Nonequilibrium percolative c(2×2) ordering: Oxygen on Pd(100)

Thumbnail Image
Date
1987
Authors
Evans, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyMathematics
Abstract

Dissociative adsorption of oxygen on certain (100) metal surfaces has been modeled as random dimer adsorption onto diagonally adjacent empty sites of a square lattice subject to the additional constraint that all six neighboring sites must be empty (the 8‐site model). Here we adapt this model to analyze the nonequilibrium c(2×2) ordering recently observed for oxygen on Pd(100) at coverages up to saturation (>1/4 monolayer), under conditions of low temperature and high pressure where effects of diffusive mobility can be ignored. We do, however, propose that adsorption could be followed immediately by short range transient mobility to dissipate excess energy. We first show how exact master equations for this model can be used to obtain analytic expressions for various local quantities of interest: the probability of an empty 8‐site configuration (which determines the sticking coefficient), the c(2×2) island edge or domain boundary densities, etc. They also provide a characterization of, e.g., the asymptotic decay of spatial correlations. Near‐percolating (percolative) c(2×2) ordering is readily observed in computer simulations of the saturation state. Through a simple extension of the physical model, we provide a framework for analysis of the large scale characteristics of this ordering via correlated polychromatic percolation theory. Corresponding scaling relations and some real space renormalization group analysis are described. Simulation results for average sizes, the effective dimension, and perimeter length to size ratios, of c(2×2) islands, are also presented.

Comments

This article is published as Evans, J. W. "Nonequilibrium percolative c (2× 2) ordering: Oxygen on Pd (100)." The Journal of chemical physics 87, no. 5 (1987): 3038-3048, doi:10.1063/1.453040. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 1987
Collections