder

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ans_pubs/399
Loading gantry vs. traditional chute - Effect on fresh pork loin quality attributes when properly loaded;
By Nicholas Berry, Anna Johnson, Steven Lonergan, Tom Baas, Jeff Hill, Collette Schultz Kaster, John Matthews, Locke Karriker and Ken Stalder

SECTION: RESEARCH & DEVELOPMENT; Pg. 60; No. 1

LENGTH: 2714 words

ABSTRACT:
A major factor affecting fresh pork quality is the implementation of management technologies that improve swine movement at the time of loading. Two experiments were conducted to evaluate the effects of the loading system at the farm (traditional chute T vs. prototype loading gantry P) on the quality attributes of fresh pork loins. Two marketing groups were utilised. Experiment 1 used 100 pig loins per treatment, when pigs came from the first pull (FP; defined as pigs harvested from the first marketing group of a barn), while Experiment 2 used 120 pig loins per treatment from pigs marketed from the close out (CO; defined as pigs harvested from the last marketing group from a barn). Loins from FP pigs loaded with the P loading gantry had higher (P<0.05) pH upon initiation of chilling and 24h pH and tended (P=0.08) to have higher Japanese colour score (JCS) values. These observations were consistent with lower L* values in loins from pigs loaded with P loading gantry (P=0.03). Loins from CO pigs loaded with the P loading gantry had higher (P<0.01) pH upon initiation of chilling and JCS rib values. Loins from pigs loaded on the P loading gantry tended to have lower (P=0.06) L* values. In conclusion, this investigation demonstrates that loading systems that reduce the incidence of poor pork quality attributes can be designed.

FULL TEXT:
The U.S. swine industry strives to provide safe, wholesome, and nutritious pork products to the consumer. A major factor that can affect fresh pork quality attributes is the handling of the pigs at marketing (defined as the movement from the grow-finish environment to stunning at the abattoir; Hill et al., 2007). Improvement in the handling of pigs at marketing is necessary to reduce expenses, mortalities, and to avoid loss in pork quality due to unnecessary stress experienced by the market pig. The goal of any handling and loading system should be to provide a continuous, unidirectional pig flow throughout the entire marketing process. The marketing process for the finisher pig has been described as a succession of additive stressors (Hyun et al., 1998; Ritter et al., 2009) that can include handling (Hamilton et al., 2004; Bertol et al., 2005), stocking density (Rademacher and Davies, 2005) and pre-slaughter stress (Hambrecht et al., 2004a, b) which in turn may detrimentally affect pork quality. It has also been recognised that loading is a stressful event for the individual pig due to the physical exertion, noise, and the effects of close contact with humans (Geverink et al., 1996). Unfortunately, there is little information available to link on farm loading system design features and fresh pork loin quality.

Therefore, the objective of this study was to evaluate the effects of the loading system at the farm (traditional chute T vs. prototype loading gantry P) on the quality attributes of fresh pork loin.

Materials and methods
Animals, farm site and pig handling

The protocol for this experiment was approved by the Iowa State University Institutional Animal Care and Use Committee. Finisher pigs (barrows and gilts) which were the progeny of PIC (Hendersonville, TN) sires and Genetiporc (Alexandria, MN) females were used. The farm utilised one wean-to-finish growing facility and pigs were raised in mixed sex pens (approx. 24 pigs per pen). Each barn was environmentally controlled, utilising a tunnel ventilation system with double pleated non-insulated curtains for emergency ventilation. Flooring was fully slatted and manure was collected in pits below and mechanically removed. Pigs were provided ad libitum access to corn-soybean meal diets that met National Research Council (NRC, 1998). Pigs had ad libitum access to water through a stationary nipple drinker system. Sort boards were used to move five pigs at a time from the home pen to the transport trailer. A single loadout crew consisting of five persons was responsible for loading all pigs.

Loading system design

Two loading system design treatments were compared.

Traditional metal covered chute (T): The chute was 76.2cm in width, 2.3m in height, and 4.6m in length, and used square stock (2.5cm) metal cleats which were spaced 20.3cm apart. The T chute included a flat pivot section on each end to accommodate the angle that the trailers were positioned relative to the finishing facility. The slope of the chute used to load the pigs onto the trailer was approximately 19 degrees to the bottom deck. The trailer included an internal ramp raised 23 degrees for access to the upper deck. One incandescent lamp fixture (60W) was placed at the entrance to the T chute. Prototype loading gantry (P): The loading gantry was constructed of an aluminium covered chute and measured 91.4cm in width, 3.1m in height, and 9m in overall length, including a 7.9m sloped section and two dual pivoting extension systems that allowed for proper positioning to both the barn and trailer. A cushioned bumper dock system was incorporated into the loading gantry design to completely eliminate gaps from the barn to the loading gantry. The flooring material consisted of metal coated with epoxy (designed to mimic the feel of concrete on the pigs feet) and had an inverted stair step design with cleats 2.5cm in height and spaced 20.3cm apart. The gantry slope was approximately 7 degrees to the bottom deck and 18 degrees to the upper deck of the trailer. The P loading gantry utilised an industrial rope lighting system designed to provide a soft, continuous light source that minimised shadowing.

Truck and transportation

After loading was complete, pigs were transported about 88.5km to a commercial packing plant. All animal transport procedures including stocking densities, trailer boarding and bedding requirements complied with the Transport Quality Assurance Program(tm) (NPB, 2007). All trailers were 16.5m in length had two straight naturally ventilated decks and flooring was diamond plate (Barrett Trailers LLC, Purcell, Oklahoma; Wilson Livestock Trailers, Sioux City, IA).

Experiment 1 - first pull (FP)

First pull refers to the first group of pigs marketed from a finishing facility (average weight per pig; 111.7 ± 1.9kg). These pigs were not fed ractopamine hydrochloride (trade name: Paylean®; Elanco Animal Health, Greenfield, IN) prior to harvest. A total of 200 pork loins were collected in January 2007 from pigs loaded with the T (n=100) or the P loading system (n=100) over two loads (both treatments represented on each load).

Experiment 2 - closeout pull (CO)

Close out was defined as the last group of pigs marketed from a finishing facility (average weight per pig; 131.5 ± 1.7kg). These pigs were fed ractopamine hydrochloride (trade name: Paylean®; Elanco Animal Health, Greenfield, IN). A total of 240 pork loins were collected in February 2007 from pigs loaded with either the T (n=120) or the P loading system (n=120) over two loads (both treatments represented on each load).

Processing

Pigs were harvested at a commercial facility on two processing days (day one = 200 FP pigs, day two = 240 CO pigs). Both treatments were presented on each harvest date. Pigs were held in lairage for 4h, and food was withheld; however, pigs had continual access to water. A CO 2 anesthetising system was used to render the pigs unconscious. The carcasses were held in a blast-chiller for a period of approximately 120min at -26°C (Huff-Lonergan and Page, 2000). Following the blast-chill, carcasses were held in a conventional cooler (2.2°C) until fabrication 24h postmortem.

Fresh pork quality attributes
Loading gantry vs. traditional chute - Effect on fresh pork loin quality attributes when properly loaded; By Nicholas Berry, Anna Johnson, Steven Lonergan, Tom Baas, Jeff Hill, Collette Schultz Kaster, John Matthews, Locke Karriker and Ken Stalder Fleischwirtschaft International February 19, 2010

All measures were collected on the left side of the pig's carcass (Gardner et al., 2006). The pH upon initiation of chilling (approx. 35min postmortem) was measured at the 10th rib of the same longissimus dorsi (LD) of each carcass prior to entering the blast chill chamber. A 24h pH was evaluated on the LD and at the same location on the carcass. Both measures were collected using a Hanna 9025 pH / ORP meter (Hanna Instruments, Woonsocket, RI), which was calibrated at the expected carcass temperatures. The carcasses remained in the cooler until 24h postmortem, after which time they were fabricated. Colour measurements (L* values) were carried out on a cross-section of the LD at the last rib using a Minolta CR-400 Chroma Meter (Minolta Camera Co., Ltd., Japan; illuminant C and 20° standard observer). An expert grader assigned colour scores using the Japanese colour scores (JCS) system consisting of six plastic discs that ranged from scores of 1 to 6 (1=pale grey, 6=dark purple; Nakai et al., 1975). JCS scores were assigned for the outer surface lean (JCS cut values) of the LD and from the cross-section of the LD at the last rib (JCS rib values).

Statistical analysis

The experimental unit was the pork loin and a complete randomised experimental design was utilised. The statistical model included the parameter of interest (pH upon initiation of chilling, 24h pH, JCS cut score, JCS rib score and loin L*), treatment (traditional - T or prototype - P) and gender (barrow or gilt). Data were analysed using the Proc Mixed of SAS® (SAS Inst., Cary, NC). Harvest date was a covariate (two harvesting dates with both P and T represented on both dates). There were no main effects of gender or treatment by gender interaction and subsequently these were removed from the final model. A P-value of P<0.05 was considered significant.

Results and discussion

Experiment 1 - first pull

There were no treatment differences detected for JCS rib values (P=0.20; Tab.). Loin from pigs loaded with the P loading gantry had higher (P<0.05; Fig. 4) pH upon initiation of chilling and 24h pH and tended (P=0.08) to have higher JCS cut values. These observations were consistent with lower (P=0.03) L* values observed in loins from pigs loaded with the P loading gantry (Tab.).

Experiment 2 - closeout pull

Treatment did not significantly affect pH upon initiation of chilling (Fig. 5) and JCS cut values (P>0.05; Tab.). Loin from pigs loaded with the P loading gantry had greater (P=0.01) 24h pH (Fig. 5) and JCS rib values. Pigs loaded on the P loading gantry tended to have lower (P=0.06) Loin L* values (Tab.).

It is well understood that perimortem stress can influence postmortem muscle metabolism and the rate and extent of pH decline. Rapid pH decline can result in protein denaturation and an increase incidence of poor quality pork (Barbut et al., 2008). How individual pigs cope with aversive stressors has been shown to affect the quality of pork (Grandin, 1997) and in turn the profitability. Problems with colour (two-toning, dark, firm, and dry), bruising as well as pale, soft and exudative (PSE) meat has been estimated to cost the U.S. swine industry $254,104,500 or $2.44 per finisher head per year (Stetzer and McKeith, 2003). Grandin (1999) reported approximately 10% more pork would be suitable for high quality exports to Japan if pigs were handled quietly. Pigs marketed at first pull can be subjected to additional handling stress when removed from their home pen environment, due to the sorting process in it. In contrast, pigs marketed at close out are all removed from their home pen at once with no differential selection, potentially eliminating the stress due to sorting market ready pigs from the pen. In this study, despite the rigors of extra handling during sorting from the pen during first pull, loins from pigs loaded using the P loading gantry had fewer pork quality defects than loins from pigs in the T system. In addition, loins from pigs loaded with the P loading gantry on both experiments had improved 24h pH and overall colour attributes than loins from pigs loaded with the T system.

Conclusion

This investigation demonstrates that loading systems that reduce the incidence of poor pork quality attributes can be designed.

Acknowledgements

This work was supported by the Pork Checkoff, National Pork Board, USA and by Hatch Funds through the Department of Animal Science, Iowa State University.

References
Loading gantry vs. traditional chute - Effect on fresh pork loin quality attributes when properly loaded; By Nicholas Berry, Anna Johnson, Steven Lonergan, Tom Baas, Jeff Hill, Collette Schultz Kaster, John Matthews, Locke Karriker and Ken Stalder Fleischwirtschaft International February 19, 2010

Authors' addresses

Dr. Berry, Pork Production Specialist, Cargill, Inc., 2165 Crosspark Rd., Coralville, IA 52241, nick_berry@cargill.com; Dr. Anna Johnson, Assistant Professor of Animal Behavior and Welfare, 2356F Kildee Hall, Dr. Steven Lonergan, Professor of Animal Science, 2275 Kildee, Dr. Tom Baas, Professor of Animal Science and Dr. Ken Stalder, Professor of Animal Science, 109 Kildee, Department of Animal Science, Iowa State University, Ames, IA, 50011; Mr. Jeff Hill, Innovative Livestock Solutions, Alberta, TOL 0J0, Canada; Ms. Collette Schultz Kaster, VP of Quality Assurance and Technical Service and Dr. John Matthews, Technical Services Manager, Farmland Foods, Milan, MO, 63556; Dr. Locke Karriker, Assistant Professor, 2227 Lloyd Vet Med Center, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, 50011

Received: 12 August 2009|reviewed: 31 August 2009|accepted: 14 October 2009

Keywords

Finisher pig

Loading system

Loins

Pork quality attributes

LOAD-DATE: June 26, 2011

LANGUAGE: ENGLISH

GRAPHIC: Fig. 1: Traditional metal covered chute (T). The chute was 76.2cm in width, 2.3m in height, and 4.6 m in length, and used square stock (2.5cm) metal cleats which were spaced 20.3cm apart.
Fig. 2: Prototype **loading gantry** (P): The **loading gantry** was constructed of an aluminum covered **chute** and measured 91.4cm in width, 3.1m in height, and 9m in overall length, including a 7.9m sloped section and two dual pivoting extension systems that allowed for proper positioning to both the barn (left) and trailer (right).

Tab.: Subjective and objective **fresh pork loin** quality attributes means and standard errors from a study evaluating two different **loading** systems when pigs are marketed.

Fig. 3: Finisher pigs **loading** using the prototype **loading gantry**.

Fig. 4: Initiation of chilling and 24h pH for 200 **fresh pork loins** when crossbred pigs were **loaded** during the first pull (FP) using a **traditional** metal covered **chute** (T) versus a prototype **loading gantry** (P) in January 2007. Superscripts (a, b) indicate a difference between initiation of chilling and 24-h pH between **loading** system design. P values were different at P<0.05.

Fig. 5: Initiation of chilling and 24h pH for 240 **fresh pork loins** when crossbred pigs were **loaded** during the close-out (CO) using a **traditional** metal covered **chute** (T) versus a prototype **loading gantry** (P) in February 2007. Superscripts (a, b) indicate a difference between 24 h pH between **loading** system design. P values were different at P=0.01.

Loading gantry vs. **traditional chute** - Effect on **fresh pork loin** quality attributes when properly loaded - Gesamter Artikel

PUBLICATION-TYPE: Magazine

JOURNAL-CODE: FLWI

Copyright 2010 Deutscher Fachverlag GmbH
All Rights Reserved