2018

Shockwave Aerification Performance Study

Tim Dalsgaard
Iowa State University

Adam Thoms
Iowa State University, athoms@iastate.edu

Nick Christians
Iowa State University, nchris@iastate.edu

Ben Pease
Iowa State University, bwpease@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/farmprogressreports

Part of the _Agriculture Commons_, and the _Horticulture Commons_

Recommended Citation
Dalsgaard, Tim; Thoms, Adam; Christians, Nick; and Pease, Ben (2018) "Shockwave Aerification Performance Study," _Farm Progress Reports_: Vol. 2017 : Iss. 1 , Article 58.
Available at: https://lib.dr.iastate.edu/farmprogressreports/vol2017/iss1/58

This Horticulture Station is brought to you for free and open access by the Research and Demonstration Farms at Iowa State University Digital Repository. It has been accepted for inclusion in Farm Progress Reports by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Shockwave Aerification Performance Study

RFR-A1723

Tim Dalsgaard, graduate research assistant
Adam Thoms, assistant professor
Nick Christians, university professor
Ben Pease, research associate

Introduction
Athletic field safety is a growing concern on all levels from young children to professional sports. Finding time to close the field to relieve compaction is often difficult, but new machines offer a potential solution. The objective of this project is to evaluate the performance of a native soil Kentucky bluegrass (*Poa pratensis*) athletic field under simulated traffic subjected to various aerification methods and the Imants Shockwave. Safety parameters such as surface hardness and rotational resistance were tracked throughout the season to determine if any benefits exist to athlete safety between treatments. This is the first year of a two-year study.

Materials and Methods
Research is being conducted at the Iowa State University Horticulture Research Station on the Sports Turf Research Area on a native soil rootzone. The experimental design was a randomized complete block with three replications. The five treatments were an untreated control, hollow tine aerification, solid tine aerification, one pass with the Shockwave, and two perpendicular passes with the Shockwave. Treatments were applied during the 2017 growing season with simulated traffic beginning at the same time as the Iowa high school football season. Traffic was applied with a modified Baldree Traffic Simulator (BTS) and plots receive three simulated traffic events/week for nine weeks. Digital images were collected after every traffic event to track turfgrass performance with percent green cover. Percent green cover was determined using digital image analysis. Surface hardness, soil moisture, and shear vane rotational resistance were collected after every five simulated traffic events. Surface hardness was collected using a 2.25 kg Clegg Impact Soil Tester. Soil moisture was collected with the FieldScout TDR, and rotational resistance was collected with a TurfTec Shear Tester.

Results and Discussion
A significant date-by-treatment interaction was present, so data are presented by individual dates. Surface hardness values varied between treatments and rating dates with no real consistency (Table 1). As soil moisture decreased, surface hardness increased (data not shown). Hollow tine aerification treatments resulted in lower percent green cover than the control and Shockwave single pass on three of the six rating dates (Table 2). Perpendicular passes with the Shockwave also demonstrated significantly lower percent cover on three ratings dates. No differences between treatments were reported for soil moisture (data not shown). Significant differences existed for rotational resistance between treatments after 5, 10, 20, and 25 games, with hollow tine treatments providing the least rotational resistance of all the treatments on these dates (data not shown). This study will be repeated in 2018 and recovery from traffic will be tracked each spring.

Acknowledgements
Appreciation is extended to Nathan Lykkegaard and Midwest Premier Turf for donating time and use of the Shockwave for treatment applications.
Table 1. Effect of various cultivation treatments on Kentucky bluegrass under simulated athletic traffic on surface hardness, 2017.

<table>
<thead>
<tr>
<th>Cultivation method</th>
<th>Number of simulated traffic events¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Control²</td>
<td>55⁸</td>
</tr>
<tr>
<td>Hollow tine³</td>
<td>37</td>
</tr>
<tr>
<td>Shockwave 1x⁴</td>
<td>53</td>
</tr>
<tr>
<td>Shockwave 2x⁵</td>
<td>53</td>
</tr>
<tr>
<td>Solid tine⁶</td>
<td>46</td>
</tr>
<tr>
<td>LSD (0.05)⁹⁷</td>
<td>7</td>
</tr>
</tbody>
</table>

¹Simulated athletic events applied using a modified Baldree Traffic Simulator starting August 7, 2017.
²Control treatments did not receive any cultivation treatments.
³Hollow tine treatments were applied using a Toro Pro Core 648 with a 1.27 cm diameter tine on 7.62 cm x 7.62 cm spacing June 20, July 20, and August 23, 2017.
⁴Shockwave 1x treatment received one pass of the Shockwave set at 25-cm depth June 20, July 20, August 23, and September 12, 2017.
⁵Shockwave 2x treatment received two passes of the Shockwave set at 25-cm depth June 20, July 20, August 23, and September 12, 2017.
⁶Solid tine treatments were applied using a Toro Pro Core 648 with a 1.27 cm diameter tine on 7.62 cm x 7.62 cm spacing June 20, July 20, and August 23, 2017.
⁷Soil moisture values averaged below 30% on this date, much lower than other rating dates.
⁸Surface hardness values collected using a 2.25 kg Clegg Impact Soil Tester, units are expressed in GMAX.
⁹Means were separated using Fishers LSD.

Table 2. Effect of various cultivation treatments on Kentucky bluegrass under simulated athletic traffic on percent green cover, 2017.

<table>
<thead>
<tr>
<th>Cultivation method</th>
<th>Number of simulated traffic events¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Control²</td>
<td>89⁷</td>
</tr>
<tr>
<td>Hollow tine³</td>
<td>88</td>
</tr>
<tr>
<td>Shockwave 1x⁴</td>
<td>88</td>
</tr>
<tr>
<td>Shockwave 2x⁵</td>
<td>86</td>
</tr>
<tr>
<td>Solid tine⁶</td>
<td>90</td>
</tr>
<tr>
<td>LSD (0.05)⁹⁷</td>
<td>6.1</td>
</tr>
</tbody>
</table>

¹Simulated athletic events applied using a modified Baldree Traffic Simulator starting August 7, 2017.
²Control treatments did not receive any cultivation treatments.
³Hollow tine treatments were applied using a Toro Pro Core 648 with a 1.27 cm diameter tine on 7.62 cm x 7.62 cm spacing June 20, July 20, and August 23, 2017.
⁴Shockwave 1x treatment received one pass of the Shockwave set at 25-cm depth June 20, July 20, August 23, and September 12, 2017.
⁵Shockwave 2x treatment received two passes of the Shockwave set at 25-cm depth June 20, July 20, August 23, and September 12, 2017.
⁶Solid tine treatments were applied using a Toro Pro Core 648 with a 1.27 cm diameter tine on 7.62 cm x 7.62 cm spacing June 20, July 20, and August 23, 2017.
⁷Percent green cover as determined with digital image analysis.
⁸Means were separated using Fishers LSD.