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Fig. 10 Co-expression networks show the top 20 hub genes of AA (a) and AB-modules (b) of hotspot 3 correlated (p-value < 0.10) with at least
three different traits associated with lipid deposition and composition in skeletal muscle of Nellore steers. Colored octagons represent the hub
genes within each module, and blue octagons represent the biological processes associated (FDR 5%) with the genes

Cesar et al. BMC Genomics  (2018) 19:499 Page 14 of 20



Genetic variation in the protein-coding region of a
TF could modify the interaction of TF with TFBS.
However, in our data we did not find any SNP in the
coding regions of USF1, EGR4 and RUNX1T1 associ-
ated with the AA and AB genotypes, but one could
not exclude the possibility that the observed effects
result from linkage disequilibrium with a SNP not
represented in the Illumina bovine chip. Alternatively,
genetic variation in the promoter region of a TF
could influence the abundance of the TF and thus
alter expression of downstream genes. The low ex-
pression level of these TFs in our study could explain
the lack of difference in TF gene expression between
the AA and AB genotypes. Thus, further research is
necessary to determine the causative mutation associ-
ated with the TF identified.

Conclusion
We identified several regions across the genome that
affect gene expression level (expression quantitative trait
loci, eQTL) and overlap with QTL regions associated
with the deposition and composition of IMF. Some of
these regions harbor TF and control the expression of
several genes (hotspots). Results obtained supported the
hypothesis that eQTL analysis can be used to identify
putative regulatory regions and transcription factors as-
sociated with important phenotypic traits that are con-
trolled by modulation of gene expression profile.

Methods
Animals, phenotype and genotype data
The animals (n = 192), phenotype and genotype data used
in this study was comprised of Nellore steers sired by 34
unrelated sires, selected to represent the main genealogies
used in Brazil according to the National Summary of Nel-
lore produced by the Brazilian Association of Zebu Breeders
(ABCZ) and National Research Center for Beef Cattle to en-
sure compliance with international guidelines for animal
welfare as described previously by Cesar et al. [15]. A cap-
tive bolt pistol was used for stunning the animals prior to
slaughter. SNPs with call rate ≤ 95%, minor allele frequency
(MAF) ≤ 5%, those located on sex chromosomes or not
mapped in the Bos taurus UMD 3.1 assembly were re-
moved. The MAF threshold was chosen based on the sam-
ple size in order to minimize the number of false-positive
and false-negative associations [65]. After filtering, a total of
461,643 SNP was utilized in eQTL mapping.

RNA extraction and sequencing
Total RNA was extracted from 100 mg of frozen LD
muscle from 192 animals that were collected at slaugh-
ter using the TRIzol reagent (Life Technologies, Carls-
bad, CA). RNA integrity was verified by Bioanalyzer
2100 (Agilent, Santa Clara, CA, USA). Only samples

with RIN > 8 were used. A total of 2 μg of total RNA
from each sample was used for library preparation ac-
cording to the protocol described in the TruSeq RNA
Sample Preparation kit v2 guide (Illumina, San Diego,
CA). Average library sizes were estimated using the Agi-
lent Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA)
and quantified using quantitative PCR with the KAPA
Library Quantification kit (KAPA Biosystems, Foster
City, CA, USA). Quantified samples were diluted and
pooled (three pools of six samples each). Three lanes of
a sequencing flowcell, using the TruSeq PE Cluster kit
v3-cBot-HS kit (Illumina, San Diego, CA, USA), were
clustered and sequenced using HiScanSQ equipment
(Illumina, San Diego, CA, USA) with a TruSeq SBS Kit
v3-HS (200 cycles), according to manufacturer’s instruc-
tions. Sequencing analyses were performed at the Gen-
omics Center at ESALQ, Piracicaba, São Paulo, Brazil.
Sequencing adaptors and low-complexity reads were

removed in an initial data-filtering step. Quality control
and read statistics were estimated with FASTQC version
0.10.1 software [https://www.bioinformatics.babraham.a-
c.uk/projects/fastqc/]. RNA-Seq by Expectation
Maximization (RSEM) approach was performed to esti-
mate the number of fragments originating from each
gene in each replicate library, which is capable of hand-
ling reads that map ambiguously between isoforms and
genes, and minimize the differences in total read counts
across samples (normalization procedure) [66]. The
UMD3.1 Bos taurus assembly available at Ensembl
[http://www.ensembl.org/Bos_taurus/Info/Index/] was used
as reference genome.

Identification of eQTL and hotspot regions
The Matrix eQTL R package [67] was used to identify
associations between genetic variation from genotype
(SNPchip) and gene expression (RNA-Seq) [68]. Con-
temporary group (including farm, year and slaughter
date) and lane were included in the model as fixed ef-
fects and age as a covariate. Markers associated with
variation in gene expression that were within 1 Mb of
the gene were defined as cis-eQTLs (local variants),
while markers more than 1 Mb from the gene were de-
fined as trans-eQTLs (distant variants). Matrix eQTL
tests the association between each marker (SNP) and
each gene assuming the effect of genotype as additive,
performs a separate test for each pair (marker and gene)
and corrects for multiple tests by calculating false dis-
covery rate (FDR) [69]. The estimated effect size (slope
coefficient) and the genetic variance explained by the
markers was also provided according the Matrix eQTL
package [66]. eQTL hotspots (markers that affect the
gene expression level for many genes) were identified by
permuting the distribution of eQTLs across the genome
after 1000 permutations. A hotspot threshold was
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identified that corresponded to the 95th percentile of
the value. Linkage disequilibrium (LD) analysis and
visualization by PLINK v.1.07 [70] and Haploview [71],
respectively, were used to check if the hotspots were in
LD with each other and if so to select just one as the
eQTL hotspot. The hotspot region was defined as a
4 Mb window around the hotspot eQTL, i.e. 2 Mb ex-
tended to each side of the hotspot eQTL.

Association test between eQTL hotspots and the
phenotypes
The analysis of variance (ANOVA) model containning
contemporary group (including farm, year and slaughter
date) and lane as fixed effects and age as a covariate and
was applied to test for association between a given SNP
and a corresponding phenotype. Evidence of population
stratification was not identified in this population based
on previous results reported by our group [72]. There-
fore, it was not included in the model to detect eQTL.
The statistical test was performed by R software and ap-
plied to verify the effect of the eQTL hotspots identified
in this study on the phenotypes of interest. The correc-
tion for multiple tests was applied by calculating false
discovery rate (FDR 5%).

Overlap statistics (eQTLs / QTLdb)
Overlap analysis was carried out using the Bioconductor
package regioneR [24]. The package implements a general
framework for testing overlaps of genomic regions based
on permutation sampling. We repeatedly sampled random
regions (N = 1000 permutations) from the UMD_3.1 gen-
ome assembly matching size and chromosomal distribu-
tion of the detected eQTLs. This test was performed for
QTL class, QTL associated with traits of production and
quality of carcass and meat, and QTL previously reported
by our group [15] associated with the traits of interest in
this study. In every permutation, the overlap with the cat-
tle QTLdb [23] was recomputed based on the total gen-
omic size in Mb that was overlapped.

Annotation and functional annotation of the eQTLs
The eQTL annotations were performed using Ensembl
Variant Effect Predictor, a free toolset for the analysis,
annotation, and prioritization of genomic variants in
coding and non-coding regions [73]. The reference gen-
ome assembly used was UMD3.1 Bos Taurus from
Ensembl data bank [73]. With this set of tools, the loca-
tion of an eQTL in relation to a gene can be defined as
outside of the gene, in the coding sequence, or in un-
translated regions (UTR). The functional impact was de-
termined for those eQTLs that were localized in the
coding sequences. Functional enrichment analyses were
performed with Protein ANalysis THrough Evolutionary
Relationships (PANTHER) [26] using the list of the

genes harbored in 4 Mb eQTL regions (hotspot, cis and
trans). The statistical over-representation test by PAN-
THER was used to obtain the gene ontology association
(biological processes and protein classes) from a given
list of genes. That test was performed to compare a list
of reference genes (background, all genes expressed in
skeletal muscle identified in this study) to a list of genes
harbored within 4 Mb eQTL regions, and determine if a
particular class of gene ontology (GO) biological pro-
cesses were over-represented or under-represented
(nominal p-value ≤0.05).

Transcription factor binding site searching
Annotated transcription factors (TFs) by JASPAR CORE
database [42] were searched within the eQTL hotspot
region, and the transcription factor binding sites (TFBSs)
of these TFs were searched using LASAGNA-Search 2.0
[28]. LASAGNA-Search 2.0 is an integrated web tool
based on the algorithm Length-Aware Site Alignment
Guided by Nucleotide Association, which allows the
identification of TFBS from a list of target genes. To per-
form the LASAGNA-Search 2.0 program, the TFBSs and
position-specific scoring matrix (PSSM) were collected
from JASPAR CORE database; the name of the TFs were
chosen based on the Bos taurus genome annotation; and
the list of target genes was the list of gene affected by
the eQTL hotspots identified herein. This method used
by LASAGNA 2.0 can distinguish true binding sites
from other non-functional sites with similar sequences
by giving a weighted match to any given substring (com-
binations) of fixed length. The TFBS were searched in
1500 bp of length of promoter region obtained from Bio-
mart tool of Ensembl website [http://www.ensembl.org/
biomart] of those genes that were affected by eQTL hot-
spot for the specific TF.

Association between eQTL hotspots and traits by
co-expression network analysis
Hotspot eQTLs were chosen that had annotated TFs
within them to associate the hotspot eQTLs with the
traits of interest (IMF deposition and composition).
WGCNA (Weighted Gene Correlation Network Ana-
lysis), which is a systems biology network method that
describes the correlation patterns among all expressed
genes across samples, was performed by WGCNA R
package [74]. This approach was used to identify the dif-
ferences in co-expression networks between hotspot
eQTL genotypes (AA and AB, MAF > 0.05). Gene net-
works were constructed separately for each of the two
most frequent genotypes, which were assigned an arbi-
trary color. For WGCNA analysis, the correlation matrix
was built using the absolute value of the Pearson correl-
ation coefficient between all gene pairs across all sam-
ples. The Pearson correlation matrix was subsequently
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transformed into an adjacency matrix (A) using a power
function based on scale-free topology criterion, as de-
scribed [75]. A soft threshold power of 6 with scale free
fitting index of 0.9 was applied to calculate the adjacency
matrix. TOM-based dissimilarity (1-TOM) was used for
module identification using Dynamic Tree Cut algorithm
with cutreeDynamic function in WGCNA package [74]
and defining the deep split = 2 and minimum module
size = 30. To make the genotype networks comparable,
for each eQTL hotspot, we scaled the TOM (Topology
Overlap Matrix) connectivity’s in genotype with the
minimum number of data such that its 95th percentile
equals the 95th percentile of the genotype with max-
imum number of data, as described by Langfelder
and Horvath [76]. To quantify co-expression similarity
of entire modules, we calculated their eigengene
values using moduleEigengenes function in WGCNA
package and clustered them based on their correlation
using height cut of 0.25, which corresponded to a
correlation of 0.75, to merge similar modules [76]. All
other WGCNA parameters remained at their default
settings. Grey-colored modules contained all genes
that were not part of any module. The associations
between individual genes with traits of interest (fat
deposition and composition of intramuscular fat, ad-
justed phenotype as described by Cesar et al. [18] was
quantified by the Gene Significance (GS) approach,
which was defined as the correlation (the absolute
value) between the gene and the trait of interest. The
quantitative measure of module membership (MM) was

defined as the correlation of the module eigengene and
the gene expression profile. With these assumptions,
the similarity of all genes was quantified to every mod-
ule. The p-value threshold applied in this correlation
analysis was p-value < 0.10 based on previous studies
that used the same approach [19, 77].
Gene Ontology (GO) annotation from a list of

genes within of each module significantly correlated
(p-value < 0.10) with at least three different traits by
Cytoscape plugin BINGO [25] using the latest update
of gene ontology annotation database (GOA) [78].
The statistical significance of GO term enrichment
was measured by a hypergeometric test using the
genes in the whole network as the background (all
genes expressed in skeletal muscle). The Benjamini
and Hochberg [69] correction (p-adjusted) was used
to correct for multiple testing. Only GO terms that
were significantly over-represented (p-adjusted ≤0.05)
were reported. This functional enrichment analysis
was followed by network construction using the hub
genes to support the hypothesis that the expression
pattern of the modules correlated to the phenotypes
can influence the IMF content traits. The construc-
tion and visualization of the networks for each eQTL
hotspot genotype were performed by Cytoscape 3.5.1
[30] connecting the top 20 hub genes [most con-
nected genes, higher values of the module member-
ship (MM)] of each module by the common
significant (FDR 5%) BP. A workflow diagram of this
study is shown in Fig. 11.

Fig. 11 A workflow diagram of eQTL study in Nellore population
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