Microwave-assisted modulation of light emission intensity in alkali-pyrotechnic plumes

Thumbnail Image
Date
2021-03-01
Authors
Lynch, Joel
Miklaszewski, Eric
Crespo, William
Michael, James
Subramaniam, Shankar
Sippel, Travis
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Michael, James
Associate Professor
Person
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Creating next-generation pyrotechnic emitters capable of dynamically controllable light output requires a paradigm shift away from emission control via formulation. This work demonstrates the ability to modulate light emission intensity of a pyrotechnic flame with 2.46 GHz microwave energy within a multimodal cavity. Stoichiometric mixtures of three pyrotechnic systems are investigated: magnesium fuel with oxidizers of NaNO3, KNO3, or CsNO3. Using time-resolved visible and infrared emission spectroscopy and high-speed color videography, microwave illumination of flames is found to produce enhanced atomic photo emission from the alkali species. Emission increases of up to ~120% are demonstrated, which are predominantly in the visible and near-infrared wavelengths and have little effect on flame emission chromaticity. At near- and mid-IR wavelengths, gray body continuum enhancement is observed with moderate enhanced emission from CO2 and H2O bands. Sustained light emission from microwave illumination of combustion products long after pyrotechnic extinguishment was also demonstrated. A simplified model of microwave-enhanced visible and near-IR emission is presented and shown to be consistent with the observed trend of elevated emission enhancement for lower wavelength alkali transitions. Sensitivity analysis is performed which suggests a lower equilibrium population of electronically excited alkali atoms is primarily responsible for maximizing the degree of light emission enhancement of applied microwave fields, especially in extinguished low-temperature pyrotechnic plumes. These findings suggest microwave illumination of alkali-containing pyrotechnic flames may be a useful strategy to achieve dynamic control of light emission intensity.

Comments

This article is published as Barkley, Stuart J., Joel E. Lynch, Eric J. Miklaszewski, Jonathan M. Dilger, William F. Crespo, James B. Michael, Shankar Subramaniam, and Travis R. Sippel. "Microwave-assisted modulation of light emission intensity in alkali-pyrotechnic plumes." Combustion and Flame 225 (2021): 406-416. DOI: 10.1016/j.combustflame.2020.11.005.

Description
Keywords
Citation
DOI
Copyright
Collections