
Masthead Logo

Animal Science Publications Animal Science

2016

High-performance epistasis detection in
quantitative trait GWAS
Nathan T. Weeks
Iowa State University, weeks@iastate.edu

Glenn R. Luecke
Iowa State University, grl@iastate.edu

Brandon M. Groth
Iowa State University, bmgroth@iastate.edu

Marina Kraeva
Iowa State University, kraeva@iastate.edu

Li Ma
Iowa State University

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ans_pubs

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/
ans_pubs/448. For information on how to cite this item, please visit http://lib.dr.iastate.edu/
howtocite.html.

This Article is brought to you for free and open access by the Animal Science at Iowa State University Digital Repository. It has been accepted for
inclusion in Animal Science Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fans_pubs%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fans_pubs%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ans_pubs?utm_source=lib.dr.iastate.edu%2Fans_pubs%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ans?utm_source=lib.dr.iastate.edu%2Fans_pubs%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ans_pubs?utm_source=lib.dr.iastate.edu%2Fans_pubs%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ans_pubs/448
https://lib.dr.iastate.edu/ans_pubs/448
http://lib.dr.iastate.edu/howtocite.html
http://lib.dr.iastate.edu/howtocite.html
mailto:digirep@iastate.edu

High-performance epistasis detection in quantitative trait GWAS

Abstract
epiSNP is a program for identifying pairwise single nucleotide polymorphism (SNP) interactions (epistasis)
in quantitative-trait genome-wide association studies (GWAS). A parallel MPI version (EPISNPmpi) was
created in 2008 to address this computationally expensive analysis on large data sets with many quantitative
traits and SNP markers. However, the falling cost of genotyping has led to an explosion of large-scale GWAS
data sets that challenge EPISNPmpi’s ability to compute results in a reasonable amount of time. Therefore, we
optimized epiSNP for modern multi-core and highly parallel many-core processors to efficiently handle these
large data sets. This paper describes the serial optimizations, dynamic load balancing using MPI-3 RMA
operations, and shared-memory parallelization with OpenMP to further enhance load balancing and allow
execution on the Intel Xeon Phi coprocessor (MIC). For a large GWAS data set, our optimizations provided a
38.43× speedup over EPISNPmpi on 126 nodes using 2 MICs on TACC’s Stampede Supercomputer. We also
describe a Coarray Fortran (CAF) version that demonstrates the suitability of PGAS languages for problems
with this computational pattern. We show that the Coarray version performs competitively with the MPI
version on the NERSC Edison Cray XC30 supercomputer. Finally, the performance benefits of hyper-
threading for this application on Edison (average 1.35× speedup) are demonstrated.

Keywords
Xeon Phi coprocessor, epistasis, Coarray Fortran, MPI, OpenMP

Comments
This is a manusript of an article published as Weeks, Nathan T, Glenn R Luecke, Brandon M Groth, Marina
Kraeva, Li Ma, Luke M Kramer, James E Koltes, and James M Reecy. “High-Performance Epistasis Detection
in Quantitative Trait GWAS.” The International Journal of High Performance Computing Applications (2016).
doi:10.1177/1094342016658110.

Authors
Nathan T. Weeks, Glenn R. Luecke, Brandon M. Groth, Marina Kraeva, Li Ma, Luke M. Kramer, James E.
Koltes, and James M. Reecy

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ans_pubs/448

https://doi.org/10.1177/1094342016658110
https://lib.dr.iastate.edu/ans_pubs/448?utm_source=lib.dr.iastate.edu%2Fans_pubs%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages

High Performance Epistasis Detection in
Quantitative Trait GWAS

Journal Title
XX(X):1–13
c©The Author(s) 2015

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Nathan T. Weeks1, Glenn R. Luecke1, Brandon M. Groth1, Marina Kraeva2,
Li Ma4, Luke M. Kramer3, James E. Koltes5, James M. Reecy3

Abstract
epiSNP is a program for identifying pairwise single nucleotide polymorphism (SNP) interactions (epistasis) in
quantitative-trait genome-wide association studies (GWAS). A parallel MPI version (EPISNPmpi) was created in
2008 to address this computationally-expensive analysis on large data sets with many quantitative traits and SNP
markers. However, the falling cost of genotyping has led to an explosion of large-scale GWAS data sets that challenge
EPISNPmpi’s ability to compute results in a reasonable amount of time. Therefore, we optimized epiSNP for modern
multi-core and highly-parallel many-core processors to efficiently handle these large data sets. This paper describes
the serial optimizations, dynamic load balancing using MPI-3 RMA operations, and shared-memory parallelization with
OpenMP to further enhance load balancing and allow execution on the Intel Xeon Phi coprocessor (MIC). For a large
GWAS data set, our optimizations provided a 38.43X speedup over EPISNPmpi on 126 nodes using 2 MICs on TACC’s
Stampede Supercomputer. We also describe a Coarray Fortran (CAF) version that demonstrates the suitability of PGAS
languages for problems with this computational pattern. We show that the Coarray version performs competitively with
the MPI version on the NERSC Edison Cray XC30 supercomputer. Finally, the performance benefits of Hyper-Threading
for this application on Edison (average 1.35X speedup) are demonstrated.

Keywords
Xeon Phi coprocessor, epistasis, Coarray Fortran, MPI, OpenMP

1 Introduction

A genome-wide association study (GWAS) statistically
associates genetic variations with phenotypes (observable
traits) in a group of individuals. These genetic variations,
called single nucleotide polymorphisms (SNPs), can be
detected at relatively low cost using SNP genotyping arrays.
Sometimes, different alleles at a single location in the
genome are associated with qualitative traits (traits that can
be discretely categorized, such as hair color, blood type,
or normal vs. diseased) or quantitative (continuous) traits
(e.g., height, weight). Other times, it is the interaction of
specific alleles in two (or more) locations in the genome
that determines a given trait; this phenomenon is known as
epistasis.

epiSNP (Ma et al. 2008) is a program for detecting
epistasis between pairs of SNP alleles in quantitative-
trait GWAS.∗ Epistasis detection can be computationally
demanding: pairwise SNP marker tests used to identify
epistasis require O(N2) pairwise genetic marker tests to be
performed for each trait. In addition, a large sample size (i.e.,
a large number of individuals) is required to have sufficient
statistical power to identify real epistasis. Without parallel
computing, only data sets of a modest size can be processed
in a reasonable time frame. In 2008, a distributed-memory
parallel version of epiSNP (EPISNPmpi) was created using
the Message Passing Interface (MPI) to detect epistasis in
what was considered large-scale GWAS at the time.

However, the decreasing cost of SNP genotyping has
caused an explosion in the number of SNPs used in GWAS,

taxing the ability of EPISNPmpi to computationally identify
epistasis. To address the performance challenges posed by
increasingly-larger GWAS data sets, the authors recently
augmented the original MPI program with OpenMP-based
shared-memory parallelism to reduce memory footprint,
enhance load balancing, and allow execution on the Intel
Xeon Phi (Luecke et al. 2015). This hybrid MPI+OpenMP
code, which featured extensive serial optimizations, used
static load balancing of MPI processes, and dynamic
OpenMP scheduling within each MPI process. This resulted
in much better load balancing and performance than
the original pure-MPI EPISNPmpi. This program was
successfully run on the Stampede supercomputer at the
Texas Advanced Computing Center using both host CPUs
and two Intel Xeon Phi coprocessors per node, resulting
in a 36X speedup over the original pure MPI code using
126 nodes. However, it still exhibited some load imbalance
when running solely on host CPUs, and required the user to

1Department of Mathematics, Iowa State University, USA
2IT Services Academic Technologies, Iowa State University, USA
3Department of Animal and Avian Sciences, University of Maryland, USA
4Department of Animal Science, Iowa State University, USA
5Department of Animal Science, University of Arkansas, USA

Corresponding author:
Nathan T. Weeks, Department of Mathematics, Iowa State University,
Ames, IA, 50011, USA.
Email: weeks@iastate.edu
∗Information on how to obtain epiSNP is available at
http://animalgene.umn.edu/episnp/

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

estimate the performance of the Xeon Phi relative to the host
CPUs in order to use the coprocessors effectively.

This paper expands upon our previous work (Luecke
et al. 2015) by introducing dynamic load balancing. Two
different approaches were evaluated: one using Coarray
Fortran (CAF), a parallel programming feature added to
the Fortran 2008 language standard; and the other MPI-3
one-sided communication. Our updates resulted in a single
codebase from which one of several parallel versions can be
created via compile-time preprocessor directives. Compiled
as a serial or OpenMP executable, our optimized epiSNP can
handle modest GWAS data sets on a multi-core workstation,
while hybrid MPI3+OpenMP and CAF+OpenMP versions
scale up to solve much larger data sets on a compute cluster.

1.1 Paper Organization
The rest of the paper is organized as follows. Section 2
discusses the differences between the work described in
this paper and related work. Section 3 describes the
result of performance profiling to identified bottlenecks in
EPISNPmpi. Execution on the Intel Xeon Phi is discussed in
Section 4. Section 5 details many of the serial optimizations
that were employed to achieve a 15X serial speedup.
Section 6 describes OpenMP-based multi-threading, which
improved load balancing within a node, reduced memory
usage, and made execution on accelerators feasible. Section 7
covers distributed-memory parallelism using MPI and CAF
to provide dynamic load balancing. Section 8 measures the
impact of the optimizations on application performance.
Finally, the results are summarized in section 9.

2 Related Work
While epistasis detection in quantitative trait GWAS has been
explored on single, standalone GPUs (Pütz et al. 2013), the
authors are not aware of any other published software that
utilizes Xeon Phi coprocessors. Subsequent to EPISNPmpi,
the authors are aware of only one effort to detect epistatic
interactions in quantitative-trait GWAS utilizing distributed-
memory parallel computing (Koesterke et al. 2011), though
the software itself was never made publicly available.
This software statically assigns all pairwise iterations for
one or more traits to each MPI process, and so unlike
epiSNP, requires multiple traits to use distributed-memory
parallelism.

A problem related to quantitative-trait GWAS (where the
traits are continuous) is case-control GWAS (where the
traits can be represented with binary values; e.g., normal
vs. diseased). For case-control GWAS, epistasis detection
has been performed on compute clusters using a number
of parallel programming paradigms, including Hadoop
MapReduce (Zhou et al. 2013) and MPI+OpenMP (Goudey
et al. 2015), both of which utilized a static mapping of
SNP pairs to reducers (Hadoop) or processes (MPI). The
recent PGAS language UPC++ was used to implement
dynamic load balancing between up to 24 GPUs (González-
Domı́nguez et al. 2015), 2 GPUs and a Xeon Phi (Gonzalez-
Dominguez et al. 2015), and 128 FPGAs (González-
Domı́nguez et al. 2015); however, the host processors were
used only for coordination, and not concurrent computation
with the accelerators.

Read Input
Rank 0

· · ·
Single Locus

Analysis
Rank 0

Single Locus
Analysis
Rank N-1

· · ·
Pairwise
Locus

Analysis
Rank 0

Pairwise
Locus

Analysis
Rank N-1

Merge &
Write Results

Rank 0

MPI Bcast

MPI Send

Figure 1. EPISNPmpi workflow. All processes are
single-threaded. Code profiling revealed that over 99% of the
run time was spent in the pairwise locus analysis.

Read Input
Rank 0

Single Locus
Analysis
Rank 0

· · ·
Pairwise
Locus

Analysis
Rank 0

Pairwise
Locus

Analysis
Rank N-1

Merge &
Write Results

Rank 0

MPI Bcast

MPI Send

Figure 2. Optimized (MPI3+OpenMP) epiSNP workflow. Red
shading indicates the process is multithreaded with OpenMP.

3 Code Profiling
To find computational hotspots in epiSNP, we used several
code profiling programs: the Intel Fortran Loop Profiler for
the original serial version, and Allinea MAP in conjunction
with the Intel Trace Analyzer and Collector for EPISNPmpi.
In both the serial and MPI versions, it was revealed that
over 99% of the total execution time was spent in one
subroutine called two snp test(). The EPISNPmpi workflow
is presented in Figure 1. For comparison, the optimizations
described in the subsequent sections result in the workflow
illustrated in Figure 2.

Four bottlenecks in two snp test() accounted for over
75% of the total run time. This included loops containing
conditional statements, as well as an N × 5 matrix
multiplication of the form XTX . With Trace Analyzer, we

Prepared using sagej.cls

Weeks et al. 3

discovered a severe load imbalance between MPI processes
in EPISNPmpi as seen in Figure 3. This figure shows
some MPI processes running three to five times as long
as others. These code profiling results guided our serial

Figure 3. Intel Trace Analyzer Load Balance bar graph. The
blue bars represent the fraction of run time spent on
computation per MPI process (TSelf/TTotal). Here, processes
21-29 are spending significantly more time computing compared
to all other processes in a 66 MPI process run of EPISNPmpi.

optimization efforts and revealed that parallel performance
would benefit from an improved load balancing method.
Importantly, profiling also revealed where not to focus our
efforts. For example, EPISNPmpi parallelized the single
locus tests; however, profiling revealed that this was less than
1% of execution time. We considered the serial performance
of the single locus tests to be sufficient after implementing
some of the serial optimizations described in Section 5.

4 Using Accelerators
Accelerators—such as Graphics Processing Units
(GPUs), Field-Programmable Gate Arrays (FPGAs),
Micron’s Automata Processor, and the Intel Xeon Phi
coprocessor—are specialized architectures optimized for
high-throughput data-parallel computation. In contrast,
conventional CPUs are optimized to execute individual
(serial) instruction streams with minimal latency. As
accelerators offer more compute capacity within a given
power envelope, supercomputers will increasingly rely
heavily on accelerators to achieve maximal performance
within an acceptable power budget. However, a drawback of
accelerators compared with conventional CPUs is that the
programmer is exposed to more low-level hardware details in
order to run a program, and must have a solid understanding
of these details to get good performance. Moreover, many
accelerators do not support the software-development
toolchains for CPUs that programmers may be familiar
with, further increasing the learning curve. In addition, data
movement between the CPU and the accelerator can become
a bottleneck.

epiSNP has little data movement relative to computation,
abundant parallelism in computationally-intensive portions
of the code, and relatively small per-process memory
footprint in our hybrid MPI3+OpenMP version. These
characteristics made it a strong candidate for porting to an
accelerator.

It would have been a major effort to port the
computationally-expensive portions of epiSNP to a GPU.
In addition to rewriting code utilizing another programming
language or API, relatively large amounts of code would
have to be adapted to express the Single Instruction Multiple
Thread (SIMT) parallelism required for good performance
on a GPU. Such GPU-optimized code would almost certainly
not perform well on the host CPU, so both host and GPU
versions of the ported code would need to be maintained.

An alternative to GPUs is the Intel Xeon Phi coprocessor.
Utilizing Intel’s Many Integrated Core (MIC) architecture,
the Intel Xeon Phi is a many-core processor containing
around 60 (depending on the model) x86 CPU cores,
multiple hardware threads per core, wide SIMD registers
(512-bit, vs. 256-bit for current Intel Xeon CPUs), and high
memory bandwidth. The peak double-precision floating-
point performance of the first-generation MIC (aka Knights
Corner) is approximately 1 teraflop/s. The MIC provides a
low-development-cost accelerator target for existing CPU-
based applications, as most software that runs on the host
CPU can run on the MIC (though not necessarily with
optimal performance) after a recompilation.

The serial, OpenMP, and MPI optimizations to epiSNP
described in the subsequent sections not only substantially
improved performance on the Intel Xeon host, but also
resulted in good performance on the Intel Xeon Phi
coprocessor without any further code modification. However,
there was a performance bottleneck on the MIC that did
not affect the host. This was resolved as described in
subsection 5.2.

The resulting application can run on an arbitrary number
of host processors and MIC coprocessors using symmetric
mode, where each MIC functions as an independent node that
can execute one or more MPI processes. No code changes
were required to accomplish this. It is assumed, however,
that the rank 0 MPI process, which performs all I/O and
sequential code, runs on a host due to the relatively-slow I/O
and single-threaded performance of the MIC.

Our previous epiSNP optimization work (Luecke et al.
2015) employed a static data distribution technique for MPI
processes on hosts and MICs. The user was required to
manually set an environment variable that influenced the
amount of work statically assigned to MPI processes on hosts
and MICs (see subsection 7.2). The dynamic load balancing
method introduced in this paper obviates this approach.

5 Serial Optimizations
Beginning with the original serial epiSNP, we extensively
refactored the codebase using modern Fortran constructs
for modularity, clarity, and performance. This resulted in
the reduction of lines of source code by about 1

3 . We also
implemented a number of serial optimizations to address the
serial application performance bottlenecks identified using
the methods described in section 3. Several of these serial
optimizations are described in this section.

5.1 Data Type Changes
Compared with double precision, single-precision values
consume half the memory/storage, and double the number of
data values that can be represented in the same area of cache.

Prepared using sagej.cls

4 Journal Title XX(X)

On many architectures (including x86), SIMD instructions
can operate on twice as many single-precision elements in a
vector register. Because it is beneficial to performance to use
single precision where it suffices instead of double precision,
epiSNP was modified to represent phenotype values in single
precision by default (customizable at compile-time). For the
data set described in section 8, the use of mixed precision
resulted in only minor numerical differences in some of the
reported values, and no differences in the reported SNP pairs
with the most-significant epistatic interactions.

epiSNP stored the SNP genotypes of each individual in an
array of type default integer (generally 4 bytes). This greatly
exceeds the minimum storage (2 bits) required to represent
a biallelic SNP. To reduce memory usage and allow more
efficient cache utilization, we chose to represent SNPs using
int8 (1-byte integer).

5.2 Data Structure Changes
epiSNP reports a user-specified number of most-significant
epistasis effects. The relevant values (snp1, snp2, trait, effect
type, and epistasis effect) are stored in several arrays, sorted
by effect. With EPISNPmpi, each MPI process maintains a
local copy of these arrays, and the results are merged on
the rank 0 process. An O(n2) binary insertion sort is used
to manage the lists. When an epistasis effect is found that
belonged in the lists (i.e., more significant than the least-
significant effect stored in the epistasis effect array), a binary
search is done to determine the location in the epistasis effect
array. The corresponding values are then inserted into the
arrays by shifting the other elements to make space before
assigning the values to the correct locations in the arrays. In
addition to requiring potentially many operations to perform
the element shifting, the cache lines of the elements involved
in the shift are invalidated.

While this was not a significant bottleneck on the host
for the array sizes specified in our benchmark, the insertion
routine had worse performance on the Xeon Phi. To reduce
the number of operations required to insert an epistasis effect,
the five separate arrays were coalesced into a single array
of structures. Since one such list is maintained per process,
updates to the list must be serialized (via an OpenMP critical
region) when a process is multi-threaded. On the Xeon Phi,
this critical region was a bottleneck: one of the 240 threads
updating the list in the critical region could measurably delay
access to the critical region for any other threads attempting
to update the list.

It was recognized that the problem of maintaining a
fixed-size list of the most significant results is analogous
to a priority queue where the element with the highest
”priority”—and thus the one to be ”dequeued” next—is the
element with largest (least-significant) epistasis effect value.
A priority queue is commonly represented using a binary
heap data structure. This is a special kind of binary tree
that has the heap property, where (for a max-heap) the
value of every node is less than or equal to the value of its
parent. The heap can be backed by an array instead of a
binary tree. In this case, the left child of the node at index
i is located at index 2i, and the right child at index 2i+
1. Insertions and removals are accomplished in O(log n)
time, giving the insertion and removal of n elements a time
complexity ofO(n log n). A max-heap implementation from

Introduction to Algorithms, Third Edition (Cormen et al.
2009) was adapted for this task. On the Xeon Phi, this
improved list insertion performance and markedly reduced
the maximum cumulative times spent waiting to enter
the critical region among all OpenMP threads. This
maintains the convenience of byte addressability, and avoids
any computational expense associated with unpacking an
array of 2-bit values before use.

5.3 Dead Code Elimination
Approximately 45% of the total execution time of epiSNP
was spent in a single region of dead code. The results
calculated in this region did not contribute to the output, but
were stored in the element of an array whose other elements
were later utilized. The identification of this region of dead
code was achieved only through careful visual inspection of
the source code, as the Intel compiler was unable to identify
this region during the dead-code elimination phase.

5.4 Loop Optimizations
A significant fraction of the epiSNP execution time was
spent executing a loop containing nested multi-branch
IF constructs. The outer IF construct tests for missing
phenotype values, while the inner IF construct updates
elements of several arrays based on the SNP genotypes being
compared. Branching within a loop inhibits vectorization,
and poses a particular performance problem for the ”Knights
Corner” generation of the Intel Xeon Phi, which lacks branch
prediction hardware.

Listing 1: Excerpt of the original two snp test subroutine
subroutine two_snp_test(M, residual, snp1, snp2, &

missing_trait,...)
integer, intent(in) :: M, snp1(M), snp2(M)
integer, intent(in) :: missing_trait
double precision, intent(in) :: residual(M)
double precision :: b(9,1),df,e(M),msr,x(M,9)
integer :: freq(3,3)
x = 0.0d0; b = 0.0d0; freq = 0; e = 0.0d0
do i=1, M ! for each individual
if (residual(i) /= missing_trait) then

if (snp1(i)==0 .and. snp2(i)==0) then
freq(1,1)=freq(1,1)+1
x(i,1)=1.0d0
b(1,1)=b(1,1)+residual(i)

...
else if (snp1(i)==2 .and. snp2(i)==2) then
freq(3,3)=freq(3,3)+1
x(i,9)=1.0d0
b(9,1)=b(9,1)+residual(i)

end if
end if

end do
...
do i=1, M
if (x(i,1) == 1) then

e(i)=residual(i)-b(1,1)
...
else if (x(i,9) == 1) then

e(i)=residual(i)-b(9,1)
end if

end do
msr = SUM(e**2)/df

To eliminate IF constructs from within these loops, an
array containing the indices of the array elements to modify

Prepared using sagej.cls

Weeks et al. 5

was created. This array is computed in three steps. First, all
SNP genotype values representing missing data (i.e., those
> 2) are assigned a value of 16 (i.e., the 5th bit is set).
In the second step, a Fortran MERGE intrinsic function
substitutes bit-shifted SNP genotype values (occupying bits
3 and 4) where phenotype data for the current trait exists
for that individual, and the missing-data value where it
doesn’t. The first two steps are done once for each list of
individual genotype values for a given SNP, and is thus
performed N times. In the third step, the first array is bitwise-
ORed the SNP genotype values being compared against
(occupying bits 1 and 2 for non-missing data). This bitwise-
OR operation, which is performed N(N−1)

2 times, can be
vectorized by a vectorizing compiler.

Though the resulting loop still doesn’t vectorize due to
the use of indirect references, the reduction of branching
within the loop improved performance. The addition of
the Intel-compiler-specific UNROLL directive, which signals
the compiler to unroll the loop the maximum number of
iterations allowed by the Intel compiler, was empirically
shown to benefit performance.

Listing 2: Optimized two snp test
integer(kind=int8), parameter :: MISSING = 16
! valid snps in {0,1,2}
where(snps > 2) snps = MISSING

do s1 = 1, N-1
...
snps1=MERGE(SHIFTL(snps(:,s1), 2), MISSING, &

snps(:,s1) /= MISSING .and. &
residual(:,trait) /= missing_trait)

do s2 = s1+1, N
...

call two_snp_test(...)
...
subroutine two_snp_test(...)
...
integer(kind=int8), intent(in) :: snp1(N), snp2(N)
! These arrays were rank 2 in the original
! code for compatibility with matrix operations
! that were removed during dead-code removal.
double precision :: b(0:24)
integer :: freq(0:24)
! The storage size of x is now 1/72 of the
! previous size, enabling it to fit within cache
integer(kind=int8) :: x(N)
...
x = IOR(snp1, snp2)
!DIR$ UNROLL(255)
do i = 1, N
freq(x(i)) = freq(x(i)) + 1
b(x(i)) = b(x(i)) + residual(i)

end do
...
msr=SUM((residual-b(x))**2, MASK = x < MISSING)/df

However, the Intel Loop Profiler revealed that approxi-
mately half of the serial run time is still spent in the loop
marked with the UNROLL directive. This type of ”histogram”
computation (using indirect array addressing) cannot be
vectorized using existing x86 or MIC SIMD instruction sets
due to the possibility of duplicate index values. The AVX-
512 conflict detection instruction set—forthcoming as of
this writing, to appear first in the ”Knights Landing” Intel
Xeon Phi coprocessor—is designed to allow the detection
of and vectorization using conflict-free subsets of index

elements (Newburn, CJ 2015). This vector instruction set
holds promise beyond wider vector widths for the potential
to substantially impact the performance of epiSNP.

5.5 DCDFLIB
epiSNP uses DCDFLIB (Double precision Cumulative Dis-
tribution Function LIBrary), a Fortran 77 library of routines
for computing cumulative distribution functions, inverses,
and parameters for various statistical distributions in double
precision (Brown et al. 1994b). The two snp test() sub-
routine in epiSNP called cdft() to calculate the cumulative
distribution function and inverse distribution function of the
Student’s t-distribution. We noticed that cdft() could be
safely substituted with cumt(), which is internally called
by cdft() given the actual arguments used in epiSNP.
Further analysis of the DCDFLIB source code revealed that
cumt() was a pure subroutine (i.e., no side effects), unlike
cdft, which performs I/O (emits error messages) under cer-
tain conditions. An interface block that declared cumt() as
ELEMENTAL (which implies pure) was created. This served
two purposes: 1) to allow the compiler to perform argument
type checking for this legacy Fortran 77 subroutine, and 2) to
allow the compiler to perform more aggressive optimizations
that wouldn’t be permissible with an impure subroutine.

The aforementioned serial optimizations resulted in
a 12X speedup vs. the original serial epiSNP on the
benchmark data set described in Section 8. Approximately
15% of the optimized epiSNP’s serial run time is spent
executing DCDFLIB subroutines. A subsequent Fortran
90 version, CDFLIB (Brown et al. 1994a)†, performed
slightly better than original Fortran 77 DCDFLIB; however,
there were minor numerical differences in the reported
epistasis effect p-values. CDFLIB90 (Brown et al. 2002)
is a more recent version, coded in a modular style using
Fortran 95 language features, that claims to offer improved
performance. However, substituting the corresponding
CDFLIB90 subroutines in epiSNP revealed that they offered
significantly worse performance. Better-optimized versions
of these statistical routines would benefit epiSNP and other
applications.

6 Shared-Memory Parallelization
Shared-memory parallelism is becoming increasingly neces-
sary to exploit the increasing amount of on-chip parallelism
found in newer generations of multi-core and many-core
processors. The most common API for expressing shared-
memory parallelism in scientific applications for multi-
core processors and the Xeon Phi coprocessor is OpenMP.
Shared-memory parallelism within an MPI process or coar-
ray image is beneficial in several ways. Only one multi-
threaded process/image is required to utilize the compu-
tational capability within a node (though one per NUMA
domain provides best performance for epiSNP and many
other applications). Large data structures needing to be
replicated in each process/image can be shared among
OpenMP threads within the process/image, reducing both

†Not to be confused with the original single-precision Fortran 77
CDFLIB (Brown and Lovato 1993)

Prepared using sagej.cls

6 Journal Title XX(X)

inter-process communication and per-node memory foot-
print, and more-efficiently utilizing processor cache. This is
especially important for the Intel Xeon Phi, as memory con-
straints make it impractical to execute enough MPI processes
or coarray images on the MIC to fully utilize its computa-
tional capacity, and minimization of communication over the
slow PCIe bus is desirable. In addition, the OpenMP runtime
can dynamically assign loop iterations to threads, facilitating
better load balancing within a node. While Fortran 2008
offers a DO CONCURRENT construct for parallelizing loops,
it could not be used for epiSNP, as there is no facility for
mutual exclusion within a DO CONCURRENT loop.

6.1 Loop Parallelization
When compiled as a pure OpenMP application (without
MPI or CAF support), OpenMP parallelizes the outer of
the nested loops in which two snp test() is called. The
OpenMP collapse clause could not be used in this case,
as the inner loop bounds are dependent on the outer-loop
index. Dynamic loop scheduling is used, as earlier outer-loop
iterations execute more inner-loop iterations.

A max-heap array of structures, largest effects,
stores the list of S most-significant epistasis effects and
associated metadata (where M is a user-specified parameter).
This list is shared between all OpenMP threads in the
process/image, reducing both memory usage and the number
of list merges needed to provide the final list of S most
significant effects. A drawback of this memory-efficient
approach is that updates to the list must be serialized within a
critical region. Furthermore, the comparison and list update
must be performed atomically, so the comparison must also
be performed within the critical region. The overhead of
having a critical region within each of the N(N−1)

2 inner-loop
iterations motivated the following optimization.

Before exiting the critical region, the executing thread
atomically updates a shared variable containing the least-
significant effect stored in the largest effects list
(see Listing 3). Before entering the critical region, a thread
atomically reads the shared variable into a private variable,
and compares the this with a vector of 4 effect values
computed in two snp test(). If any of the computed
effects is more significant, the critical region is entered.
Because the atomic read may have occurred after a (different)
thread in the critical region updated the list, but before
updating the shared variable, the comparison must be
done again after a thread enters the critical region. As
program execution proceeds, the list contains increasingly-
significant effects, and the probability of entering the critical
region decreases. This method eliminates the vast majority
of critical region entrances that would otherwise occur.
OpenMP atomic operations are generally implemented as
atomic CPU instructions, and present less overhead than
OpenMP critical regions.

Listing 3: (pure) OpenMP parallelization
type(effect_t) :: largest_effects(S)
!$omp parallel do private(effects, &
!$omp least_effect_private) schedule(dynamic,1)
do snp1 = 1, N-1
...
do snp2 = snp1+1, N
...

call two_snp_test(...)
...

!$omp atomic read
!$ least_effect_private = least_effect
!$ if (ANY(effects<least_effect_private)) then
!$omp critical

do i=1,4
if (effects(i) < largest_effects(1)%eff) then
call save_effect(effects(i),...)

end if
end do

!$omp atomic write
!$ least_effect = largest_effects(1)%eff
!$omp end critical

end if
end do

end do

6.2 Parallel I/O
For the data set described in Section 8, approximately 2.4G
of SNP genotype data organized into 30 files must be read,
parsed, and stored in an array. A significant fraction (over
90%) of the execution time of the sequential part (outside
the two snp test() nested loop) was spent performing
this task. It was recognized that the I/O bandwidth capacity
of the Lustre file system was underutilized.

Minor code changes allowed the sequential loop in which
these files were read to be parallelized with OpenMP. Using
dynamic loop scheduling with a chunk size of 1, each file
was read by a separate thread in a team of threads. This
technique lessened the time to read the SNP genotype data
by over 80%.

7 Distributed-Memory Load Balancing
EPISNPmpi uses a data distribution scheme that requires
the number of MPI processes to be a triangular number
greater than 2; i.e., a number that is equal to N(N+1)

2 for
some positive integer N > 1. Each (single-threaded) MPI
process can utilize only one processor core/thread. Thus,
if the aggregate number of processor cores/threads among
all compute nodes involved in the computation is not a
triangular number, not all of their aggregate computational
capability will be utilized.

Building on our serial and shared-memory parallel
(OpenMP) optimizations to epiSNP, we created new
distributed-memory parallel MPI and CAF versions. These
versions allow execution using an arbitrary number of MPI
ranks or coarray images, and provide significantly-improved
load balancing between ranks/images.

7.1 Static Load Balancing with MPI
A pairwise comparison of N elements requires

(
N
2

)
=

N(N−1)
2 comparisons. This can be implemented in serial

code using nested loops; e.g.:
do snp1 = 1, N-1

do snp2 = snp1+1, N
! detect epistasis between snp1 and snp2
end do

end do

A simple way to statically distribute work to P MPI
processes is to assign iterations of the outer loop to the MPI
processes in a round-robin fashion.

Prepared using sagej.cls

Weeks et al. 7

call MPI_Comm_rank(comm, r, ierror)
call MPI_Comm_size(comm, P, ierror)

do snp1 = r+1, N-1, P
do snp2 = snp1+1, N
! detect epistasis between snp1 and snp2
end do

end do

However, this results in load imbalance: lower-ranked MPI
processes do more work than higher-ranked MPI processes
(for each block of P iterations, rank r ∈ {0, . . . , P − 1}
executes one more iteration of the inner loop than rank
r + 1).

Our original epiSNP optimization effort, described
in (Luecke et al. 2015), statically assigned outer-loop
iterations to MPI processes such that each process performed
similar amount of work.

7.2 Dynamic Load Balancing
The time to execute a pairwise locus comparison can vary.
When more MPI processes are used for a given problem size,
each process executes fewer pairwise comparisons. With
static data distribution, this increases the probability that
there will exist MPI processes whose execution time more-
significantly diverges from the mean execution time. It is
important to minimize this load imbalance, as the run time
of the ”laggard” MPI processes determines the overall run
time of the pairwise-comparison nested loop.

In addition, host CPUs and Xeon Phi coprocessors have
different performance characteristics. Our original statically-
load-balanced epiSNP required the user to estimate the
performance epiSNP on a Xeon Phi relative to a (single) host
CPU. This estimate (the MIC performance factor) would
then cause the number of pairwise comparisons assigned to
host and accelerator to differ depending on their respective
quantities and performance factor. The MIC performance
factor would typically be determined empirically via a trial
run of epiSNP on the target system with a small data set.
This is obviously inconvenient. It was apparent that a low-
overhead dynamic load balancing technique could benefit
both performance and usability.

A conceptually straightforward approach for achieving
dynamic load balancing is to dynamically load balance the
outer loop iterations between processes, while retaining the
OpenMP-based dynamic load balancing of the inner loop. It
was recognized that the Fortran language already contained
the necessary constructs to simply and clearly implement the
dynamic load balancing of the outer loop.

7.2.1 Dynamic Load Balancing with Coarrays
Coarrays are a feature of the Fortran 2008 standard that
allows Single Program Multiple Data (SPMD) parallelism
to be expressed using a Partitioned Global Address Space
(PGAS) parallel programming model. Data locality is
expressed via a simple extension to the Fortran array syntax.

epiSNP was modified to use coarrays instead of MPI.
Outer loop iterations were dynamically load balanced
between coarray images (analogous to MPI ranks, except
the first image is numbered 1 instead of 0). OpenMP was
retained for dynamic load balancing inner loop iterations.
Listing 4 describes the basic structure of the resulting
pairwise-comparison nested loop. The coarrays (the array

snps and scalar snp) are identified by the presence
of a codimension ”[*]” in their declarations after the
variable name. When referenced with an image selector
(e.g., ”snp[1]”) the coarray on the specified image is
accessed. When referenced without an image selector, the
local variable on the same image is accessed.

Listing 4: Dynamic load balancing using coarrays+OpenMP
integer(kind=int8), allocatable :: snps(:,:)[*]
integer(kind=int64) :: snp[*] ! index into
... ! snps(:,snp)
if (THIS_IMAGE() == 1) then

snp = 1
SYNC IMAGES(*) ! image 1 syncs w/ all images

else ! other images need only sync with/ image 1
SYNC IMAGES(1)

end if
...
call CO_BCAST(snps, 1) ! broadcast from image 1
...
!$omp parallel private(i,snp1,snp2) shared(snp,N)
do while (.true.)

! a single thread in the image gets the next
! SNP (outer-loop iteration)
!$omp single
i = AMO_AFADD(snp[1], 1_int64) ! needs int64 args
! broadcast to the other threads in the image
!$omp end single copyprivate(i)
! halve the number of times AMO_AFADD() is
! executed and make the number of inner-loop
! iterations executed consistent by assigning
! SNPs i and N-i to the same image
if (i > N/2 + IAND(N,1)) exit
do snp1 = i, MAX(N-i,i), MAX(N-2*i,1)

...
!$omp do schedule(guided)
do snp2 = snp1+1, N

...
end do

! nowait allows the first thread to finish
! to immediately proceed to fetch the next snp
!$omp end do nowait

...
end do

...
end do

Image 1 first reads the input data from files, and initializes
various data structures, including a scalar coarray (snp)
that acts as an index into the snps coarray. Other images
must synchronize with image 1 before accessing its coarrays
to ensure image 1 is finished setting them. This could be
accomplished with a SYNC ALL statement, which acts as
a barrier for all images (equivalent to MPI Barrier().
However, as communication occurs only between image 0
and all other images, it is not necessary for the other images
to synchronize with each other. The SYNC IMAGES()
statement allows synchronization with a subset of images,
and in this case is used to synchronize only between image 0
and images greater than 0.

The collective subroutine CO BCAST(), which in this
case broadcasts the snps coarray from image 1 to all
other images, is the coarray equivalent of MPI Bcast().
This worked around extremely-slow off-node transfer times
observed for get operations from all other images (i.e.,
snps(:,:) = snps(:,:)[1]) involving allocatable

Prepared using sagej.cls

8 Journal Title XX(X)

coarrays of type int8. The CO BCAST() routine is Cray-
specific, but the forthcoming Fortran 2015 standard will
include a similar routine (CO BROADCAST()).

The function AMO AFADD() (atomic memory opera-
tion/atomic fetch and add) is used to fetch the value of
the snp coarray from image 1 into local variable i, then
increment the value and store it in the snp coarray on
image 1. This function is globally atomic with respect to
other images, and can thus be safely invoked with identical
coarray arguments on multiple images concurrently. Cray
interconnects (such as the Aries) contain hardware support
for remote atomic memory operations such as this to make
them more efficient Alverson et al. (2012). For non-Cray
Fortran implementations, the semantics of this operation can
be represented (less succinctly) in standard Fortran 2008
using a CRITICAL section:

CRITICAL
k = snp[1]
snp[1] = k+1

END CRITICAL

AMO AFADD() is Cray-specific, but the Fortran
2015 standard will include the equivalent subroutine
ATOMIC FETCH ADD().

To quantify the load imbalance present in our previous
statically-load-balanced MPI+OpenMP version, the percent
load imbalance was measured for the pairwise-comparison
nested loop. This is defined as the difference between the
maximum and minimum run times among all processes/im-
ages, expressed as a percent of the maximum run time
((max−min)/max× 100). The percent load imbalance
gives an upper bound on the potential for performance
gains from load balancing improvements. On 512 nodes of
NERSC’s Edison supercomputer,‡ the MPI+OpenMP had a
load imbalance of 6.51%, while the CAF+OpenMP version
had a load imbalance of 0.58%.

7.2.2 Dynamic Load Balancing with MPI-3 RMA
To allow dynamic load balancing on non-Cray systems, we
reimplemented dynamic load balancing using MPI-3 RMA
operations (Listing 5). This was done due to problems when
using CAF with the current versions of Intel and GNU
compilers.

CAF was originally designed and implemented by Cray.
On Cray systems, CAF programs utilize the proprietary
DMAPP one-sided communication library, which is tuned
for Cray interconnects. While the CAF implementation of
epiSNP achieves improved load balancing on Edison, it may
not port to non-Cray systems.

The Intel 15.0.1 Fortran compiler implements coarrays
using the Intel MPI library as the underlying transport.
MPI-3 passive target communication is used to emulate
coarray reads and writes to remote images. However, the
Intel compiler does not support the access of remote
coarray images from within an OpenMP parallel region.
In addition, the Intel MPI library requires that each image
have a progress thread (via the MPICH ASYNC PROGRESS
environment variable) to guarantee progress of passive
target communication if the target image is involved in
computation. This essentially dedicates one processor core
(assuming no Hyper-Threading) to communication for each

coarray image, reducing the number of processor cores
dedicated to computation.

The GNU Fortran (gfortran) compiler requires the nascent
OpenCoarrays library for CAF programs that run on multiple
nodes. While OpenCoarrays shows promising performance
potential (Fanfarillo et al. 2014), the authors were unable to
successfully deploy it on their local cluster for evaluation.

The CAF code was translated to MPI in the following
manner. In CAF, a scalar coarray accessible by other
images can be declared with integer :: snp[*].
In MPI, the scalar variable must be exposed to remote
processes from within a window of memory, which defines
a region of memory accessible to other processes via
MPI RMA operations. Window creation and memory
allocation can be performed simultaneously within the
collective MPI Win allocate() routine. This routine requires
the window size in bytes as an argument. MPI Sizeof()
is used to determine the size in bytes of a scalar default
integer.§ The accumulate ops info argument is set
to same op to inform the MPI implementation that all
concurrent MPI one-sided accumulate operations (in this
case, MPI Fetch and op(...,MPI SUM,...)) on the
same target address will be the same operation. This can
obviate the need for the MPI implementation to enforce
mutual exclusion on the target address in cases where the
hardware can perform those operations atomically. Finally,
the resulting allocated memory, which is pointed to by a C
pointer, is associated with a Fortran pointer via the Fortran
intrinsic function C F POINTER().

The semantics of AMO AFADD() were implemented
using MPI Fetch and op(). MPI-3 passive
target communication (MPI Win lock() and
MPI Win unlock()) was used so as to not require
the target MPI process (rank 0) to be explicitly involved in
the communication.

Listing 5: Dynamic Load Balancing using MPI-3 RMA and
OpenMP
integer(kind=int8), allocatable :: snps(:,:)
integer, pointer :: snp
type(c_ptr) :: p_snp
integer :: i, ierr, info, integer_size, win, ierr
integer, parameter :: one = 1
...
call MPI_Sizeof(i, integer_size, ierr)
call MPI_Info_create(info, ierr)
call MPI_Info_set(info, "accumulate_ops", &

"same_op", ierr)
call MPI_Win_allocate(&

INT(integer_size, kind=MPI_ADDRESS_KIND), &
1, info, MPI_COMM_WORLD, p_snp, win,ierr)

call C_F_POINTER(p_snp, snp)
snp = 1
...
! broadcast snp genotypes and other relevant data
call MPI_Bcast(snps, N, MPI_INTEGER, 0, &

MPI_COMM_WORLD, ierr)
...
!$omp parallel private(i,snp1,snp2) shared(snp,N)
do while (.true.)

‡https://www.nersc.gov/users/computational-systems/edison/
§Fortran 2008 added a C SIZEOF() intrinsic function that serves a similar
purpose.

Prepared using sagej.cls

Weeks et al. 9

! a single thread in the MPI process gets the
! next SNP (outer-loop iteration)
!$omp single
call MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, &

win, ierr)
call MPI_Fetch_and_op(one, i, MPI_INTEGER, 0, &

0_MPI_ADDRESS_KIND, MPI_SUM, win, ierr)
call MPI_Win_unlock(0, win, ierr)
! broadcast to the other threads in the image
!$omp end single copyprivate(i)
if (i > N/2 + IAND(N,1)) exit
do snp1 = i, MAX(N-i,i), MAX(N-2*i,1)

...
!$omp do schedule(guided)
do snp2 = snp1+1, N

...
end do

!$omp end do nowait
...
end do

...
end do

8 Benchmarking
epiSNP was benchmarked on a large bovine genotype
and phenotype data set at the Texas Advanced Computing
Center (TACC) and the National Energy Research Scientific
Computing Center (NERSC). A total of 1,634 Angus
sired cattle were genotyped with the Bovine SNP50
Infinium II BeadChip (Illumina, Inc. 2012). These animals’
genotypes were imputed to 774,660 SNPs using additional
animals within the pedigree genotyped with the Bovine
HD BeadChip (Illumina, Inc. 2015). This data set was
phenotyped for more than 100 growth, mineral and fatty acid
traits. Carcass contemporary group and mineral group were
fit as non-genetic factors. As execution time scales linearly
with the number of traits, one of the measured phenotypes,
stearic acid, was chosen for benchmarking.

8.1 Stampede
The TACC Stampede system¶ was used to benchmark the
EPISNPmpi and MPI3+OpenMP epiSNP. Each compute
node of Stampede has two 8-core Intel Xeon E5-2680
processors (host) and one or two Intel Xeon Phi SE10P
Coprocessors (MIC). The nodes are connected via Mellanox
FDR InfiniBand interconnect. Three parallel Lustre file
systems are used for storage. The MPI3+OpenMP epiSNP
was compiled with Intel Fortran 15.0.2.164 Build 20150121
and run with Intel MPI Version 5.0 Update 2 Build
20141030. Due to limited allocation we did not rerun the
original EPISNPmpi program for this paper. Instead we
include timing results from the previous paper (Luecke et al.
2015) when EPISNPmpi was compiled with Intel compiler
Version 14.0.1.106 Build 20131008 and run using Intel MPI
Library Version 4.1 Update 1 Build 20130522.

We benchmarked the MPI3+OpenMP epiSNP using 1)
only the host processors, 2) the host processors along with
one MIC per node, and 3) the host processors along with two
MICs per node. We ran two MPI processes per host (each
starting 8 OpenMP threads) and one MPI process per MIC
(each starting 240 OpenMP threads). The MPI3+OpenMP
epiSNP was compiled using the following compiler options:
-ipo -Ofast -xHost. This is the equivalent to -fast without

-static, which results in a link error on CentOS 6. ‖

EPISNPmpi performed worse when compiled with -Ofast,
thus we used only -ipo and -xHost options for this program.

To run MPI3+OpenMP epiSNP on Stampede we had to
move the RMA window accessed by all MPI processes from
rank 0 to rank 1, and substitute the fetch-and-increment
operation with a get operation on the rank 1 process.
Otherwise this process would execute many more iterations
than other processes. These modifications are included in the
single codebase, and can be enabled at compile-time using
preprocessor directives. To utilize more than half of the cores
on the first node, we had to modify the default affinity and
number of OpenMP threads on this node: the rank 0 process
started 15 OpenMP threads, while the rank 1 process started
only 1 thread. The following was suggested by XSEDE
support staff. When running MPI3+OpenMP epiSNP only
on the host processes we set OMP PROC BIND=true
and OMP PLACES=cores. On the first node we also set
I MPI PIN DOMAIN=node. When running MPI+OpenMP
epiSNP with 1 or 2 MICs per node in symmetric mode,
numactl physcpubind, cpunodebind and membind options
were used. I MPI PIN was set to 0, while MIC I MPI PIN
was set to 1.

When running MPI3+OpenMP epiSNP with 2 MICs
using the aforementioned custom affinity options, we
noticed the interesting behavior illustrated in Figure 5. When
more than two nodes were used, the number of outer-loop
iterations (i.e., number of MPI Fetch and op() calls
invoked computed by the host processes on every third
node of the first 3/4 of the nodes assigned to the job was
half number of iterations computed by the host processes
on other nodes. A corresponding increase in the time
spent blocked waiting for the (MPI Win lock(),
MPI Fetch and op(), MPI Win unlock())
sequence to complete was recorded in the affected MPI
processes, indicating a communication bottleneck. We did
not determine the origin of this issue, but its resolution
would improve load balancing and reduce run time. We did
not observe this behavior for either MPI3+OpenMP 1 MIC
with the custom affinity options, or MPI3+OpenMP 2 MIC
without the custom affinity options.

To test scalability we ran benchmarks on different
numbers of nodes. Ideally the number of nodes would be a
power of two. However since the EPISNPmpi requires the
number of MPI processes to be a triangular number, we used
33 nodes instead of 32, 65 nodes instead of 64, and 126 nodes
instead of 128. Thus, the tests were run for the following
number of nodes: 2, 4, 8, 16, 33, 65, 126. We did not test
using larger node counts, as jobs submitted to the normal-
2mic queue are limited to 128 nodes. We were not able to
run EPISNPmpi on the smaller number of nodes due to queue
time limits (the longest queue is 48 hours), thus this version
was run only for the 8, 16, 33, 65, and 126 nodes (120, 253,
528, 1035 and 2016 MPI processes).

The MPI3+OpenMP epiSNP was run 3 times, and the
averages of the three runs are reported in Table 1. For all

¶https://portal.tacc.utexas.edu/user-guides/stampede
‖https://software.intel.com/en-us/articles/
error-ld-cannot-find-lm

Prepared using sagej.cls

https://software.intel.com/en-us/articles/error-ld-cannot-find-lm
https://software.intel.com/en-us/articles/error-ld-cannot-find-lm

10 Journal Title XX(X)

Table 1. Run time in minutes (Stampede)

MPI3 + MPI3 +
MPI3 + OpenMP OpenMP

nodes EPISNPmpi OpenMP 1 MIC 2 MIC
1 N/A 1421.89 767.63 505.01
2 N/A 659.90 361.19 250.05
4 N/A 325.97 178.10 129.88
8 2338.34 158.91 88.94 65.01

16 1360.061 79.12 44.50 32.70
33 649.93 38.44 21.82 16.12
65 335.68 19.79 11.39 8.58

126 185.00 10.42 6.25 4.81
1 used mvapich2/2.0b instead of impi/4.1.1.036

8 16 33 65 126
0

20

40

60

80

100

120

140

160

of Nodes

R
un

tim
e

(m
in

ut
es

)

MPI3+OpenMP (Intel, Stampede)
CAF+OpenMP (Cray, HT, Edison)
MPI3+OpenMP (Intel, No HT, Edison)
MPI3+OpenMP 1 MIC (Intel, Stampede)
MPI3+OpenMP (Intel, HT, Edison)
MPI3+OpenMP 2 MIC (Intel, Stampede)

Figure 4. Run time in minutes (from 8 to 126 nodes with Cray
and Intel compilers on Edison and Stampede)

runs we report the time of the TACC ibrun command used
on Stampede to launch the processes on all nodes. When
running the MPI3+OpenMP epiSNP on 1 node without
MICs, the runtime was unexpectedly highly variable (two
runs took approximately 23 hours, while the third took
approximately 25 hours). The timings for other node counts
showed relatively little variation.

Table 1 shows that the runtime of MPI3+OpenMP 2 MIC
is less than half of the runtime of MPI3+OpenMP. This is
because a MIC coprocessor is approximately 1.5X faster than
a host processor.

Table 2 gives the node hours required to run all of the
different versions of epiSNP. This is an important criterion
since most HPC sites charge by node hours. However being
able to perform calculation in a timely manner is a critical
consideration in deciding how many nodes to use.

Table 3 shows the big improvements in performance of
optimized epiSNP over EPISNPmpi.

8.2 Edison
The NERSC Edison supercomputer, a Cray XC30, was used
to benchmark the MPI epiSNP both with and without Hyper-
Threading (HT), as well as the CAF+OpenMP epiSNP.

Table 2. Node hours (Stampede)

MPI3 + MPI3 +
MPI3 + OpenMP OpenMP

nodes EPISNPmpi OpenMP 1 MIC 2 MIC
1 N/A 23.70 12.79 8.42
2 N/A 22.00 12.04 8.34
4 N/A 21.73 11.87 8.66
8 311.78 21.19 11.86 8.67

16 362.68 21.10 11.87 8.72
33 357.46 21.14 12.00 8.87
65 363.65 21.44 12.34 9.29

126 388.50 21.89 13.13 10.10

Table 3. Speedup over EPISNPmpi (Stampede)

MPI3 + MPI3 +
MPI3 + OpenMP OpenMP

nodes OpenMP 1 MIC 2 MIC
8 14.72 26.29 35.97

16 17.19 30.57 41.59
33 16.91 29.78 40.32
65 16.96 29.47 39.14

126 17.76 29.58 38.43

The MPI epiSNP was compiled with the Intel
Fortran compiler (version 15.0.1) using the -fast
option, and statically linked with the DMAPP
library. The MPICH RMA OVER DMAPP environment
variable was set to 1 to use a DMAPP-based
version of MPI RMA, as this significantly improved
the performance of MPI Fetch and op(). The
MPICH RMA USE NETWORK AMO environment variable,
which enables network atomic memory operations for
several MPI routines (including MPI Fetch and op()),
was not set. This is because setting it resulted in a run-time
error from the MPI library.

To more closely map the performance of the MPI epiSNP
on Stampede to Edison, epiSNP was first run without HT
enabled, using the aprun options --pes-per-node
2 --pes-per-numa-node 1 --cpus-per-pe
12 --CPUs 1 --cpu-binding numa node. The
OMP WAIT POLICY environment variable was set to
”active”.

With HT enabled, the MPI epiSNP was run with
different numbers of ranks/images using the aprun options
--pes-per-node 2 --pes-per-numa-node 1
--cpus-per-pe 24 --CPUs 2 --cpu-binding
numa node. The OMP PLACES environment variable
was set to ”threads”, as the default (”cores”) caused
oversubscription from both OpenMP threads executing
on a core being pinned to the same hardware thread. The
OMP WAIT POLICY environment variable was not set
to ”active” (defaulting to ”passive”), as ”active” caused
performance degredation. This may be due to contention
with the other thread executing on the same processor core,
as an active wait policy causes OpenMP threads to spin
while waiting (e.g., to acquire a lock).

The Cray 8.4.0 compiler was used to compile the
CAF+OpenMP epiSNP. The MPI3+OpenMP version was

Prepared using sagej.cls

Weeks et al. 11

0	
1000	
2000	
3000	
4000	
5000	
6000	
7000	
8000	
9000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

N
um

be
r	 o

f	 i
te
ra
-o

ns
	

Node	 number	

Host	 process	 Host	 process	 MIC	 process	 MIC	 process	

Figure 5. Number of MPI Fetch and op() calls per MPI rank for MPI3+OpenMP 2 MIC on 16 nodes of Stampede. This is a
measure of the amount of work done per process. There are four MPI processes per node: the first two are host processes, while
the latter two are MIC processes. The host processes on every third node of the first 3/4 of the nodes assigned to the job perform
approximately half as much work as the host processes on other nodes. The affected processes spend more time blocked in the
(MPI Win lock(),MPI Fetch and op(),MPI Win unlock()) sequence, indicating a communication bottleneck of
undetermined origin.

also compiled to compare CAF with MPI using the same
compiler. For the CAF+OpenMP version, no compiler
options were used. The XT SYMMETRIC HEAP SIZE
environment variable was set to 2G, as the default was
inadequate for storing the SNP genotype data within a
coarray on each image. The MPI version was compiled
with no compiler options, statically linked with the DMAPP
library, and run with the MPICH RMA OVER DMAPP
environment variable set to 1. Both MPI3+OpenMP and
CAF+OpenMP versions were run with HT enabled,
using the aprun options --pes-per-node 2
--pes-per-numa-node 1 --cpus-per-pe 24
--CPUs 2 for each node count. The OMP PROC BIND
environment variable was not set, as any value other than
”false” caused all threads in the process/image to be bound
to the same core. Adding the aprun -cc none option
resulted in two OpenMP threads per core, where both were
pinned to the same hardware thread. The MPI version was
run only once per node count instead of three times due to
remaining allocation limitations.

The timing results (Table 4) indicate that the Intel compiler
optimized the epiSNP code better than the Cray compiler,
as evidenced by the approximately 16% performance
improvement of the MPI3+OpenMP epiSNP when compiled
with the Intel compiler instead of the Cray compiler.

8.3 Comparing Stampede and Edison

Figure 4 graphically summarizes the runtimes of the
optimized epiSNP versions listed in Table 1 and Table 4. The
MPI3+OpenMP epiSNP was approximately 40% faster on
Edison (without HT) vs. Stampede (without MICs). Other
HPC applications have observed comparable performance
gains when transitioning from similar 8-core ”Sandy Bridge”
Intel Xeon processors to similar 12-core versions of the
subsequent ”Ivy Bridge” Intel Xeon processors (Deshmukh
2014).

Table 4. Run time in minutes (Edison)

MPI3 +
MPI3 + CAF + OpenMP MPI3 +

OpenMP OpenMP (Intel, OpenMP
nodes (Cray, HT)1 (Cray, HT) No HT) (Intel, HT)

1 1069.23 1064.60 895.08 657.81
2 535.71 532.22 455.18 328.72
4 267.91 267.47 224.73 165.54
8 134.54 133.97 113.87 83.28

16 68.10 67.34 56.66 41.80
33 33.16 32.93 27.74 20.51
65 17.12 17.09 14.32 10.67

126 9.17 9.13 7.63 5.82
1 Only one trial was run per node count instead of three due

to insufficient remaining allocation

Hyper-Threading produced an unexpectedly-large perfor-
mance benefit for epiSNP on Edison, resulting in an aver-
age speedup of 1.35x vs. without HT. Many HPC systems
(including Stampede) have HT disabled on the compute
nodes at boot via a BIOS setting. This is because HT has
little/no benefit for many HPC applications, and is even
detrimental to the performance of some. On Edison, HT is
enabled, but not used unless the user explicitly requests it via
the aprun --CPUs 2 option. Using HT, the performance
of Edison is better than the performance of the Stampede
nodes with one MIC, while having better power efficiency.
Each of the two Xeon E5-2695 v2 CPUs in an Edison node
has a thermal design power (TDP) of 115W, while each of the
two E5-2680 CPUs in Stampede node has a TDP of 130W—
and the Xeon Phi SE10P adds a 300W TDP.

This experience suggests that it may be beneficial to allow
the use of HT if the user explicitly requests it via the resource

Prepared using sagej.cls

12 Journal Title XX(X)

manager and/or OpenMP (or other) runtime, rather than
disallowing the use of HT for all applications.

9 Conclusions
The purpose of this work was to build upon our previous
optimizations to epiSNP, further improving performance
and usability on both host and Xeon Phi coprocessor. We
implemented dynamic load balancing in CAF and MPI-
3 RMA versions to reduce load imbalance, especially for
heterogeneous systems containing both hosts and Xeon Phi
coprocessors. As a result, epiSNP can run on multiple
nodes, each equipped with an arbitrary number of Xeon
Phi coprocessors, without requiring the user to empirically
determine a static-load-balancing parameter. In addition,
data structure changes reduced thread contention on the Intel
Xeon Phi coprocessor.

Preprocessor directives allow six versions of epiSNP
(serial, OpenMP, MPI3, CAF, MPI3+OpenMP, and
CAF+OpenMP) to be compiled from a single code
base. These versions perform substantially better than
the original EPISNPmpi. For a large 774,660 SNP
data set with 1,634 individuals, our efforts yielded a
performance improvement over EPISNPmpi of 17.76X
for MPI3+OpenMP, 29.58X for MPI3+OpenMP with 1
MIC, and 38.43X for MPI3+OpenMP with 2 MICs on 126
nodes of TACC’s Stampede supercomputer. Benchmarks on
the Edison supercomputer revealed that the use of Hyper-
Threading resulted in significantly better performance
(average 1.35X speedup) than without Hyper-Threading.

The practical application of this work is to scale up to
analyze all variants that are segregating in a population.
While the resulting optimized epiSNP can manage the
774,660 variant data set size used in this study, scalability
challenges remain for even bigger data. For example, the
1000 Bulls Project (Daetwyler et al. 2014) and 1000
Genomes Project (1000 Genomes Project Consortium 2015)
have identified 28 and 88 million variants in cattle and
humans. Epistatic interaction analyses using all these
variants would take approximately 1,300 and 13,000 times
longer than the 774,660 variant data set. This means that it
would take 126 2-MIC Stampede nodes about 4.5 days to
analyze a single bovine trait. To analyze a single human trait
would require well over 40 days. The smaller analysis could
be done in under a day using 800 Stampede 1-MIC nodes.
The larger analysis, however, would take the entire 6400-
node Stampede supercomputer about a day to complete.
Thus, software, hardware, and/or algorithmic advances are
needed in this problem domain to be able to perform the
largest analyses within a reasonable amount of time using
the statistical methodology applied here.

Acknowledgment
The authors thank Dr. Yang Da for granting access to
the epiSNP source code, and Dossay Oryspayev for his
assistance with code optimization.

This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

The research reported in this paper is partially supported
by the HPC@ISU equipment at Iowa State University, some

of which has been purchased through funding provided by
NSF under MRI grant number CNS 1229081 and CRI grant
number 1205413.

This work was created using resources or cyberinfras-
tructure provided by the iPlant Collaborative. The iPlant
Collaborative is funded by a grant from the National Science
Foundation (#DBI-0735191).
URL: http://www.iplantcollaborative.org

The authors acknowledge the Texas Advanced Computing
Center (TACC) at The University of Texas at Austin
for providing HPC resources that have contributed to the
research results reported within this paper.
URL: http://www.tacc.utexas.edu

This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

Author Biographies

Nathan Weeks received B.S. degrees in Computer Science (2002)
Mathematics (2003) from South Dakota State University, and an
M.S. (2012) in Computer Science from Iowa State University.
He is currently pursuing a Ph.D. in Computer Science at Iowa
State University. His research interests include parallel computing,
software application optimization, and bioinformatics.

Glenn R. Luecke received his B.S. degree from Michigan State
University in Mathematics and his Ph.D. in Mathematics from the
California Institute of Technology. He is currently Professor of
Mathematics, adjunct Professor of Computer Engineering, Senior
Member of the ACM, Director of an HPC group and in charge of
HPC education and training at Iowa State University. Professor
Luecke’s HPC group is involved in research in the areas of parallel
algorithms, parallel tools, and the evaluation of high performance
computing systems. He has had over 60 graduate students, visiting
scholars, and post-doctoral students.

Brandon Groth is a research assistant in the Department of
Mathematics HPC group at Iowa State University. He received his
B.S. in Mathematics from the University of Wisconsin-La Crosse
in 2012. He is currently seeking a Ph.D. in Applied Mathematics
with an emphasis on HPC under Dr. Glenn Luecke. His research
interests include scientific computing, mathematical applications in
the sciences, and numerical analysis.

Marina Kraeva received the B.S. (1991) and M.S. (1993) degrees
in Mathematics and Applied Mathematics from Novosibirsk State
University, Russia. In 1999 she received her Ph.D. in Computer
Science from the State Technical University of Novosibirsk, Russia
and joined the High Performance Computing group at Iowa State
University. She is interested in performance evaluation of HPC
systems and tools and assists ISU faculty and students in program
parallelization and optimization.

Luke Kramer received his B.S. (2012) in Genetics, Cell
Biology, and Development from the University of Minnesota, Twin
Cities. Currently he is a Ph.D. student at Iowa State University in
the department of Animal Science. His research involves the study
of both fatty acid epistasis and response to vaccination in beef cattle.

Prepared using sagej.cls

http://www.iplantcollaborative.org
http://www.tacc.utexas.edu

Weeks et al. 13

James E. Koltes received a B.S. (2001) in dairy science and
genetics from the University of Wisconsin-Madison and a Ph.D.
(2007) in genetics from Iowa State University. He joined the
faculty of the Department of Animal Science at the University of
Arkansas in 2015. His research interests are in genetics, genomics
and epigenetics of growth and health traits in livestock species.

Li Ma received his B.S. degree (2002) in Mathematics from
Fudan University, and his M.S. (2010) in Statistics and Ph.D.
(2010) in Quantitative Genetics from the University of Minnesota.
He joined the University of Maryland in 2013 as an assistant
professor with research focused on population and statistical
genetics, bioinformatics, and fast computing tool development for
large-scale genetic data analysis.

James Reecy received his B.S. (1990) in Animal Science
from South Dakota State University, his M.S. (1992) in Animal
Science from the University of Missouri, and his Ph.D. (1995)
in Animal Science from Purdue University. He was then a Post
doctoral fellow at Baylor College of Medicine (1999). In 1999,
he joined Iowa State University, where he became a full professor
in 2009. He has extensively published in the areas of growth
and development, livestock genomics and bioinformatics. He is a
coauthor on more than 115 technical papers on these topics.

References

1000 Genomes Project Consortium (2015) A global reference for
human genetic variation. Nature 526(7571): 68–74.

Alverson B, Froese E, Kaplan L and Roweth D (2012)
Cray XC series network. URL http://www.

cray.com/sites/default/files/resources/

CrayXC30Networking.pdf.
Brown BW and Lovato J (1993) CDFLIB: Library of Fortran

Routines for Cumulative Distribution Functions, Inverses, and
Other Parameters. URL http://lib.stat.cmu.edu/

general/cdflib.
Brown BW, Lovato J and Russell K (1994a) CDFLIB.

URL https://people.sc.fsu.edu/˜jburkardt/

f_src/cdflib/cdflib.html.
Brown BW, Lovato J and Russell K (1994b) DCDFLIB: Library

of Fortran Routines for Cumulative Distribution Functions,
Inverses, and Other Parameters. URL http://netlib.

org/random/.
Brown BW, Venier J and Serachitopol D (2002) CDFLIB90

Fortran 95 routines for cumulative distribution functions, their
inverses and more. URL https://biostatistics.

mdanderson.org/SoftwareDownload/

SingleSoftware.aspx?Software_Id=21.
Cormen TH, Leiserson CE, Rivest RL and Stein C (2009)

Introduction to Algorithms, Third Edition. 3rd edition. The
MIT Press. ISBN 0262033844, 9780262033848.

Daetwyler HD, Capitan A, Pausch H, Stothard P, Van Binsbergen
R, Brøndum RF, Liao X, Djari A, Rodriguez SC, Grohs C
et al. (2014) Whole-genome sequencing of 234 bulls facilitates
mapping of monogenic and complex traits in cattle. Nature
genetics 46(8): 858–865.

Deshmukh M (2014) Comparing Sandy Bridge vs. Ivy Bridge
processors for HPC applications. URL http://dell.to/

20EHEUD.

Fanfarillo A, Burnus T, Cardellini V, Filippone S, Nagle D
and Rouson D (2014) OpenCoarrays: Open-source Transport
Layers Supporting Coarray Fortran Compilers. In: Proceedings
of the 8th International Conference on Partitioned Global
Address Space Programming Models, PGAS ’14. New York,
NY, USA: ACM. ISBN 978-1-4503-3247-7, pp. 4:1–4:11.
DOI:10.1145/2676870.2676876.

González-Domı́nguez J, Kässens JC, Wienbrandt L and Schmidt
B (2015) Large-scale genome-wide association studies on a
GPU cluster using a CUDA-accelerated PGAS programming
model. International Journal of High Performance Computing
Applications : 506–510.

Gonzalez-Dominguez J, Ramos S, Tourino J and Schmidt B
(2015) Parallel Pairwise Epistasis Detection on Heterogeneous
Computing Architectures. IEEE Transactions on Parallel and
Distributed Systems PP(99): 1–1. DOI:10.1109/TPDS.2015.
2460247.

González-Domı́nguez J, Wienbrandt L, Kassens J, Ellinghaus D,
Schimmler M and Schmidt B (2015) Parallelizing Epistasis
Detection in GWAS on FPGA and GPU-Accelerated Com-
puting Systems. Computational Biology and Bioinformatics,
IEEE/ACM Transactions on 12(5).

Goudey B, Abedini M, Hopper JL, Inouye M, Makalic E, Schmidt
DF, Wagner J, Zhou Z, Zobel J and Reumann M (2015) High
performance computing enabling exhaustive analysis of higher
order single nucleotide polymorphism interaction in genome
wide association studies. Health Information Science and
Systems (Suppl 1): S3.

Illumina, Inc (2012) BovineSNP50 v2 DNA Analysis BeadChip.
URL http://www.illumina.com/content/dam/

illumina-marketing/documents/products/

datasheets/datasheet_bovine_snp5O.pdf.
Illumina, Inc (2015) BovineHD DNA Analysis Kit. URL

http://www.illumina.com/content/dam/

illumina-marketing/documents/products/

datasheets/datasheet_bovineHD.pdf.
Koesterke L, Stanzione D, Vaughn M, Welch SM, Kusnierczyk

W, Yang J, Yeh CT, Nettleton D and Schnable PS (2011) An
efficient and scalable implementation of SNP-pair interaction
testing for genetic association studies. In: Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on. IEEE, pp. 523–530.

Luecke GR, Weeks NT, Groth BM, Kraeva M, Ma L, Kramer
LM, Koltes JE and Reecy JM (2015) Fast Epistasis Detection
in Large-Scale GWAS for Intel Xeon Phi Clusters. In:
Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 3. pp. 228–
235. DOI:10.1109/Trustcom.2015.637.

Ma L, Runesha HB, Dvorkin D, Garbe JR and Da Y (2008) Parallel
and serial computing tools for testing single-locus and epistatic
SNP effects of quantitative traits in genome-wide association
studies. BMC Bioinformatics 9(1): 315.

Newburn, CJ (2015) Coding for the future: Knights landing and
beyond. URL http://go.usa.gov/c4adP.

Pütz B, Kam-Thong T, Karbalai N, Altmann A, Müller-Myhsok
B et al. (2013) Cost-effective GPU-grid for genome-wide
epistasis calculations. Methods Inf Med 52(1): 91–95.

Zhou Z, Liu G, Su L, Yan L and Han L (2013) Cchi: An efficient
cloud epistasis test model in human genome wide association
studies. In: Biomedical Engineering and Informatics (BMEI),
2013 6th International Conference on. IEEE, pp. 787–791.

Prepared using sagej.cls

http://www.cray.com/sites/default/files/resources/CrayXC30Networking.pdf
http://www.cray.com/sites/default/files/resources/CrayXC30Networking.pdf
http://www.cray.com/sites/default/files/resources/CrayXC30Networking.pdf
http://lib.stat.cmu.edu/general/cdflib
http://lib.stat.cmu.edu/general/cdflib
https://people.sc.fsu.edu/~jburkardt/f_src/cdflib/cdflib.html
https://people.sc.fsu.edu/~jburkardt/f_src/cdflib/cdflib.html
http://netlib.org/random/
http://netlib.org/random/
https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software_Id=21
https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software_Id=21
https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software_Id=21
http://dell.to/20EHEUD
http://dell.to/20EHEUD
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_bovine_snp5O.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_bovine_snp5O.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_bovine_snp5O.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_bovineHD.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_bovineHD.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_bovineHD.pdf
http://go.usa.gov/c4adP

	2016
	High-performance epistasis detection in quantitative trait GWAS
	Nathan T. Weeks
	Glenn R. Luecke
	Brandon M. Groth
	Marina Kraeva
	Li Ma
	See next page for additional authors

	High-performance epistasis detection in quantitative trait GWAS
	Abstract
	Keywords
	Comments
	Authors

	1 Introduction
	1.1 Paper Organization

	2 Related Work
	3 Code Profiling
	4 Using Accelerators
	5 Serial Optimizations
	5.1 Data Type Changes
	5.2 Data Structure Changes
	5.3 Dead Code Elimination
	5.4 Loop Optimizations
	5.5 DCDFLIB

	6 Shared-Memory Parallelization
	6.1 Loop Parallelization
	6.2 Parallel I/O

	7 Distributed-Memory Load Balancing
	7.1 Static Load Balancing with MPI
	7.2 Dynamic Load Balancing
	7.2.1 Dynamic Load Balancing with Coarrays
	7.2.2 Dynamic Load Balancing with MPI-3 RMA

	8 Benchmarking
	8.1 Stampede
	8.2 Edison
	8.3 Comparing Stampede and Edison

	9 Conclusions

