Reynolds-stress modeling of cluster-induced turbulence in particle-laden vertical channel flow

Thumbnail Image
Date
2020-07-01
Authors
Baker, Michael
Fox, Rodney
Kong, Bo
Capecelatro, Jesse
Desjardins, Olivier
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Fox, Rodney
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

Particle-laden flow in a vertical channel was simulated using a Reynolds-averaged Navier-Stokes two-fluid model including a Reynolds-stress model (RSM). Two sets of cases varying the overall mass loading were done using particle sizes corresponding to either a large or small Stokes number. Primary and turbulent statistics extracted from counterpart Eulerian-Lagrangian and Eulerian-Eulerian anisotropic-Gaussian simulations were used to inform parameters and closures applied in the RSM. While the behavior at the center of the channel compared well with the other simulations, including the transition from fully developed turbulent flow to relaminarization to cluster-induced turbulence as the mass loading increased, the behavior close to the wall deviated significantly. The primary contributor to this difference was the application of a uniform drag coefficient, which resulted in the RSM overpredicting the fluid-phase turbulent kinetic energy close to the wall. When considering small Stokes particles, the RSM at greater mass loadings reproduced the transient clustering observed in the other models. This was not observed using larger particles.

Comments

This article is published as Baker, M. C., R. O. Fox, B. Kong, J. Capecelatro, and O. Desjardins. "Reynolds-stress modeling of cluster-induced turbulence in particle-laden vertical channel flow." Physical Review Fluids 5, no. 7 (2020): 074304. DOI: 10.1103/PhysRevFluids.5.074304. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020
Collections