Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats

Thumbnail Image
Date
2018-11-19
Authors
Bertolini, Francesca
Figueiredo Cardoso, Tainã
Marras, Gabriele
Nicolazzi, Ezequiel
Rothschild, Max
Amills, Marcel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Rothschild, Max
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Animal Science
Abstract

Background: Patterns of homozygosity can be influenced by several factors, such as demography, recombination, and selection. Using the goat SNP50 BeadChip, we genotyped 3171 goats belonging to 117 populations with a worldwide distribution. Our objectives were to characterize the number and length of runs of homozygosity (ROH) and to detect ROH hotspots in order to gain new insights into the consequences of neutral and selection processes on the genome-wide homozygosity patterns of goats.

Results: The proportion of the goat genome covered by ROH is, in general, less than 15% with an inverse relationship between ROH length and frequency i.e. short ROH (< 3 Mb) are the most frequent ones. Our data also indicate that ~ 60% of the breeds display low FROH coefficients (< 0.10), while ~ 30 and ~ 10% of the goat populations show moderate (0.10 < FROH < 0.20) or high (> 0.20) FROH values. For populations from Asia, the average number of ROH is smaller and their coverage is lower in goats from the Near East than in goats from Central Asia, which is consistent with the role of the Fertile Crescent as the primary centre of goat domestication. We also observed that local breeds with small population sizes tend to have a larger fraction of the genome covered by ROH compared to breeds with tens or hundreds of thousands of individuals. Five regions on three goat chromosomes i.e. 11, 12 and 18, contain ROH hotspots that overlap with signatures of selection.

Conclusions: Patterns of homozygosity (average number of ROH of 77 and genome coverage of 248 Mb; FROH < 0.15) are similar in goats from different geographic areas. The increased homozygosity in local breeds is the consequence of their small population size and geographic isolation as well as of founder effects and recent inbreeding. The existence of three ROH hotspots that co-localize with signatures of selection demonstrates that selection has also played an important role in increasing the homozygosity of specific regions in the goat genome. Finally, most of the goat breeds analysed in this work display low levels of homozygosity, which is favourable for their genetic management and viability.

Comments

This article is published as Bertolini, Francesca, Tainã Figueiredo Cardoso, Gabriele Marras, Ezequiel L. Nicolazzi, Max F. Rothschild, and Marcel Amills. "Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats." Genetics Selection Evolution 50 (2018): 59. doi: 10.1186/s12711-018-0424-8.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections