2018

On-Farm Corn and Soybean Management Demonstration Trials

Jim Fawcett
Iowa State University

Andrew Weaver
Iowa State University, aeweaver@iastate.edu

Matthew Schnabel
Iowa State University, mschn@iastate.edu

Zack Koopman
Iowa State University, zkoopman@iastate.edu

Cody Schneider
Iowa State University, schn145@iastate.edu

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/farmprogressreports
Part of the *Agriculture Commons*

Recommended Citation

Fawcett, Jim; Weaver, Andrew; Schnabel, Matthew; Koopman, Zack; Schneider, Cody; and Mitchell, Tyler (2018) 'On-Farm Corn and Soybean Management Demonstration Trials,' *Farm Progress Reports*: Vol. 2017 : Iss. 1 , Article 77.
Available at: https://lib.dr.iastate.edu/farmprogressreports/vol2017/iss1/77

This Northwest and Allee Research and Demonstration Farms is brought to you for free and open access by the Research and Demonstration Farms at Iowa State University Digital Repository. It has been accepted for inclusion in Farm Progress Reports by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
On-Farm Corn and Soybean Management Demonstration Trials

Authors
Jim Fawcett, Andrew Weaver, Matthew Schnabel, Zack Koopman, Cody Schneider, and Tyler Mitchell
On-Farm Corn and Soybean Management Demonstration Trials

RFR-A1760

Jim Fawcett, extension field agronomist (retired)
Andrew Weaver, Northwest Farm, ag specialist
Matthew Schnabel, Northern Farm, superintendent
Zack Koopman, Ag Engineering/Agronomy Farm, ag specialist
Cody Schneider, Southeast Farm, ag specialist
Tyler Mitchell, Northeast Farm, ag specialist

Introduction
Farmers are faced with many decisions in managing corn and soybean as new technologies are introduced, such as Bt corn hybrids, new pesticides, and new seed treatments. As problems with corn rootworm resistance to Bt corn continue to be found in Iowa, it is important to research methods to manage this pest. It is also important for farmers to adopt tillage practices that not only maximize profits, but also conserve the soil. The objective of these trials was to investigate what affect various corn and soybean management practices would have on grain yield.

Materials and Methods
In 2017, 15 trials on various management practices in corn and soybean were investigated (Table 1). All trials were conducted on-farm by farmer cooperators using the farmer’s equipment. Strips were arranged in a randomized complete block design with at least three replications per treatment. Strip width and length varied from field-to-field depending on field and equipment size. All strips were machine harvested for grain yield.

Trials 1, 7, and 13 investigated planting a corn hybrid with and without a rootworm insecticide at planting (Table 2). In Trial 1, Pioneer P0589AMXT was planted with and without Aztec® insecticide. In Trial 7, Agrigold 5361 was planted with and without Aztec® insecticide, and in Trial 13, Pioneer PO157 was planted with and without Aztec® insecticide. Pioneer P0589AMXT and Agrigold 5361 are transgenic hybrids that include the Bt rootworm trait. Pioneer PO589AMXT contains the Herculex trait and Agrigold 5361 contains the VT3 trait. Pioneer PO157 is a conventional hybrid.

In Trials 2 and 3, corn planted no-till on alfalfa ground was compared with corn planted following a disk and field cultivator on alfalfa ground.

In Trial 4, corn planted with seed treated with talcum powder and with Nutriplant® SD was compared with corn planted without a seed treatment. In Trial 5, corn seed treated with talcum powder was compared with corn planted without talcum powder. In Trial 6, soybean planted with seed treated with talcum powder and with Nutriplant® SD was compared with soybean planted without a seed treatment. Nutriplant® SD is marketed as a nutritional supplement to enhance seedling emergence and growth. Talcum powder is promoted to enhance seed flowability.

In Trials 8, 9, 10, and 12, a weed management system using Roundup® (glyphosate) plus Realm Q® (rimsulfuron plus mesotrione) was compared with a weed management system using Impact® (topramezone).
In Trials 11 and 15, soybean planted with an inoculant seed treatment was compared with soybean planted with untreated seed. In Trial 14, soybean planted with seed treated with Acceleron® B-200, Acceleron® Standard and Acceleron® E007 and ILeVO was compared with soybean planted with untreated seed. The Acceleron® products are marketed by Monsanto. Acceleron® B-200 is promoted to attract beneficial microbes to the roots. Acceleron® Standard is an insecticide and fungicide. Acceleron® E007 is promoted to improve seed flowability. ILeVO is a fungicide promoted to control sudden death syndrome, which is marketed by Bayer.

Results and Discussion

In Trial 1, there was a six bushel/acre yield increase with the corn planted with a rootworm insecticide compared with the corn without the insecticide (Table 2). This may indicate the Pioneer POS989AMXT hybrid is not providing complete control of the rootworms and other soilborne insects in this field. There was no yield difference between the corn planted with an insecticide and corn planted without an insecticide in Trials 7 and 13. There was likely little rootworm pressure in Trial 13, and the transgenic hybrid in Trial 7 provided sufficient control of any rootworms in Trial 7. In Trials 2 and 3, there was no difference in corn yield between the corn planted no-till into alfalfa ground compared with the corn planted with tillage.

In Trial 4, there was no yield difference between the corn planted with Nutriplant® SD and with talcum powder seed treatments compared with the corn planted without a seed treatment. In Trial 5, there was a significant yield increase of 15 bushels/acre with the corn planted with the talcum powder seed treatment compared with no talcum powder seed treatment (P = 0.03). It is not known what might have caused this yield increase. In Trial 6, there was no difference in yield between soybean planted with Nutriplant® SD and with talcum powder compared with soybean planted without a seed treatment.

In Trials 8, 9, 10, and 12, there was no difference in corn yield with corn planted using a weed management system utilizing the Roundup® and Realm Q® compared with a system utilizing Impact®. There was not a difference in weed control between the two systems in any of the trials.

In Trial 11, there was not a significant yield increase with soybean planted with inoculated seed compared with soybean planted with untreated seed, but in Trial 15, the soybean planted with inoculated seed yielded one bushel/acre more than soybean planted with untreated seed (P = 0.02). Both trials were in fields with a long-term history of a corn-soybean rotation, which would reduce the likelihood of a yield increase with the inoculated seed. In Trial 14, the soybean planted with the seed treatment of the Acceleron® products and ILeVO® did not yield significantly different from the soybean planted without a seed treatment. There was no sudden death in the soybean in the trial, which would have reduced the chances of a yield response to the ILeVO®.

NOTE: The results presented are from replicated demonstration trials. Statistics are used to detect differences at a location and should not be interpreted beyond the single location.
Table 1. Variety, planting date, planting population, previous crop, and tillage practices in on-farm trials investigating various management practices in corn and soybean in 2017.

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Trial</th>
<th>Management practice</th>
<th>County</th>
<th>Variety</th>
<th>Row spacing</th>
<th>Planting date</th>
<th>Planting population (seeds/ac)</th>
<th>Previous crop</th>
<th>Tillage</th>
</tr>
</thead>
<tbody>
<tr>
<td>170103</td>
<td>1</td>
<td>Rootworm insecticide</td>
<td>Lyon</td>
<td>Pioneer P0589 AMXT</td>
<td>22</td>
<td>5/4/17</td>
<td>36,000</td>
<td>Corn</td>
<td>Conventional</td>
</tr>
<tr>
<td>170504</td>
<td>2</td>
<td>Tillage after alfalfa</td>
<td>Dallas</td>
<td>Wyffels 7888 RIB</td>
<td>30</td>
<td>4/25/17</td>
<td>34,785</td>
<td>Alfalfa</td>
<td>No-till vs. disk and field cultivate</td>
</tr>
<tr>
<td>170507</td>
<td>3</td>
<td>Tillage after alfalfa</td>
<td>Dallas</td>
<td>Wyffels 7696 RIB</td>
<td>30</td>
<td>4/25/17</td>
<td>34,785</td>
<td>Alfalfa</td>
<td>No-till vs. disk and field cultivate</td>
</tr>
<tr>
<td>170816</td>
<td>4</td>
<td>Seed treatment</td>
<td>Bremer</td>
<td>Dekalb DK 5356</td>
<td>30</td>
<td>4/28/17</td>
<td>34,000</td>
<td>Corn</td>
<td>No-till</td>
</tr>
<tr>
<td>170817</td>
<td>5</td>
<td>Seed treatment</td>
<td>Mitchell</td>
<td>Winfield 419 RIB</td>
<td>30</td>
<td>5/9/17</td>
<td>36,000</td>
<td>Soybean</td>
<td>No-till</td>
</tr>
<tr>
<td>170824</td>
<td>6</td>
<td>Seed treatment</td>
<td>Bremer</td>
<td>CB Seeds CB2108</td>
<td>30</td>
<td>5/27/17</td>
<td>130,000</td>
<td>Corn</td>
<td>No-till</td>
</tr>
<tr>
<td>170144</td>
<td>7</td>
<td>Rootworm insecticide</td>
<td>Lyon</td>
<td>Agrigold 5361</td>
<td>22</td>
<td>5/4/17</td>
<td>36,000</td>
<td>Corn</td>
<td>Conventional</td>
</tr>
<tr>
<td>170146</td>
<td>8</td>
<td>Impact vs. Roundup</td>
<td>Lyon</td>
<td>Pioneer P0589A MXT</td>
<td>22</td>
<td>5/5/17</td>
<td>35,000</td>
<td>Corn</td>
<td>Conventional</td>
</tr>
<tr>
<td>170147</td>
<td>9</td>
<td>Impact vs. Roundup</td>
<td>Lyon</td>
<td>Pioneer P0339A MXT</td>
<td>22</td>
<td>5/5/17</td>
<td>35,000</td>
<td>Corn</td>
<td>Conventional</td>
</tr>
<tr>
<td>170145</td>
<td>10</td>
<td>Impact vs. Roundup</td>
<td>Lyon</td>
<td>Pioneer P9929</td>
<td>22</td>
<td>5/5/17</td>
<td>35,000</td>
<td>Corn</td>
<td>Conventional</td>
</tr>
<tr>
<td>170143</td>
<td>11</td>
<td>Seed inoculation</td>
<td>Osceola</td>
<td>Syngenta NK 520-T6</td>
<td>30</td>
<td>5/16/17</td>
<td>135,000</td>
<td>Corn</td>
<td>No-till</td>
</tr>
<tr>
<td>170111</td>
<td>12</td>
<td>Impact vs. Roundup</td>
<td>Lyon</td>
<td>Dekalb DK53-56</td>
<td>22</td>
<td>5/5/17</td>
<td>35,000</td>
<td>Corn</td>
<td>Conventional</td>
</tr>
<tr>
<td>170404</td>
<td>13</td>
<td>Rootworm insecticide</td>
<td>Kossuth</td>
<td>Pioneer P0157</td>
<td>30</td>
<td>5/6/17</td>
<td>34,500</td>
<td>Soybean</td>
<td>Conventional</td>
</tr>
<tr>
<td>170822</td>
<td>14</td>
<td>Seed treatment</td>
<td>Bremer</td>
<td>CB Seeds CB2108</td>
<td>30</td>
<td>5/27/17</td>
<td>130,000</td>
<td>Corn</td>
<td>No-till</td>
</tr>
<tr>
<td>170123</td>
<td>15</td>
<td>Seed inoculation</td>
<td>Osceola</td>
<td>Syngenta NK520-T6</td>
<td>30</td>
<td>5/16/17</td>
<td>135,000</td>
<td>Corn</td>
<td>No-till</td>
</tr>
</tbody>
</table>
Table 2. Yields for on-farm corn and soybean trials investigating various management practices in 2017.

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Trial</th>
<th>Treatment</th>
<th>Yield (bu/ac)</th>
<th>P-value<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>170103 1</td>
<td>Aztec HC at 0.6 oz/ac at planting No rootworm insecticide</td>
<td>237<sup>a</sup></td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>170504 2</td>
<td>No-till following alfalfa Disk and field cultivate following alfalfa</td>
<td>184<sup>a</sup></td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>170507 3</td>
<td>No-till following alfalfa Disk and field cultivate following alfalfa</td>
<td>219<sup>a</sup></td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>170816 4</td>
<td>Talcum powder planter box seed treatment at 8 oz/100 lb Nutriplant SD planter box seed treatment at 8 oz/100 lb Control</td>
<td>218<sup>a</sup></td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>170817 5</td>
<td>Talcum powder planter box seed treatment at 12 oz/100 lb Control</td>
<td>228<sup>a</sup></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>170824 6</td>
<td>Talcum powder planter box seed treatment at 8 oz/100 lb Nutriplant SD planter box seed treatment at 8 oz/100 lb Control</td>
<td>53<sup>a</sup></td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>170144 7</td>
<td>Aztec HC at 0.6 oz/ac at planting No rootworm insecticide</td>
<td>217<sup>a</sup></td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>170146 8</td>
<td>Impact Roundup + Realm Q</td>
<td>254<sup>a</sup></td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>170147 9</td>
<td>Impact Roundup + Realm Q</td>
<td>232<sup>a</sup></td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>170145 10</td>
<td>Impact Roundup + Realm Q</td>
<td>230<sup>a</sup></td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>170143 11</td>
<td>Soybean seed inoculated Soybean seed not inoculated</td>
<td>68<sup>a</sup></td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>170111 12</td>
<td>Impact Roundup + Realm Q</td>
<td>233<sup>a</sup></td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>170404 13</td>
<td>Aztec 4.67G at 3.27 lb/ac at planting No rootworm insecticide</td>
<td>224<sup>a</sup></td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>170822 14</td>
<td>Acceleron B-200 at 2.1 oz/100 lb plus Acceleron Standard at 2.1 oz/100 lb plus Acceleron E007 at 2.1 oz/100 lb plus Illevo at 2.36 oz/100 lb Control</td>
<td>39<sup>a</sup></td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>170123 15</td>
<td>Soybean seed inoculated Soybean seed not inoculated</td>
<td>69<sup>a</sup></td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

^aValues denoted with the same letter within a trial are not statistically different at the significance level of 0.05.

^bP-value = the calculated probability that the difference in yields can be attributed to the treatments and not other factors. For example, if a trial has a P-value of 0.10, then we are 90 percent confident the yield differences are in response to treatments. For P = 0.05, we would be 95 percent confident.