Northwest Iowa On-farm Research: Comparing a Soybean No-tillage System

Joel L. DeJong
Iowa State University, jldejong@iastate.edu

Joshua L. Sievers
Iowa State University, sieversj@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the Agricultural Science Commons, and the Agriculture Commons

Recommended Citation

http://lib.dr.iastate.edu/farms_reports/420
Northwest Iowa On-farm Research: Comparing a Soybean No-tillage System

Abstract
Northwest Iowa on-farm research is now in its fourth year of conducting field scale triple replicated trials. Replication allows for statistical analysis of results. Ideas for on-farm research generally come from the farmer cooperators or from the local field agronomist. This project has been established to localize research in northwest Iowa, to help farmers answer some of their crop production questions, and to validate small plot farm research on a whole-field basis.

Keywords
RFR A9067

Disciplines
Agricultural Science | Agriculture
Northwest Iowa On-farm Research:
Comparing a Soybean No-tillage System

RFR-A9067

Joel DeJong, field agronomist
ISU Extension
Josh Sievers, agricultural specialist

Introduction
Northwest Iowa on-farm research is now in its fourth year of conducting field scale triple replicated trials. Replication allows for statistical analysis of results. Ideas for on-farm research generally come from the farmer-cooperators or from the local field agronomist. This project has been established to localize research in northwest Iowa, to help farmers answer some of their crop production questions, and to validate small plot farm research on a whole-field basis.

In 2009, 40 projects were conducted with 20 cooperators from Sioux, Lyon, Osceola, Sac, and Buena Vista counties. Results from all of the projects are located at http://ofr.ag.iastate.edu. Comparisons included soybean plant population, tillage versus no-till, soybean row width, soybean field rollers, corn rootworm resistant seed corn with and without insecticide, corn populations, and corn fungicide effectiveness.

This year’s article will focus on the comparison of a no-tillage system with the farmer’s conventional tillage system in soybeans. Past Iowa State University (ISU) projects have shown no major yield differences in soybeans due to tillage in the loess soils of Northwest Iowa. Unfortunately, many farmers are hesitant to take that first step. Basic on-farm research provides a firsthand opportunity to compare the two types of systems on a farmer’s field.

Materials and Methods
Conventional farm equipment was used to plant and harvest the experiments. Data was collected either by a yield monitor or a weigh wagon. Plots were randomized in a complete block design. Plots were established by using corn rows from the previous growing season. The cooperators matched the no-tillage system to their planter, and disked the tillage treatments. The no-tillage treatments did not receive any tillage since the previous crop year. In situations where the combine header width did not match the planter, the center of each treatment was harvested. Spring stand count, residue percentages, fall stand counts, moisture, and yield data was collected and is shown in Table 1. All studies were conducted on a corn-soybean rotation. Row spacing of 15-in., 22-in., and 30-in. rows were used, depending on the cooperators’ equipment at six locations in Sioux and Lyon Counties.

Results and Discussion
Two of the six trials showed a statistical response favoring the no-tillage soybean treatment. No location showed a statistical advantage to the tillage treatment. This data supports ISU small plot research results. These studies were conducted on loess soils that are internally well drained. Final populations were not impacted due to tillage system differences.

Acknowledgements
We would like to thank Ryan Odens, Steve Abma, Wes DeGroot, Rodney Mogler, and Nate Ronsiek for their cooperation of on-farm research.
Table 1. Comparisons of soybean tillage systems in Northwest Iowa.

<table>
<thead>
<tr>
<th>Location</th>
<th>Tillage</th>
<th>Row spacing (in.)</th>
<th>Residue % (emergence)</th>
<th>Spring stand</th>
<th>Fall stand</th>
<th>Yield (bu/acre)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyon 1</td>
<td>no-till</td>
<td>22</td>
<td>77</td>
<td>127,666</td>
<td>95,000</td>
<td>57.4</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>conventional</td>
<td>32</td>
<td></td>
<td>125,333</td>
<td>86,000</td>
<td>56.4</td>
<td></td>
</tr>
<tr>
<td>Lyon 2¹</td>
<td>no-till</td>
<td>22</td>
<td>40</td>
<td>118,667</td>
<td>99,333</td>
<td>61.7</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>conventional</td>
<td>19</td>
<td></td>
<td>128,333</td>
<td>99,667</td>
<td>64.0</td>
<td></td>
</tr>
<tr>
<td>Lyon 3</td>
<td>no-till</td>
<td>15</td>
<td>78</td>
<td>130,833</td>
<td>114,667</td>
<td>57.9</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>conventional</td>
<td>29</td>
<td></td>
<td>122,666</td>
<td>120,000</td>
<td>58.2</td>
<td></td>
</tr>
<tr>
<td>Lyon 4</td>
<td>no-till</td>
<td>30</td>
<td>78</td>
<td>113,000</td>
<td>-</td>
<td>65.9</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>conventional</td>
<td>28</td>
<td></td>
<td>119,333</td>
<td>-</td>
<td>57.9</td>
<td></td>
</tr>
<tr>
<td>Sioux 1</td>
<td>no-till</td>
<td>30</td>
<td>84</td>
<td>128,667</td>
<td>116,667</td>
<td>64.3</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>conventional</td>
<td>50</td>
<td></td>
<td>125,000</td>
<td>117,667</td>
<td>65.5</td>
<td></td>
</tr>
<tr>
<td>Sioux 2</td>
<td>no-till</td>
<td>15</td>
<td>83</td>
<td>106,000</td>
<td>110,000</td>
<td>47.6</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>conventional</td>
<td>27</td>
<td></td>
<td>111,666</td>
<td>110,333</td>
<td>49.0</td>
<td></td>
</tr>
</tbody>
</table>

All yields adjusted to 13.0% moisture.
Stands indicate approximate plants per acre.
** = statistically different, P < 0.05.
NS = not statistically different, P > 0.05.
¹ = stover removed from plot the previous fall.