1983

Existence and uniqueness of bound-state eigenvectors for some channel coupling Hamiltonians

James W. Evans

Iowa State University, evans@ameslab.gov

Follow this and additional works at: http://lib.dr.iastate.edu/physastro_pubs

Part of the Physics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/physastro_pubs/431. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Physics and Astronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Physics and Astronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Existence and uniqueness of bound-state eigenvectors for some channel coupling Hamiltonians

Abstract
For the three-particle, two-cluster, 2×2 channel coupling Hamiltonians used, e.g., in H+2 and He bound-state calculations, we demonstrate that typically there exist unique eigenvectors for all bound states. This result also holds, with some technical assumptions on the potentials, for the corresponding 3×3 case provided there are no spurious eigenvectors with bound-state eigenvalues. The proofs use the analogous results for the corresponding Faddeev-type Hamiltonians together with spurious multiplier relationships.

Keywords
Eigenvalues, Bound states

Disciplines
Physics

Comments
Existence and uniqueness of bound-state eigenvectors for some channel coupling Hamiltonians

J. W. Evans
Ames Laboratory** and Department of Chemistry, Iowa State University, Ames, Iowa 50011

(Received 9 August 1982; accepted for publication 18 November 1982)

For the three-particle, two-cluster, 2×2 channel coupling Hamiltonians used, e.g., in H^+_F and H^+_P bound-state calculations, we demonstrate that typically there exist unique eigenvectors for all bound states. This result also holds, with some technical assumptions on the potentials, for the corresponding 3×3 case provided there are no spurious eigenvectors with bound-state eigenvalues. The proofs use the analogous results for the corresponding Faddeev-type Hamiltonians together with spurious multiplier relationships.

PACS numbers: 03.65.Nk, 03.65.Ge

I. INTRODUCTION

Inherent difficulties with the standard Lippmann–Schwinger equation approach to many-body scattering theory have lead to the development of a variety of alternative approaches. These are often based on decomposition of the wave function or T-matrices into components associated with various clusterings (arrangement channels) of the particles. The “arrangement channel quantum mechanics” approach for a system of N nonrelativistic particles is characterized by a non-Hermitian Hamiltonian H with components $H_{\alpha\beta}$ labeled by some subset of the N particle clusterings α, β, \ldots. These satisfy

$$\sum_{\alpha} H_{\alpha\beta} = H \quad \text{for all } \beta,$$

where H is the N particle Hilbert space Hamiltonian. From Eq. (1), any eigenvector ψ of H with components $|\psi_\alpha\rangle$ and eigenvalue λ is either (a) physical satisfying $\sum_\alpha |\psi_\alpha\rangle = |\psi\rangle \neq 0$ and $\lambda = E$, where $H |\psi\rangle = E |\psi\rangle$ or (b) spurious satisfying $\sum_\alpha |\psi_\alpha\rangle = 0$.

Despite a recent analysis of the structure of general H, there are still many unresolved questions. For example, if there exists a physical eigenvector of H for each one of H and if the spurious eigenvectors span $\{|\psi: \sum_\alpha |\psi_\alpha\rangle = 0\}$, then H is scalar spectral (its eigenvectors and their biorthogonal duals provide a spectral resolution of the identity). However, at present, the only nontrivial cases for which this has been proved are some three-particle Faddeev-like choices H_F. Should H contain the appropriate physics, then clearly the existence of a “representation” where the wave function naturally decomposes into arrangement channel components is extremely useful. The first application outside of scattering theory involved molecular bound-state calculations, despite the lack of a proof of existence of these solutions for the Baer–Kouri–Levin–Tobocman H_T^+ used. Dramatic early successes with simple wave function component approximations suggested existence of the solutions considered and also a rigorous basis for atoms/molecules-in-molecules pictures. These results are supported by more recent finite-element method calculations. The significance of a rigorous proof of bound-state existence and uniqueness should be clear from the above discussion and is given here for three-particle, two-cluster, 2×2 and 3×3 H_B, using this property for the corresponding H_F.

II. BOUND-STATE EIGENVECTOR EXISTENCE AND UNIQUENESS

For a system of three distinguishable particles labeled $i = 1, 2, 3$, we denote the two cluster channels $i = (l|j k)$, where $\{i, j, k \} = \{1, 2, 3\}$. Let T be the kinetic energy [with center-of-mass part removed] and $V_i = V_{i k}$ the potential internal to channel i, so $H_i = T + V_i$. We assume the particles act through pairwise potentials, so $H = H_i + V'$ for all i, where $V' = V_j + V_k$.

Consider first the 2×2 channel coupling Hamiltonians

$$H_B = \begin{pmatrix} H_1 & V_{12} \\ V_{12} & H_2 \end{pmatrix}, \quad H_F = \begin{pmatrix} H_1 + V_3 & V_1 + V_3 \\ V_1 + V_3 & H_2 \end{pmatrix}$$

that are related through the identity

$$\lambda - H_B = (\lambda - H_F)(1 + M(\lambda)),$$

where the “spurious multiplier” $M(\lambda) = G_0(\lambda) |H_F - H_B\rangle$ and $G_0(\lambda) = (\lambda - T)^{-1}$. An “integral” form of Eq. (3) can be obtained by multiplying from the left by $G_0(\lambda) = (\lambda - H_0)^{-1}$, where $H_0 = \delta_H H_F$, H. If $|\psi\rangle$ is a bound state of H with eigenvalues $E < 0$, then the corresponding H_B eigenvector is given by

$$\psi_F = \left(G_0(E) (V_1 + V_3) |\psi\rangle \right).$$

From Eq. (3) and the summation condition (a) for physical eigenvectors, any corresponding H_B eigenvector ψ_B must satisfy

$$(1 + M(E))\psi_B = \psi_F.$$ (5)

If $E > 0$, then it is readily verified that the expressions of Eqs. (4) and (5) still hold with $G_0(E) = P(E - T)^{-1}$, where P represents the Cauchy principal value integral. Equations (4) and (5) motivate the following result:

Theorem 1: Suppose that the eigenvalue E of a bound state $|\psi\rangle$ of H is not in the spectrum of $H_S = T - V_S$. Then if $G_0(\lambda) = (\lambda - H_0)^{-1}$,

$$\psi_B = \left(G_0(E) (V_1 + V_3) |\psi\rangle \right) + \left(G_0(E) (V_1 + V_3) |\psi\rangle \right) - \left(G_0(E) (V_1 + V_3) |\psi\rangle \right)$$

References:

1. Operated for the U.S. Department of Energy under Contract No. W-7405-ENG-8. This work was supported by the Office of Basic Energy Sciences.

5. Z. Schiff, Phys. Rev. 81, 956 (1951).

is the corresponding H_B eigenvector. If E is in the spectrum of H_B but does not correspond to the threshold energy of some H_f, partially bound state or the complete breakup, then Eq. (6) still holds with $G_f(E) = P(E - H_f)^{-1}$.

Proof: The simplest proof of Eq. (6) is via direct substitution into the H_B eigenvalue equation. For motivational purposes, we remark that this form of ψ_B can be obtained from Eq. (5) by noting that, formally,

$$
(1 + M(E))^{-1} = \begin{pmatrix}
(1 + G_f(E)V_3^{-1}) & 0 \\
0 & 1
\end{pmatrix}
$$

and substituting from Eq. (4) for ψ_F.

Starting with a modified choice of H_F, where V_3 now appears on the second row, one similarly obtains

$$
\psi_B = \begin{pmatrix}
(\psi - G_f(E)\psi) \\
G_f(E)\psi + V_3\psi
\end{pmatrix}
$$

(8)

and inserting the third row into the above, one similarly obtains

$$
\psi_B = \begin{pmatrix}
\psi \\
G_f(E)\psi + V_3\psi
\end{pmatrix}
$$

(9)

We remark that the $\psi_B(\psi_B)$ are strictly only eigenvectors if their components lie in the three-particle Hilbert space $[T(\hat{H}_f)]$ boundedness of the V_i is sufficient.) Then the results of Ref. 7 show that since the physical H_F and H_B (weak) eigenvectors include all scattering solutions and their spurious (weak) eigenvectors span $|\psi; \Sigma_i |\psi_i\rangle = 0$, these Hamiltonians are scalar positive. If the components of any $\psi_B(\psi_B)$ be outside the three-particle Hilbert space, then the corresponding E is in the residual (rather than point) spectrum of $H_B[H_F]$.5

The Hamiltonian H_B was first used for $H + \epsilon$ scattering and since for H_B^\pm, He, H$^-$ bound-state calculations. A natural assignment of particles 1, 2, and 3 is made so that no (12) pair bound states exist. The analysis above applies where all degrees of freedom are retained, as well as to the Born–Oppenheimer (BO) case, where the nuclear kinetic energies are ignored. Except for the BO H_B^+ case, an infinite number of H_f partially bound states exist.

We now consider 3×3 choices of H_F and H_B corresponding to the above system where the existence of bound-state solutions is of considerable theoretical and possible practical interest. Here we have

$$
H_B = \begin{pmatrix}
H_1 & 0 & V_3^3 \\
V_1^1 & H_2 & 0 \\
0 & V_2 & H_3
\end{pmatrix},
$$

(10)

that are related through the identity

$$
(\lambda - H_B) = (\lambda - H_F)[1 + M(\lambda)],
$$

(11)

where the “spurious multiplier” $M(\lambda) = G_f(\lambda)H_F - H_B$.

The familiar integral form of Eq. (11) can be obtained by multiplying from the left by $G_f(\lambda) = (\lambda - H_0)^{-1}$, where $|H_0\rangle_{\phi} = \delta_{\phi} H_0$. For a bound state $|\psi\rangle$ with $E < 0$, the corresponding unique H_B eigenvector is given by $|\psi\rangle_B = G_f(E)|\psi\rangle$ for $k = 1, 2, 3$. From Eq. (11) and the summation condition (a), any corresponding H_B eigenvector ψ_B must satisfy

$$
(1 + M(E))|\psi_B\rangle = |\psi_B\rangle.
$$

(12)

If $E > 0$, the expression for ψ_B and Eq. (12) still hold with $G_f(E) = P(E - T)^{-1}$ (cf. above). Equation (12) motivates the following result.

Theorem 2: Let $E \neq 0$ be the eigenvalue of some bound state $|\psi\rangle$ of H. Suppose that V_i satisfy the conditions of Hunziker’s theorem and guarantee that $M(E)$ is bounded. (We assume T-boundedness for the latter.) Then either there exists a unique eigenvector ψ_B of H_B satisfying Eq. (12) or H_B has a spurious eigenvector with eigenvalue E. In the latter case (nonunique), ψ_B exist only if certain biorthogonality conditions are (accidentally) met.

Proof: A simple calculation shows that $M(\lambda)^2$ is connected. Consequently, since $M(\lambda)$ involves only the free Green’s function and given the assumptions on V_i, Hunziker’s theorem may be applied to prove that $M(\lambda)^2$ is compact. Then from Fredholm theory and noting that $(1 - M(E))|\psi\rangle$ is normalizable, it follows that either

$$
(1 - M(E)^2)|\psi_B\rangle = (1 - M(E))|\psi\rangle
$$

(13)

has a unique solution ψ_B, which also satisfies Eq. (12), or

$$
(1 - M(E)^2)|\psi\rangle = 0
$$

(14)

has a nontrivial solution. In the former case, to show that ψ_B in Eq. (13) satisfies Eq. (12), one simply notes that

$$
(1 - M(E)^2)|\psi_B\rangle - |\psi\rangle = 0.
$$

(15)

Let $P(\lambda, M)$ denote the M-invariant projection operator onto the eigenvectors of the operator M with eigenvalue λ. Then a simple calculation, e.g., using a Dunford contour integral representation for the $P\\\lambda$s,14 shows that

$$
P(\pm 1, M(E)) = (1 \pm M(E)^2)(1, (M(E)^2)^3),
$$

(16)

which is bounded, since $M(E)$ is bounded. Thus, if ψ satisfies Eq. (14), then either $(1 + M(E)|\psi = 0$ or $(1 - M(E)|\psi = 0$. Suppose first that the former is satisfied for some solution of Eq. (14). This is just the familiar condition for ψ to be a spurious H_0 eigenvector with eigenvalue E.11 Second, suppose that the latter is satisfied for all solutions of Eq. (14). If ξ' denotes a three-component dual-channel space vector, then from Eq. (16) it is clear that all solutions of

$$
\xi'(1 - M(E)) = 0'
$$

satisfy $\xi'(1 - M(E)) = 0$. Thus, from Fredholm theory, Eq. (13) still has (nonunique) solutions ψ_B. Furthermore, the choice of ψ_B biorthogonal to all the ψ is the unique solution of Eq. (12).

Finally, we note that if spurious eigenvectors exist, then the corresponding solutions of $\xi'(1 + M(E)) = 0'$ must be biorthogonal to ψ_B for there to exist a solution ψ_B of Eq. (13).
eral spectral theoretic arguments. These show that the point spectrum of H is contained in the union of the point and residual spectra of H (Ref. 5), from which this replacement strictly follows only if the eigenvalue of a "missing" bound state is physically nondegenerate and not contained in the residual spectrum of H. An explicit example of this replacement phenomenon has been given in Ref. 15. Of course, a similar analysis to that given above follows for the other channel-coupling choice of 3×3 Hamiltonians.

Finally, we remark that if a true three-body potential V_{123} is included diagonally in the Hamiltonians of Eq. (2), then the analysis goes through the minor modifications. For those of Eq. (10), the same is true provided the analog of Hunziker's theorem with $G_{i}(\lambda)$ replaced by $G_{123}(\lambda) = (\lambda - T - V_{123})^{-1}$ is valid, and the V_{i} are $T + V_{123}$ bounded. A treatment regarding spurious multipliers as intertwining operators for pairs of channel space Hamiltonians, extending the analysis presented here, is given in Ref. 16.