2018

On-Farm Corn and Soybean Fertilizer Demonstration Trials

Jim Fawcett
Iowa State University

Andrew Weaver
Iowa State University, aeweaver@iastate.edu

Jim Rogers
Iowa State University, jimrog@iastate.edu

Cody Schneider
Iowa State University, schn145@iastate.edu

Tyler Mitchell
Iowa State University, tmitch4@iastate.edu

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/farmprogressreports

Part of the Agriculture Commons

Recommended Citation

Fawcett, Jim; Weaver, Andrew; Rogers, Jim; Schneider, Cody; Mitchell, Tyler; Beedle, Chris; Rossiter, Lyle T.; and Michel, Josh
Available at: https://lib.dr.iastate.edu/farmprogressreports/vol2017/iss1/79

This Northwest and Allee Research and Demonstration Farms is brought to you for free and open access by the Research and Demonstration Farms at Iowa State University Digital Repository. It has been accepted for inclusion in Farm Progress Reports by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
On-Farm Corn and Soybean Fertilizer Demonstration Trials

Authors
Jim Fawcett, Andrew Weaver, Jim Rogers, Cody Schneider, Tyler Mitchell, Chris Beedle, Lyle T. Rossiter, and Josh Michel

This northwest and allee research and demonstration farms is available in Farm Progress Reports: https://lib.dr.iastate.edu/farmprogressreports/vol2017/iss1/79
On-Farm Corn and Soybean Fertilizer Demonstration Trials

RFR-A1733

Jim Fawcett, extension field agronomist (retired)
Andrew Weaver, Northwest Farm, ag specialist
Jim Rogers, Armstrong Farm, ag specialist
Cody Schneider, Southeast Farm, ag specialist
Tyler Mitchell, Northeast Farm, ag specialist
Chris Beedle, Western Farm, superintendent
Lyle Rossiter, Allee Farm, superintendent
Josh Michel, Muscatine Island Farm, ag specialist

Introduction
All cropping systems require nutrient inputs to maintain crop yields. However, excess fertilizer, especially nitrogen (N) and phosphorus, can increase problems with water quality. It is important for farmers to use the appropriate rates and methods of fertilizer application to optimize yields and minimize the impact on the environment. The purpose of these trials was to investigate the effect of various fertilizer practices on crop yield.

Materials and Methods
In 2017, 23 trials utilizing various methods of fertilizing corn and soybean were conducted (Table 1). All trials were conducted on-farm by farmer cooperators. Strips were arranged in a randomized complete block design with at least three replications/treatment. Strip width and length varied from field-to-field depending on field and equipment size. All strips were machine harvested for grain yield.

Several of the corn trials investigated applying a base rate of N or manure in the fall or spring with or without an additional side-dressed N was investigated. In Trial 2, a V4 side-dress application of N was compared with splitting the N between a V4 and V12 application using a variable rate with the V12 application. In Trials 3, 4, 5, 6, 7, 8, 9, 18, and 19, strips receiving a starter fertilizer application were compared with strips without. In Trials 11, 12, 13 and 14 a Y-drop side-dress application of N was compared with a coulter application. Two rates of side-dress N were compared in Trial 16. In Trial 17, commercial N was compared with manure N. In Trial 21, side-dress N using a variable rate was compared with a standard rate.

In Trial 22, starter fertilizer plus Generate® was compared with no starter on soybeans. Generate® is marketed by Agnition as a stimulant for microorganisms to liberate nutrients. In Trial 23, Fast2Grow® was foliar-applied to soybeans at V5 and compared with soybeans that did not receive the application. Fast2Grow® is marketed as a poultry manure derived bio-stimulant.

Results and Discussion
Most of the corn trials investigating the application of additional N following a base rate of N or manure did not show an economical response to the additional N. In Trial 1, the side-dress application 50 lb/acre N to corn at the V6 crop growth stage on corn ground after the preplant application of 125 lb/acre did not increase the corn yield compared with the preplant application alone (Table 2). In Trial 10, there was no difference in yield with a side-dress application of 40 lb N/acre compared with 75 lb N/acre on corn at the V6 crop growth stage on corn ground following a preplant application of 130 lb
N/acre. In Trial 15, there was no yield advantage to side-dressing an additional 60 lb/acre N to V5 corn on soybean ground following a fall application of 160 lb/acre N. In Trial 20, there was a large corn yield response to side-dressing an additional 40-80 lb N/acre following 120 lb/acre N at planting. This trial was conducted on soybean ground on very sandy soil with irrigation. The source of N was ESN, which is marketed by Midwestern BioAg as a slow release N.

In Trial 2, conducted on soybean ground, there was no difference in corn yield between strips that received an additional variable rate application of 70 lb N/acre side-dressed at V12 following a side-dress application of 150 lb/acre at V4 compared with strips that only received the V4 application. In Trials 11, 12, 13, and 14, there was no difference in corn yield between strips where the N was side-dressed with Y-drop versus with coulters. In Trial 16, there was no difference in corn yield between strips that received a rate of 160 lb N/acre compared with a rate of 200 lb N/acre side-dressed to corn at the V2 stage of crop growth on corn ground. In Trial 17, conducted on soybean ground, there was no difference in corn yield between strips that received commercial N fertilizer of 155 lb N/acre and strips that received a similar rate of N in liquid swine manure. In Trial 21, conducted on soybean ground, corn that received a variable rate of N side-dressed to VT corn, with an average of 51 lb N/acre, yielded the same as corn that received a side-dress application of 60 lb N/acre following the application of 80 lb N/acre at planting.

In most trials, N rates of about 100 to 150 lb/acre were sufficient to get optimum corn yields on soybean ground. At current corn and N prices, the recommended rate of N would be approximately 125 lb/acre on soybean ground. This is the Maximum Return to Nitrogen rate calculated using the corn nitrogen rate calculator at http://extension.agron.iastate.edu/soilfertility/n-rate.aspx. Weather conditions are important in determining how corn responds to N rates and application timings, so different results might be seen in other years.

In Trials 4, 5, and 9, there was not a significant yield increase from the in-furrow starter fertilizer application of four gallons/acre of 6-24-6-0.05Zn (P = 0.05), but there was a significant yield increase of two to five bushels/acre in Trials 3, 6, and 7 (P ≤ 0.08), and a significant yield decrease of five bushels/acre in Trial 8 (P = 0.03). There was not a yield increase with the application of five lb/acre N starter in a 2 x 2 placement in Trial 18, but there was a yield increase of four bushels/acre in Trial 19 with the in-furrow application of three gallons/acre of 6-24-6 plus Micro 500 and Generate®. The soil test levels of P and K were optimum or higher in all of the trials, which would have reduced the likelihood of a yield response.

In the soybean trials, the application of starter fertilizer plus Generate® did not effect the soybean yield in Trial 22 (Table 3). In Trial 23, the Fast2Grow® foliar application did not result in a yield increase.

NOTE: The results presented are from replicated demonstration trials. Statistics are used to detect differences at a location and should not be interpreted beyond the single location.
Table 1. Hybrid, row spacing, planting date, planting population, previous crop, and tillage practices in the 2017 fertilizer trials on corn and soybean.

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Trial</th>
<th>County</th>
<th>Hybrid</th>
<th>Row spacing (in.)</th>
<th>Planting date</th>
<th>Planting population (seeds/ac)</th>
<th>Previous crop</th>
<th>Tillage</th>
</tr>
</thead>
<tbody>
<tr>
<td>170115</td>
<td>1</td>
<td>Lyon</td>
<td>Dekalb DKC54-38</td>
<td>30</td>
<td>5/12/17</td>
<td>35,000</td>
<td>Corn</td>
<td>Conventional</td>
</tr>
<tr>
<td>170116</td>
<td>2</td>
<td>Osceola</td>
<td>Pioneer PO157</td>
<td>30</td>
<td>5/7/17</td>
<td>VR 30,000-33,000</td>
<td>Soybean</td>
<td>Strip-till</td>
</tr>
<tr>
<td>170132</td>
<td>3</td>
<td>Osceola</td>
<td>Pioneer PO339</td>
<td>30</td>
<td>4/24/17</td>
<td>35,000</td>
<td>Corn</td>
<td>Conventional</td>
</tr>
<tr>
<td>170133</td>
<td>4</td>
<td>Osceola</td>
<td>Pioneer PO506AM</td>
<td>30</td>
<td>5/7/17</td>
<td>35,000</td>
<td>Soybean</td>
<td>Conventional</td>
</tr>
<tr>
<td>170134</td>
<td>5</td>
<td>Osceola</td>
<td>Dekalb DKC55-20</td>
<td>30</td>
<td>5/7/17</td>
<td>35,000</td>
<td>Soybean</td>
<td>Conventional</td>
</tr>
<tr>
<td>170135</td>
<td>6</td>
<td>Osceola</td>
<td>Dekalb DKC53-56</td>
<td>30</td>
<td>5/7/17</td>
<td>35,000</td>
<td>Soybean</td>
<td>Conventional</td>
</tr>
<tr>
<td>170136</td>
<td>7</td>
<td>Osceola</td>
<td>Pioneer PO216AM</td>
<td>30</td>
<td>5/8/17</td>
<td>33,000</td>
<td>Soybean</td>
<td>Conventional</td>
</tr>
<tr>
<td>170137</td>
<td>8</td>
<td>Osceola</td>
<td>Dekalb DKC52-68</td>
<td>30</td>
<td>5/8/17</td>
<td>36,000</td>
<td>Soybean</td>
<td>Conventional</td>
</tr>
<tr>
<td>170138</td>
<td>9</td>
<td>Osceola</td>
<td>Dekalb DKC49-72</td>
<td>30</td>
<td>5/8/17</td>
<td>36,000</td>
<td>Soybean</td>
<td>Conventional</td>
</tr>
<tr>
<td>170203</td>
<td>10</td>
<td>Crawford</td>
<td>Curry 830-26</td>
<td>30</td>
<td>4/21/17</td>
<td>35,000</td>
<td>Corn</td>
<td>Fall disk, spring field cultivate</td>
</tr>
<tr>
<td>170309</td>
<td>11</td>
<td>Monona</td>
<td>LG 2549VT2</td>
<td>30</td>
<td>5/25/17</td>
<td>32,000</td>
<td>Soybean</td>
<td>No-till</td>
</tr>
<tr>
<td>170603</td>
<td>12</td>
<td>Pottawattamie</td>
<td>Stein 9536</td>
<td>30</td>
<td>4/16/17</td>
<td>39,000</td>
<td>Soybean</td>
<td>No-till</td>
</tr>
<tr>
<td>170639</td>
<td>13</td>
<td>Montgomery</td>
<td>Stein 9536</td>
<td>30</td>
<td>4/16/17</td>
<td>39,000</td>
<td>Corn</td>
<td>Disk, field cultivate</td>
</tr>
<tr>
<td>170640</td>
<td>14</td>
<td>Cass</td>
<td>Epley ESSB1625RR</td>
<td>30</td>
<td>5/31/17</td>
<td>32,000</td>
<td>Soybean</td>
<td>Disk, field cultivate</td>
</tr>
<tr>
<td>170708</td>
<td>15</td>
<td>Henry</td>
<td>Pioneer PO825AM</td>
<td>30</td>
<td>4/24/17</td>
<td>32,000</td>
<td>Soybean</td>
<td>Field cultivate</td>
</tr>
<tr>
<td>170710</td>
<td>16</td>
<td>Washington</td>
<td>Cropland CG6594</td>
<td>30</td>
<td>4/21/17</td>
<td>34,000</td>
<td>Corn</td>
<td>Fall chisel, spring field cultivate</td>
</tr>
<tr>
<td>170108</td>
<td>17</td>
<td>Lyon</td>
<td>Dekalb DKC54-38</td>
<td>30</td>
<td>4/25/17</td>
<td>36,000</td>
<td>Soybean</td>
<td>Strip-till</td>
</tr>
<tr>
<td>170814</td>
<td>18</td>
<td>Bremer</td>
<td>Pioneer P1197AM</td>
<td>30</td>
<td>4/25/17</td>
<td>34,000</td>
<td>Soybean</td>
<td>No-till</td>
</tr>
<tr>
<td>170148</td>
<td>19</td>
<td>Osceola</td>
<td>Pioneer PO339</td>
<td>30</td>
<td>5/7/17</td>
<td>VR 32,000-35,000</td>
<td>Soybean</td>
<td>Strip-till</td>
</tr>
<tr>
<td>170901</td>
<td>20</td>
<td>Muscatine</td>
<td>Dekalb DKC61-79 RIBAF2</td>
<td>30</td>
<td>5/11/17</td>
<td>35,600</td>
<td>Soybean</td>
<td>Disked</td>
</tr>
<tr>
<td>170308</td>
<td>21</td>
<td>Monona</td>
<td>LG 2549VT2</td>
<td>30</td>
<td>5/24/17</td>
<td>32,000</td>
<td>Soybean</td>
<td>No-till</td>
</tr>
<tr>
<td>170149</td>
<td>22</td>
<td>Osceola</td>
<td>Pioneer P18T85R</td>
<td>30</td>
<td>5/30/17</td>
<td>VR 123,000-150,000</td>
<td>Corn</td>
<td>Strip-till</td>
</tr>
<tr>
<td>170643</td>
<td>23</td>
<td>Adair</td>
<td>NK S26-P3</td>
<td>30</td>
<td>5/5/17</td>
<td>160,000</td>
<td>Soybean</td>
<td>No-till</td>
</tr>
</tbody>
</table>
Table 2. Yield from corn fertilizer trials in 2017.

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Trial</th>
<th>Treatment</th>
<th>Yield (bu/ac)</th>
<th>P-value</th>
</tr>
</thead>
</table>
| 170115 | 1 | 125 lb/ac N as urea preplant
125 lb/ac N as urea preplant plus 50 lb/ac N as urea side-dress at V6 | 219 a
223 a | 0.27 |
| 170116 | 2 | 70 lb/ac N as NH3 side-dress at V4 plus variable rate 32% UAN (average 70 lb/ac N) side-dress with Y-drop at V12
150 lb/ac N as NH3 side-dress at V4 | 221 a
214 a | 0.11 |
| 170132 | 3 | 4 gal/ac of 6-24-6-0.05Zn starter applied in-furrow
No Starter | 245 a
240 b | 0.05 |
| 170133 | 4 | 4 gal/ac of 6-24-6-0.05Zn starter applied in-furrow
No Starter | 250 a
252 a | 0.23 |
| 170134 | 5 | 4 gal/ac of 6-24-6-0.05Zn starter applied in-furrow
No Starter | 246 a
243 a | 0.62 |
| 170135 | 6 | 4 gal/ac of 6-24-6-0.05Zn starter applied in-furrow
No Starter | 259 a
257 b | 0.02 |
| 170136 | 7 | 4 gal/ac of 6-24-6-0.05Zn starter applied in-furrow
No Starter | 247 a
245 a | 0.08 |
| 170137 | 8 | 4 gal/ac of 6-24-6-0.05Zn starter applied in-furrow
No Starter | 220 a
225 b | 0.03 |
| 170138 | 9 | 4 gal/ac of 6-24-6-0.05Zn starter applied in-furrow
No Starter | 251 a
252 a | 0.40 |
| 170203 | 10 | 130 lb/ac N as 32% UAN preplant plus 40 lb/ac N side-dress as 32% UAN at V6
130 lb/ac N as 32% UAN preplant plus 75 lb/ac N side-dress as 32% UAN at V6 | 222 a | 0.76 |
| 170309 | 11 | 80 lb/ac N as 28% UAN at planting plus 60 lb/ac side-dress as 32% UAN with Y-drop at V8
80 lb/ac N as 28% UAN at planting plus 60 lb/ac side-dress as 32% UAN with coulter at V8 | 203 a
208 a | 0.52 |
| 170603 | 12 | 140 lb/ac N as NH3 preplant plus 40 lb/ac side-dress as 32% UAN with Y-drop at V6
140 lb/ac N as NH3 preplant plus 40 lb/ac side-dress as 32% UAN with coulter at V6
140 lb/ac N as NH3 preplant | 223 a
215 a
220 a | 0.18 |
| 170639 | 13 | 140 lb/ac N as NH3 preplant plus 40 lb/ac side-dress as 32% UAN with Y-drop at V6
140 lb/ac N as NH3 preplant plus 40 lb/ac side-dress as 32% UAN with coulter at V6 | 236 a
235 a | 0.83 |
| 170640 | 14 | 100 lb/ac side-dress as 32% UAN with Y-drop at V8
100 lb/ac side-dress as 32% UAN with coulter at V8 | 186 a
184 a | 0.59 |
| 170708 | 15 | 160 lb/ac N as anhydrous in the fall plus 60 lb/ac N as 32% UAN side-dress at V5
160 lb/ac N as anhydrous in the fall | 217 a
222 a | 0.30 |
| 170710 | 16 | 200 lb/ac N as anhydrous side-dressed at V2
160 lb/ac N as anhydrous side-dressed at V2 | 256 a
252 a | 0.38 |
| 170108 | 17 | 51 lb/ac N as 32% UAN preplant plus 3 lb/ac N in liquid 2-16-14 at planting plus 104 lb/ac N as 32% UAN side-dress with Y-drop at V12
2,800 gal liquid swine manure applied in the fall (150 lb/ac N) | 258 a
260 a | 0.33 |
Table 2. Yield from corn fertilizer trials in 2017 (cont.).

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Trial</th>
<th>Treatment</th>
<th>Yield (bu/ac)a</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>170814</td>
<td>18</td>
<td>10,000 gal/ac liquid swine manure (120 lb/ac N) applied in the fall plus 5 lb/ac N as 32% UAN starter applied 2X2</td>
<td>241 a</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,000 gal/ac liquid swine manure (120 lb/ac N) fall applied</td>
<td>238 a</td>
<td></td>
</tr>
<tr>
<td>170148</td>
<td>19</td>
<td>3 gal/ac 6-24-6 plus 1 qt/ac Micro 500 plus 1 pt/ac Generate in starter in-furrow</td>
<td>214 a</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No starter</td>
<td>210 b</td>
<td></td>
</tr>
<tr>
<td>170901</td>
<td>20</td>
<td>120 lb/ac N as ESN preplant</td>
<td>62 a</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120 lb/ac N as ESN preplant plus 40 lb/ac N side-dressed as ESN at V5</td>
<td>184 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120 lb/ac N as ESN preplant plus 80 lb/ac N side-dressed as ESN at V5</td>
<td>225 b</td>
<td></td>
</tr>
<tr>
<td>170308</td>
<td>21</td>
<td>80 lb/ac N as 28% UAN at planting plus 60 lb/ac N as 32% UAN at VT</td>
<td>193 a</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 lb/ac N as 28% UAN at planting plus Optryx variable rate N (2-630 lb/ac with mean of 51 lb/ac) as 32% UAN at VT</td>
<td>198 a</td>
<td></td>
</tr>
</tbody>
</table>

aValues denoted with the same letter within a trial are not statistically different at the significance level of 0.05.
bP-value = the calculated probability that the difference in yields can be attributed to the treatments and not other factors. For example, if a trial has a P-value of 0.10, then we are 90 percent confident the yield differences are in response to treatments. For P = 0.05, we would be 95 percent confident.

Table 3. Yield from soybean fertilizer trials in 2017.

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Trial</th>
<th>Treatment</th>
<th>Yield (bu/ac)a</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>170149</td>
<td>22</td>
<td>2 gal/ac 3-18-18 starter applied 2X2 plus 1 pt/ac Generate</td>
<td>54 a</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No starter</td>
<td>53 a</td>
<td></td>
</tr>
<tr>
<td>170643</td>
<td>23</td>
<td>Fast2Grow at 32 oz/ac at V5</td>
<td>56 a</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control</td>
<td>57 a</td>
<td></td>
</tr>
</tbody>
</table>

aValues denoted with the same letter within a trial are not statistically different at the significance level of 0.05.
bP-value = the calculated probability that the difference in yields can be attributed to the treatments and not other factors. For example, if a trial has a P-value of 0.10, then we are 90 percent confident the yield differences are in response to treatments. For P = 0.05, we would be 95 percent confident.