Gene Network Reconstruction with c-level Partial Correlation Graph

Thumbnail Image
Date
2019-01-01
Authors
Wang, Hao
Major Professor
Peng Liu
Yumou Qiu
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Journal Issue
Is Version Of
Versions
Series
Department
Statistics
Abstract

A key aim in system biology is to understand molecules’ structural and functional processes in a living cell. With the development of high-throughput technologies, quantitative methods can be applied on large scale ‘omics’ datasets. Due to the nature of intricate relationships of all molecules in a cell, network-based methods have become a popular approach to reconstruct gene-gene, gene-protein, and protein-protein interactions. Among different network approaches, Gaussian Graphical Model shows advantages in reconstructing gene co-expression networks because it is able to capture the direct association between genes with partial correlations. However, estimating and inferring partial correlations under the high-dimensional setting are very challenging. A method utilizing penalized partial correlations called exact hypothesis testing for shrinkage based Gaussian graphical models (Shrunk MLE) is able to overcome the high-dimension problem. However, the statistical inference of such penalized partial correlations is not satisfying. In this project, a novel network inference method, named c-level Partial Correlation Graph (c-level PCG), is applied to the gene expression dataset to model gene-gene direct association. It overcomes the ill-condition of p greater than n and successfully infers estimated partial correlation with false discovery rate controlled. Compared to Shrunk MLE, c-level PCG is able to achieve much higher statistical power and control the false discovery rate at the same time, according to our simulation studies.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Tue Jan 01 00:00:00 UTC 2019