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ABSTRACT 

The computationally expensive nature of molecular dynamics simulation limits the access to 
length- (nanometer) and time-scales (nanosecond) that are orders of magnitude smaller than the 
experiment it models. This limitation warrants a careful estimation of statistical uncertainty 
associated with the properties calculated from these simulations. The assumption that a 
simulation is long enough so that the ergodic hypothesis applies is often invoked in the literature 
for the computation of properties of interest from a single molecular dynamics simulation. Here 
we demonstrate that making this assumption without validation results in poor estimates of the 
self-diffusion coefficient from a single molecular dynamics simulation of Lennard-Jones fluid. 
This problem is shown to be even more severe when the diffusion coefficient of macromolecules 
is calculated from a single molecular dynamics simulation. We have shown that conducting 
multiple independent simulations is necessary to obtain reliable estimates of diffusion 
coefficients and their associated statistical uncertainties. We show that even a ‘routine’ 
calculation of the self-diffusion coefficient for a Lennard-Jones fluid, as determined from a linear 
fit of the mean squared displacement of particles as a function of time, violates the key 
assumptions of linear regression. A rigorous approach for addressing these issues is presented. 
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INTRODUCTION 

Molecular dynamics (MD) simulation is a powerful tool for studying microscopic phenomena in 
complex systems that are difficult to probe experimentally or are inaccessible to theoretical 
treatment. In addition to gaining molecular insight into the structural and thermodynamic 
properties of systems of interest, MD simulations are often used for studying transport properties 
due to its accurate treatment of the dynamics. However, the computationally intensive nature of 
MD simulations limits systems sizes to, at most, a few million atoms, thus limiting accessible 
length- and time-scales to a few nanometers and nanoseconds, respectively. This limitation is 
even more severe in first principles MD simulations1. The macroscopic properties estimated 
from such small samples are likely to have significant statistical uncertainty, which should be 
estimated for proper interpretation of the results. Limited length and time scales accessible to 
MD simulations are especially apparent when calculating properties that depend on observables 
with long-range or long-lived correlations, like the local currents of conserved quantities2. 
Additionally, these calculations are further complicated by that fact that the time required to 
forget the initial conditions prior to data sampling in a simulation is unknown and is difficult to 
estimate, especially in glassy systems3.   

In MD simulations, the desired properties are typically evaluated as time averages over the 
system's trajectory. This is based on the ergodic hypothesis, which asserts that when simulations 
that are sufficiently long, the time average is to equal the ensemble average. However, how long 
a simulation needs to be for the ergodic hypothesis to be valid is unknown a priori. In this work 
we have demonstrated the importance of addressing this issue for obtaining reliable estimates of 
desired properties and uncertainty associated with them.  

In addition, the choice of time interval between two successive samples determines if they would 
be correlated to each other or not. Ensuring that successive samples are correlated is necessary 
when the interest is in evaluating correlation functions, for example velocity autocorrelation 
function. In such cases, Zwanzig et al. showed that the error in the time correlation functions is 
estimated to be inversely proportional to the square root of the simulation time4. Statistical 
uncertainty in the correlated time series data has also been studied by Chodera et al.5 However, 
further statistical analysis would be required when the properties of interest are derived from 
correlation functions, such as diffusion coefficient and viscosity. On the other hand, uncorrelated 
(or independent) sampling is required when calculating thermodynamic properties and diffusion 
coefficient from mean squared displacement (MSD). A key point to appreciate in either case is 
that the minimum gap between successive samples that would ensure independent sampling is 
not known a priori and is dependent on the system being examined. The statistical error in static 
properties that are likely to be correlated can be estimated using the method of block averages6 or 
the renormalization group method proposed by Flyvbjerg et al.7  

The objective of this work is to highlight that the estimates of the properties calculated from MD 
simulations even for the simplest systems can be erroneous as typically reported in the literature. 
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This is demonstrated via the example of the calculation of diffusion coefficient (D) of Lennard-
Jones (LJ) particles comprising a LJ fluid from their mean squared displacement (MSD). We 
show that even for the system of a LJ fluid, MD trajectories resulting in statistically 
distinguishable MSD can be obtained by simply varying the initial velocities assigned to the 
particles. Running a sufficiently long simulation could mitigate this issue, but the length of time 
required is unknown a priori. In addition, after running a long simulation subsequent validation 
is difficult for proving that it was indeed long enough. We have shown that this issue can be 
managed by running multiple independent simulations for measuring diffusion coefficient and 
the statistical uncertainty associated with it. A systematic approach for efficient independent 
sampling of squared displacements is proposed. It is then demonstrated that the linear regression 
to fit a straight line through MSD as a function of time violates the key assumptions of normal 
distribution and homoscedasticity, which prevents the estimation of uncertainty in the calculated 
diffusion coefficient. The issues arising from non-constant variance of squared displacements 
have been discussed in the scientific literature but have not been broadly appreciated in the 
molecular simulation community8. Again, using the data obtained from multiple independent 
simulations (MIS) is proposed as a way to remedy this issue. Further complications arising from 
the effect of finite system size on diffusion have been highlighted. Addressing all these issues is 
even more important when using MD simulations for studying macromolecular systems. We 
emphasize this by using the diffusion of a rigid fractal aggregate at infinite dilution in a LJ fluid 
as an example. 

The findings from this work should be applied after careful consideration of the system being 
studied and time- and length-scales involved. The problem of estimating the diffusion 
coefficients is non-trivial for systems with slowly evolving conformational degrees of freedom 
and research to address these issues are being reported in the literature9,10. In fact, it may not 
even be appropriate to represent the dynamics with a single estimate of the diffusion depending 
on the system under study. For example, Thompson et al. on tracking single mRNA particles 
evolving in yeast cells found that its diffusion coefficient was not normally distributed which 
was due to three different underlying modes of diffusion – random, confined and directed11. It is 
beyond the scope of this manuscript to address diffusion in different types of physical systems. 
Instead, the goal here is to alert the practitioners of MD simulations toward the potential sources 
of error in data collection and subsequent analysis. 

COMPUTATIONAL DETAILS AND THEORY 

Simulation Details 

All the MD simulations were carried using the LAMMPS molecular dynamics program available 
from Sandia National Laboratories12. The interaction between particles was modeled as LJ 
potential:  



 4 

𝑈(𝑟) = 4𝜀 ()
𝜎
𝑟+

,-
− )

𝜎
𝑟+

/
0 

where, U(r) is the energy between two particles at a separation r, σ is the diameter or size of the 
particle, and ε is the well depth which characterizes the attraction between the particles. A 
system of units as shown in Table 1 was used in these simulations. The size (σ) and mass (m) of 
the particles were set to unity. The number density of particles (ρs) and temperature (T) were 
respectively set to 0.7 and 2.75 to ensure that LJ fluid was a single phase6.  A cut off of 2.5σ was 
applied. LJ potential was neither shifted to achieve zero potential at cutoff nor was the long 
range correction was applied13. These modifications do not affect the dynamics in the 
simulations conducted in this work. All the simulations were carried out in the canonical 
ensemble (NVT) using a Nosé-Hoover thermostat (with a time constant of 200 time steps) to 
ensure that an identical temperature in all simulations6. A typical system was equilibrated for a 
100,000 time steps (for achieving equilibrium thermodynamic properties), followed by a 
production run of 1 million time steps. The trajectory of the system is recorded every 200 time 
steps. A time step of 0.005 dimensionless time units was used to ensure numerical stability. The 
correctness of the simulation approach followed in this work was established by comparison to 
results published in the literature. The models developed by Nuevo et al. predict a diffusion 
coefficient in the range 0.255 – 0.284 for a system of 256 LJ particles at a temperature of 2.75 
and number density of 0.714. This compared well with our results listed in Table 2. 

Table 1: Units used in MD simulations 

Dimension Unit 
Length σ 
Energy ε 
Mass m 
Time 𝜎1𝑚 𝜀⁄  
Temperature 𝜀 𝑘5⁄  

 

Statistical Uncertainty 

A brief introduction to statistical uncertainty is warranted in the context of this manuscript even 
though any standard text on statistics would include this discussion. It is usually not possible to 
sample the population of a random variable (X). Therefore, the parameters describing this 
population, such as population mean µ and variance s2, remain unknown. In order to characterize 
the population, µ and s2 are estimated by 𝑋7 (sample mean) and S2 (sample variance) respectively 
from a sample of N independent measurements of the random variable X 15: 

𝑋7 =
1
𝑁:𝑋;

<

;=,

 



 5 

𝑆- =
1

𝑁 − 1:
(𝑋; − 𝑋7)-

<

;=,

 

The uncertainty associated with the estimate of population mean (𝑋7) based on a one-sided 
Student's t-distribution is given by a 100(1-α) confidence interval as follows: 

𝑋7 ± 𝑡<A,,,AC/-
𝑆
√𝑁

 

where 0 < α < 1. This approach is valid only if X is normally distributed or, as a consequence of 
central limit theorem if the sample is sufficiently large. In this case the distribution of the sample 
mean approaches a normal distribution (with mean µ and variance s2/N) as the sample size 
becomes larger regardless of the distribution of X. This is a very important consideration in 
reference to the calculation of MSD because squared displacement (SD) over a given time 
interval is not normally distributed, as discussed later in the manuscript.  

There is a clear distinction between estimated standard deviation (S) and confidence interval. The 
error associated with 𝑋7 is often reported as 𝑋7 ± 𝑆 in the literature. However, this only 
characterizes the spread around the estimated mean instead of characterizing the uncertainty 
associated with it. The standard practice, however, is to report 95% confidence interval (α = 
0.05) for the estimated mean. A 95% confidence interval implies that 95% of such intervals are 
likely to contain population mean µ. Often in the literature 𝑋7 ± 𝑆 √𝑁⁄  is reported as error but 
this is only a 68.2% confidence interval.  

In the context of MD simulations, this treatment is applicable only if data sampled is 
independent. In other words, it is critical to know the time interval needed (not known a priori) 
between successive samples to ensure their independence. This is discussed in detail below.  

Diffusion Coefficient 

The diffusion coefficient (D) of a particle undergoing random walk (self diffusion of LJ fluid and 
a rigid fractal aggregate diffusion in LJ fluid, as discussed later) is given by Einstein’s relation13, 

𝐷 =
1
2𝑑 limL→N

𝑑
𝑑𝜏
〈Q𝑟(𝜏)RRRRRRRR⃗ − 𝑟(0)RRRRRRRR⃗ U

-
〉 

where D is the diffusion coefficient,  d (= 3) is the dimension of the system, 𝑟(𝜏)RRRRRRRR⃗  is the particle 
position at time τ, τ = 0 refers to a time origin, and the angle brackets < > denote the average 

over time origins. The quantity 〈Q𝑟(𝜏)RRRRRRRR⃗ − 𝑟(0)RRRRRRRR⃗ U
-
〉 is the particle mean squared displacement 

(MSD) and it grows linearly with time for sufficiently large values of τ. Therefore, in a three-
dimensional system, D equals one-sixth of the slope of a plot of the particle MSD versus τ. 
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Figure 1: Schematic describing the calculation of mean squared displacement MSD(τ) over 
a given time interval (τ). A: represents the MD trajectory where the particle coordinates 
recorded at a time interval of Δt, as indicated by vertical tick marks. B: represents the time 
intervals jtf - jti (= τ) over which the displacement of particles is calculated. Mean squared 
displacement is obtained by taking the mean of the square of these displacements. The 
separation, δ, between the time origins of two consecutive intervals is given by j+1ti - jti. 

A schematic illustrating the calculation of MSD of particles from their trajectory obtained from 
MD simulation is shown in Figure 1. If the displacement of NP particles over a time interval of 
width τ is calculated such that the distance between the time origins of two consecutive time 
intervals is δ, then MSD(τ,δ) is given by, 

𝑀𝑆𝐷(𝜏, 𝛿) =
1
𝑁L
:Y

1
𝑁Z

:𝑟[(𝚥𝛿)RRRRRRRRRRR⃗ ∙ 𝑟[(𝚥𝛿 + 𝜏)RRRRRRRRRRRRRRRRRRR⃗
<_

;=,

`
<a

b=c

 

where Nτ is the number of time intervals of width τ over which the average of squared 
displacements (SD) is calculated, i and j indices respectively run the summation over NP and Nτ, 
and 𝑟[(𝑡)RRRRRRRR⃗  is the position of the particle i at time t. The distance between two consecutive time 
origins (δ) is usually kept to a minimum to maximize the number of samples obtained from a 
MD simulation because of their computationally intensive nature. However, for a small δ and 
large τ, the consecutive values of squared displacements are likely to be correlated, thus resulting 
in a biased estimate of MSD(τ). This would be true for any other property of interest as well. In 
the context of balancing the computational cost with the requirement of uncorrelated 
(independent) or correlated (if required) sampling, it is critical to appreciate that the choice of an 
appropriate δ is unknown a priori and this must be addressed for each problem being studied. 
The following section will address this issue for the determination of MSD. 

RESULTS AND DISCUSSION 

Sampling Squared Displacements 

A: 
2Δt 4Δt 6Δt 8Δt 10Δt 

B: 

τ 

δ 

1ti 
1tf 

3ti 
3tf 

2ti 
2tf 

4ti 
4tf 
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Independent sampling of squared displacement (SD) is required for the determination of the 
diffusion coefficient of randomly diffusing particle in LJ fluid from their mean squared 
displacement. As mentioned previously, an appropriate value of δ has to be determined for 
ensuring the independent sampling of SD. In order to understand the time-scale at which SD is 
correlated, normalized autocorrelation function of SD was defined as a function of δ and τ given 
by the following equation. 

𝑅ef(𝜏, 𝛿) =
〈𝑆𝐷(𝜏, 0)𝑆𝐷(𝜏, 𝛿)〉
〈𝑆𝐷(𝜏, 0)𝑆𝐷(𝜏, 0)〉 

A plot of RSD as a function of δ for different values of τ is shown in Figure 2 and it shows that 
RSD for a given value of τ decays (in other words it de-correlates) to a constant value as δ → τ. 
This important result indicated that SD(τ) should be sampled such that δ ≥ τ (i.e. non-overlapping 
intervals) in order to ensure independent sampling of SD in the system studied here. Using this 
data MSD(τ) and associated confidence interval were obtained as discussed earlier. Note that 
RSD(τ,δ) does not decay to zero because 〈𝑆𝐷(𝜏, 𝛿 → ∞)〉 > 0. This approach should be followed 
to determine the δ for independent or correlated sampling as required for calculating the 
properties of interest in a specific system or a problem under investigation. We would like to 
point out that the need for an objective approach that ensures independent sampling has been 
acknowledged in the literature, Calderon et al. utilized maximum likelihood technique for 
determining δ needed to allow short timescale non-Markovian artifacts to average out by 
identifying a suitable stochastic model that described the diffusive process in their system10.  
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Figure 2: Normalized autocorrelation function of squared displacement samples, RSD(τ,δ), 
as a function of δ (time units) for different values of τ (time units). Data obtained from a 
MD simulation of 125 particles (NP) comprising a LJ fluid under the conditions described 
earlier. The plot shows that autocorrelation function decays to a constant value as δ → τ. 
Therefore, independent sampling of squared displacements would be ensured by choosing 
δ ≥ τ.  

Linear Regression for Obtaining Diffusion Coefficient 

As mentioned earlier, diffusion coefficient (D) is estimated as one-sixth of the slope of the linear 
fit of MSD as a function of τ. The best fitting straight line can be obtained from least squares 
linear regression, which would also yield the statistical uncertainty associated with the fitting 
parameters under the assumptions of regression analysis. The least squared straight line fit is 
𝑀𝑆𝐷(𝜏) = 𝑆𝐷i(𝜏) = 	𝛽ci + 𝛽,i𝜏, where 𝑆𝐷i(𝜏) is the point estimate of the mean of squared 
displacement, and 𝛽ci and 𝛽,i are the point estimates of the intercept and slope of the linear fit. 
For the details of the calculation of these parameters and associated uncertainty the reader is 
referred to Kleinbaum et al.15 Subsequently, the diffusion coefficient is 𝐷 = 𝛽,i 6⁄ . An important 
message here is that this analysis is valid only if underlying assumptions are satisfied. 
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Figure 3: Plot of the squared displacements (SD) as a function of τ. Data obtained from a 
MD simulation of 125 particles (NP) comprising a LJ fluid under the conditions described 
earlier.   

A careful evaluation of the underlying assumptions is required for the assessment of the validity 
of least squared linear regression for the estimation of diffusion coefficient from mean squared 
displacement. The assumption of the existence of SD(τ) with certain probability distribution 
having finite mean and variance is valid in this case because SD varies within a finite range for a 
given value of τ as shown in Figure 3. The assumption of a linear relationship between MSD 
and τ is upheld based on Einstein’s relation for determining the diffusion coefficient. We have 
ensured the validity of assumption of independence of SD samples by determining δ that ensured 
independent sampling. The assumption of normal distribution of SD is violated in this case 
because squared displacements are not normally distributed as verified in SI, Sec 1. It is well 
known that the magnitude of displacement in more than one dimension does not follow a normal 
distribution. This violation invalidates least square regression analysis in this case. For the sake 
of completeness, the distribution of SD also violates the assumption of homoscedasticity (i.e. 
constant variance in SD as a function of τ as evident from the increasing spread of SD as a 
function of τ shown in Figure 3.  

Yet, the applicability of Einstein relation for diffusion coefficient to the system of LJ particles 
studied here has a physical basis. Therefore, the straight line fit through mean squared 
displacements would result in a point estimate of 𝐷 = 𝛽,i 6⁄  even though uncertainty in D cannot 
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be determined. An estimate of mean of D and its associated uncertainty based on Student’s t-
distribution can be readily obtained from a sample of such point estimates obtained from 
multiple independent simulations (MIS). Evidence that D as a random variable followed normal 
distribution is provided in SI, Sec 2. The average diffusion coefficient and associated uncertainty 
thus obtained from a 100 MIS for the systems of LJ particles studied here have been documented 
in Table 2. These simulations were identical except for the initial velocities assigned to the 
particles, which were sampled from a Maxwell-Boltzmann distribution at the same temperature. 
While we have reported the analysis for LJ fluid simulated in canonical ensemble, we note that 
the difference between the average diffusion coefficients obtained in canonical and 
microcanonical ensembles was significant at a confidence level of 95% for the system of 125 LJ 
particles. Therefore, the choice of ensemble impacts the diffusion coefficient and should be 
considered carefully. The ideas presented in this work apply to both ensembles, as has been 
demonstrated through the examples of LJ fluid in canonical ensemble, and rigid fractal aggregate 
in microcanonical ensemble (discussed later). 

Table 2: Average diffusion coefficient (𝑫n) estimated from 100 MIS of Np LJ particles placed in 
a cubic simulation box of length L. LCL and UCL represent lower and upper bounds of 95% 
confidence limit. 

Np L 𝑫n  LCL UCL 
125 5.63 0.26168 0.26156 0.26181 
216 6.76 0.26984 0.26973 0.26995 
512 9.01 0.27828 0.27820 0.27836 
1000 11.26 0.28227 0.28221 0.28233 

 

This highlights the need for conducting MIS where each simulation results in one measurement. 
The importance of conducting MIS is further emphasized by the observation that even for the 
one of the simplest systems, LJ fluid, two independent MD simulations could give mean squared 
displacements statistically different from each other as shown in the following section. In other 
words, conducting MIS allows for more extensive exploration of the phase space, which helps in 
preventing erroneous conclusions that one could arrive at from a single simulation. 

Need for Conducting MIS 

The ergodic hypothesis states that the time average over a sufficiently long period of time and 
ensemble average of an observable in a system are identical. Properties of systems such as LJ 
fluid are usually estimated as time-averages from a single MD simulation, which is assumed to 
be long enough for ergodic hypothesis to be applicable. However, it is not known a priori how 
long the time period must be to satisfy ergodicity.  

As mentioned in the previous section, in this set of MIS that were conducted with different initial 
conditions (while keeping everything else the same) for the system containing Np = 125 LJ 
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particles, we found some MD trajectories which resulted in statistically distinguishable MSD(τ). 
This was surprising because these simulations were significantly longer than the simulations 
reported in standard texts on molecular simulations6,13.  

The non-overlapping 95% confidence intervals (shown as error bars) in Figure 4 indicate that 
MSD(τ) obtained from two such two simulations were statistically different from each other. This 
showed that the simulation time was not long enough for the system to erase its memory of its 
initial state. This finding emphatically demonstrates that it is important to conduct MIS even for 
a simple system like LJ fluid. Estimates of desired properties should include averaging across 
multiple independent simulations in addition to time averaging to obtain averages that are not 
biased by the initial configuration.  

Here we note that even though SD did not follow a normal distribution, the confidence interval 
for MSD(τ) were determined from Student’s t-distribution by invoking the central limit theorem, 
which states that the mean of sufficiently large samples is approximately normally distributed 
regardless of the underlying distribution of the random variable. In this analysis, the number of 
SD samples was greater than 30000 for a given value of τ, which is sufficiently large because 
statisticians prescribe a sample of size ~ 40 as a rule of thumb for the applicability of central 
limit theorem. To verify this, we have shown that MSD(τ) obtained from MIS indeed followed 
normal distribution (SI, Sec 2). 

 

Figure 4: Plot of MSD vs τ obtained from two independent MD simulations of an identical 
system of 125 LJ particles. The error bars indicate 95% confidence intervals. The mean 
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squared displacements from these two runs are statistically different as indicated by non-
overlapping 95% confidence intervals. The inset shows zoomed-in plot to highlight a 
representative non-overlapping confidence interval, which is not visible in the main figure 
for lower values of τ. 

The effect of initial state could potentially be mitigated by running a very long MD simulation, 
but such long simulations suffer from drift at long times due to finite numerical precision leading 
to altered dynamics in addition to high computational cost. Therefore, we recommend 
conducting computationally manageable several multiple independent simulations to account for 
initial state effects.  

For more complex systems, the dependence of properties calculated from MD simulations on 
initial conditions has also been demonstrated in the literature. For e.g., Calderon et al. used a 
mixed effects model and showed that diffusion of a charged atom diffusing in an ion channel 
depended upon initial conditions9. While the approach of generating initial states by assigning 
velocities to particles randomly is routinely followed in the literature, it is important to recognize 
that the generation of independent initial states is non-trivial for complex systems. This has been 
addressed in the literature to a degree of rigor through the use of techniques such as nudged 
elastic band technique to generate minimum energy states10,16.   

Diffusion as a Function of Simulation Box Length 

Conducting MIS was also useful in the analysis of the effect of finite simulation box size as 
documented below. The motion of particles comprising a fluid induces a flow field, which is felt 
by other particles, resulting in an effective long-range hydrodynamic interaction. Therefore, the 
dynamic properties of a finite system modeled with periodic boundary conditions are affected by 
these long-ranged interactions between the system and its periodic images. For determining the 
diffusion coefficient from MD simulations, others have proposed a correction to account for the 
effects of a finite simulation box size L 17–19,  

𝐷o = 𝐷 +
𝜉𝑘5𝑇
6𝜋𝜂𝐿 

where Do is the diffusion in an infinitely large system, ξ = 2.837297 is a numerical constant, kb is 
Boltzmann constant, T is the temperature, and η is the viscosity of the solvent. Therefore, the 
diffusion coefficient corrected for finite size effects (Do), is given by the intercept of a straight 
line fit of D vs L-1 data, obtained from MD simulations of systems with different box sizes. 
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Figure 5: Variation of the diffusion coefficient (D) of LJ fluid particles as a function of the 
inverse of the simulation box length (L-1). For each box length, one hundred independent 
MD simulations were conducted.  

A plot of D as a function of L-1 for LJ fluid particles is shown in Figure 5. One hundred multiple 
independent MD simulations were carried out for each L by varying the initial velocities of the 
LJ particles, which were sampled from Maxwell-Boltzmann distribution. Notice that if only one 
simulation was conducted for each L, then the linear relationship between D and L-1 could 
potentially be masked or incorrect which would then result in an inaccurate estimate of Do. 
Hypothetical curves, like l1, l2, and l3 as shown in Figure 6, illustrating this point are not plotted 
in Figure 5 for clarity. This also underlines the importance of conducting MIS. Determining 
average Do (i.e. 𝐷o7777) is a simple matter obtaining the intercept of a straight line fitted through D 
vs L-1 data using least squared linear regression. As mentioned earlier, all the assumptions 
involved in the least squares linear regression have to be validated. The assumptions of existence 
(Figure 5), linear relationship (mentioned above), independence (MIS), and normal distribution 
of D (SI, Sec 3) were satisfied in this case. The assumption of homoscedasticity (constant 
variance in D for different L-1) was violated here as evident from the increasing spread in D as L-

1 increased as shown in Figure 5. The issue of heteroscedasticity was addressed by using 
weighted least squares approach. The reader is referred to SI, Sec 3 for least squared and 
weighted least squares regression analysis of this system and other details. The average diffusion 
coefficient of LJ particles corrected for finite simulation box size, 𝐷𝑜7777, thus obtained was 0.30267 

0.1 0.15
L-1

0.26

0.27

0.28

0.29
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and 95% confidence interval was (0.30240, 0.30294). An R2 value of 0.99 was obtained for this 
linear fit. 

Conducting MIS for addressing the effect finite simulation size is even more important when 
calculating the diffusion coefficient of macromolecules suspended in a fluid. Large size 
separation between macromolecular solute particle and the solvent particle necessitates the 
presence of a large number of solvent particles for each solute particle, thus making MD 
simulation of systems containing more than a few macromolecules computationally prohibitive. 
This is different from the case of LJ fluid where extensive sampling of squared displacements 
can be obtained from a system of modest size containing 100 particles because each identical 
particle contributes to data sampling. This point is illustrated through MD simulations of a 
nanoparticle aggregate undergoing Brownian diffusion in the presence of explicit solvent 
particles. 

An off-lattice fractal aggregate of a fractal dimension df = 2.5 containing N = 64 primary 
particles (p) was generated using the recipe proposed by Thouy and Jullien.20,21 The aggregate 
was treated as a rigid body and was placed in a cubic simulation box containing explicit solvent 
particles (s) at a number density of n = 0.85. Solvent-solvent and solvent-particle interactions 
were modeled with LJ potential with σ = 1 and ε = 1. The equilibrium temperature of T = 1.2 was 
achieved by running the MD simulations for half a million time steps in the canonical (NVT) 
ensemble, after which thermostat was switched-off and the production run was carried out in 
microcanonical ensemble (NVE) for 10 million time steps. MD trajectory was advanced with a 
time step of 0.005 in reduced units. The diffusion coefficient of the fractal aggregate was 
calculated from the mean squared displacement of its center of mass. The correctness of these 
simulations was established by a good agreement of the ratio of hydrodynamic radius of the 
fractal aggregate to its radius of gyration with the experimental measurements reported in the 
literature for aggregates with similar morphology and the reader is referred to Pranami et al. for 
details22. We also computed the average rotational and translational kinetic energies of the fractal 
aggregate (Ns = 11868, and L  = 24.08) to be 1.81 ± 0.03 and 1.79 ± 0.03 respectively, in a 
representative simulation. Here, ± represents a 95% confidence interval, and the difference 
between the average rotational and translational kinetic energies was statistically insignificant. 
This implied that the system was equilibrated sufficiently ensuring the equipartition of the 
energy of the rigid fractal aggregate. 

The variation of the diffusion coefficient of the fractal aggregate as a function of L-1 obtained 
from ten multiple independent simulations for each L is shown in Figure 6. This data clearly 
illustrates the effect of finite size of MD simulation box on the diffusion of fractal aggregate. It 
also reinforces the importance of conducting multiple independent simulations. If only one 
simulation was conducted for each of the box sizes in order to determine 𝐷𝑜7777 (average diffusion 
coefficient corrected for finite simulation size), then one could potentially obtain the hypothetical 
curves l1, l2, or l3 describing the relationship between D and L-1 as shown in Figure 6. This could 
result in an incorrect linear relationship (l1 and l2) or masking the linear relationship all together 
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(l3) resulting in incorrect estimates of slope and intercept (𝐷𝑜7777).  Therefore, we found it necessary 
to conduct multiple independent simulations for each L in order to extract meaningful averages.  

 

Figure 6: Variation of the diffusion coefficient (D) of a fractal aggregate containing 64 
primary particles and fractal dimension (df) of 2.5 as a function of L-1. The linear 
relationship between D and L-1 is shown as the solid black line (l) obtained from weighted 
least square regression. However, if only one simulation was conducted for each box size 
then D could potentially lie on one of the l1, l2, or l3 curves, thus deviating significantly from 
l.  

Assumptions for weighted least squares regression analysis for fitting a straight line through D vs 
L-1 were satisfied as shown in SI, Sec 4. 𝐷𝑜7777, thus obtained was 0.00701 and 95% confidence 
interval was (0.00677, 0.007243). An R2 value of 0.88 was obtained for this linear fit. Average 
diffusion coefficient at a given simulation box length and 95% confidence interval associated 
with it are listed in Table 3.  

Table 3: Average diffusion coefficient (𝑫n) obtained from ten MIS of an aggregate of fractal 
dimension, df = 2.5, and containing Np = 64 primary particles placed in a cubic simulation box of 
length L. Ns = number of solvent particles. LCL and UCL represent lower and upper bounds of 
95% confidence limit. 

L Ns 𝑫n  LCL UCL 
24.08 11868 0.00463 0.00454 0.00472 
30.10 23180 0.00512 0.00501 0.00523 
37.63 45274 0.00548 0.00537 0.00559 
45.15 78233 0.00575 0.00557 0.00591 
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CONCLUSIONS 

Several important issues associated with MD simulations are often not addressed as rigorously as 
they ought to be due to computationally demanding nature of these simulations. The answers to 
questions such as how long is long enough to erase the effects of initial conditions and how 
frequently the data should be recorded to ensure correlated or independent sampling as desired 
are not known a priori. Other questions such as how are the variables of interest distributed and 
if the assumptions underlying the estimation of properties of interest from the MD data are 
satisfied are usually not even considered. However, these questions should be addressed in order 
to reach reliable conclusions from MD simulations.  

In this work, we have probed these issues through the specific example of the estimation of 
diffusion coefficient of LJ fluid and a rigid macromolecule suspended in LJ fluid from the 
Einstein’s relation using MD simulations. We demonstrated how to determine the smallest 
interval between two successive time origins along the MD trajectory for sampling independent 
squared displacements and this approach could also be used for the estimation of other properties 
of interest. Subsequently, we showed that the assumptions of normal distribution and 
homoscedasticity required for the validity of least squared linear regression for fitting a straight 
line through squared displacements as a function of time were violated. This has not been shown 
in the literature to the best of our knowledge. To our surprise, we found that MD simulations of 
one of the simplest systems of LJ fluid resulted in trajectories that gave mean squared 
displacements, which were statistically distinguishable from each other. The duration of these 
simulations was significantly longer than the ones reported in the literature for similar systems. 
This alludes to the question posed earlier – how long is long enough for the validity of ergodic 
hypothesis especially in the context of computationally intensive nature of MD simulations? We 
showed that these issues could be managed by running multiple independent simulations of 
computationally manageable duration. Finally we also underscored the importance of running 
multiple independent simulations through the exercise of correcting the diffusion coefficient for 
the finite simulation size. 

The approach reported in this work for measuring uncertainty in MD simulations could 
potentially be relevant to systems studied using other simulation techniques like Brownian 
dynamics and dissipative particle dynamics. 

Supporting Information 

The SI document accompanying this manuscript documents the details of statistical analysis 
(performed using JMP 12.0.0, www.jmp.com) and tests that form the foundation of the results 
and conclusions presented in this manuscript. SI Section 1 documents the goodness of fit test 
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performed to show that SD did not follow a normal distribution. SI Section 2 contains the 
goodness of fit tests that ascertained that diffusion coefficients obtained from MIS were indeed 
normally distributed. SI Section 3 contains the details of linear least squared regression analysis 
for fitting D vs. 1/L for LJ fluid. It established the violation of the assumption of 
homoscedasticity, which was subsequently remedied using weighted least squares regression in 
the same section. SI Section 4 documents the weighted least squared regression for fitting D vs. 
1/L for a fractal aggregate. SI Section 5 shows that center of mass of a system of LJ particles did 
not exhibit a drift during the course of MD simulation. This material is available free of charge 
via the Internet at http://pubs.acs.org. 
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