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FIG. 1. The spatially discrete stochastic model for catalytic conversion in linear nanopores. Reactant (A) and product (B) cannot occupy adjacent cells which
constrains diffusive hops. c denotes catalytic sites. For desorption, in addition to the target site just outside the pore, multiple additional cells (*) must be empty.
A desorption (not shown) at rate h as well as B desorption is active. The exterior fluid is represented by a 3D array of cells (appearing as 2D in the schematic).

Thus, local diffusion within the pore in the direction
along the pore axis is described by a single hop rate, h (and
a corresponding low-concentration diffusion coefficient of
D0 = a2h). A central component of the analysis in Sec. III
is to appropriately describe the corresponding chemical
diffusion for finite concentrations in this multi-component
system. Diffusion in the radial direction within pores is not
relevant for the model. The exterior fluid is regarded as
being in a well-stirred equilibrated state (corresponding to
a lattice-gas with NN exclusion). We emphasize that this
equilibrium assumption means that the associated diffusive
or convective dynamics in the external fluid is not relevant
for modeling. (As an aside, we note that one could regard
this equilibrium state as being achieved by rapid effective
hopping between neighboring cells subject to NN exclusion.)
Another key feature of our model is that the exterior
fluid has a large volume compared with the pores, so the
desorbing product is quickly diluted and does not re-enter
the pore. Thus, the external bulk reactant concentration, ⟨Ab⟩,
matches the total external concentration, ⟨Xb⟩, and is a fixed
constant. Finally, we emphasize that the equilibrium state
of the external fluid is non-trivial with long-range ordering
or crystallinity developing above a critical concentration
⟨Xc⟩ ≈ 0.209.23 Consequently, we consider only the regime
with short-range order for bulk concentrations ⟨Ab⟩ = ⟨Xb⟩
below ⟨Xc⟩.

Since in this model, reactants and products are “identical”
in terms of interactions and diffusional dynamics, evolution
of the total concentration corresponds to a pure diffusion
problem for a single-component lattice-gas model with
NN exclusion. The current study just focuses on steady-
state behavior, so such evolution is not directly relevant.
Nonetheless, we note that evolution is non-trivial even in
the hydrodynamic regime of small concentration gradients
given a non-trivial concentration-dependence of chemical
diffusion in this model.24 In the reactive steady-state of interest
here, the total concentration matches that of an equilibrium
model with NN exclusion. However, even this concentration
distribution is non-trivial. The fluid + pore geometry induces
concentration oscillations in the external fluid approaching the
interface with the nanoporous material, and also a particularly
complicated three-dimensional variation of the concentration
near the pore opening. Furthermore, we shall see that there
are also concentration oscillations within the pore along its
axis within, but restricted to near the pore openings. All

of these complex concentration variations will impact key
adsorption and desorption rates at the pore openings, as
discussed below.

B. Optimal KMC simulation procedure treating
explicitly just the pore

Behavior of the above stochastic model can be assessed
precisely by KMC simulation. The default treatment would
simultaneously simulate behavior in both the pore interior and
the external fluid. However, this approach is inefficient due to
the large external fluid volume. Furthermore, it is unnecessary
due to the assumed rapid equilibration of the external fluid.
Thus, we are motivated to develop a strategy to enable explicit
simulation of just the pore region while exactly accounting
for the non-trivial coupling to the equilibrated external fluid.
To this end, we first perform tailored simulations of the
exterior fluid region to extract key adsorption and desorption
parameters which will constitute the appropriate boundary
conditions at pore openings for these stand-alone simulations
of the pore region.

For adsorption, we first note that the concentration, ⟨A0⟩,
at cells just outside the pore, given that the end pore cell
is empty, corresponds to the concentration of a fluid against
the wall in a semi-infinite fluid system. Thus, we perform
a simulation analysis of our lattice-gas model of the fluid
with NN exclusion for a semi-infinite system, where the
concentration only depends on the distance from the wall
and exhibits strongly decaying oscillations away from the
wall. Of most relevance, we find that the concentration,
⟨A0⟩, is enhanced relative to the bulk concentration, ⟨Ab⟩.
This enhancement is a natural consequence of the lower
coordination of cells against the wall (with 5 neighbors which
could possibly be occupied) relative to the coordination of cells
in the bulk of the fluid (with 6 neighbors). See Appendix A
for further discussion and results for these concentration
oscillations and enhancement at the wall, including a simple
analytic estimate. This enhancement is quantified in Table I
for a range of ⟨Ab⟩. Finally, we note that the adsorption rate
at empty end cells of the pore (which also have empty NN
cells within the pore) is given by Rads = h⟨A0⟩, and thus is not
determined simply by the bulk concentration ⟨Ab⟩, but rather
by ⟨A0⟩.

For desorption, the presence of a particle at the end cell
within the pore implies that the cell just outside the pore is
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TABLE I. Adsorption and desorption parameters as a function of bulk fluid
concentration. Note that Q5 values differ from the simple MF estimate,
Q5≈ (1− ⟨Ab⟩)5, or from MF-type refinements accounting for concentration
variations.

Fluid conc. ⟨Ab⟩ ⟨A0⟩ (adsorption) Q5 (desorption)

0.20 0.211 0.279
0.15 0.158 0.385
0.10 0.106 0.546
0.05 0.052 0.758

empty. However, desorption requires that in addition all five
cells adjacent to this cell are also empty. (The 2D analogue
of these sites is denoted by * in Fig. 1.) Based on these
observations, we perform additional tailored simulations of a
semi-infinite fluid with one cell against a wall specified empty.
These reveal a complicated three-dimensional variation of the
concentration near the cell specified empty (in addition to the
type of concentration oscillations approaching the wall away
from this cell described above). See Appendix B for further
discussion. These tailored simulations allow determination of
the conditional probability, Q5, that these five additional cells
are empty. Results for Q5 are given in Table I. Then, it follows
that the desorption rate from the filled end cell of the pore
equals Rdes = hQ5.

As an aside, above we have described above the non-
trivial and distinct concentration variations in the external
fluid associated with both of our tailored simulations to
extract adsorption and desorption parameters. Neither of these
corresponds to the concentration variation in the external
fluid under steady-state reaction conditions (which is just
the equilibrium concentration of a lattice-gas with NN
exclusion in a geometry corresponding to the fluid + pore
system). However, we describe in Appendix B how this
latter concentration distribution can be reconstructed from
the two distinct distributions extracted from our tailored
simulations.

C. KMC results for basic steady-state behavior

Below, we present KMC results of basic steady-state
behavior. These and subsequent results are obtained from
simulations just of the pore region with the appropriate non-
trivial adsorption-desorption boundary conditions described
in Sec. II B. However, we have confirmed in selected cases
that results are consistent with large-scale simulations of the
entire fluid + pore system. Fig. 2 shows typical steady-
state concentration profiles in the pore for L = 30 with
k/h = 0.001 and ⟨Ab⟩ = 0.2. Oscillations are apparent in
both the total concentration and the reactant concentration
near the pore openings. Thus, the steady-state does not
correspond to a conventional counter-diffusion mode with
constant total concentration and exactly counter-opposing
gradients of A and B.19 However, we describe it as a quasi-
counter diffusion mode since these conditions still apply away
from the pore openings. See the supplementary material Fig.
S1 for behavior with larger L where ⟨An⟩ ≈ 0 in the pore
center.

FIG. 2. Steady-state concentration profiles for L = 30 with k/h = 0.001 and
⟨Ab⟩= 0.2.

With regard to total concentrations within the pore for
L = 30 with k/h = 0.001 and ⟨Ab⟩ = 0.2, we specifically find
that ⟨X1⟩ = 0.321, ⟨X2⟩ = 0.254, ⟨X3⟩ = 0.279, ⟨X4⟩ = 0.270,
⟨X5⟩ = 0.273, etc., and a total concentration near the pore
center of around ⟨Xint⟩ = 0.272. Clearly all of these values
are substantially higher than in the bulk of the external
fluid at ⟨Xb⟩ = 0.200, and also higher than the enhanced
value of ⟨X0⟩ ≈ 0.211 just outside the pore opening. This
strong enhancement of concentration within the pore reflects
the much lower coordination of cells within the pore (with
2 neighbors which could possibly be occupied) relative to
the coordination of cells in the bulk of the fluid (with 6
neighbors which could be occupied). See Appendix C for
further discussion including a simple analytic estimate of
this strong enhancement. The sudden transition from high-
coordinated sites just outside the pore to lower coordinated
sites within produces the concentration oscillations near pore
openings as is evident in Fig. 1. We show in Sec. III that an
accurate analytic description of this complicated behavior is
possible within our GH formulation.

III. DEVELOPMENT OF ANALYTIC THEORY
AND COMPARISON WITH KMC

A. Development of analytic GH theory

Deeper insight into reaction model behavior comes from
an analytic formulation based on exact master equations for
the stochastic process. Let ⟨Cn⟩ denote the probability that cell
n in the pore is occupied by species C = A,B, or is empty
E. It is also convenient to introduce the notation X = A or B
for either type of species, so that ⟨Xn⟩ = ⟨An⟩ + ⟨Bn⟩ denotes
the total concentration at cell n. Let ⟨AnEn+1En+2⟩ denote
the probability that cell n is occupied by A and cells n + 1
and n + 2 are empty, etc. The NN exclusion constraint and
conservation of probability impose various relations on these
multisite probabilities.2 The lowest-order evolution equations
have the form

d/dt ⟨An⟩ = −k⟨An⟩ − ∇JA
n>n+1

and

d/dt ⟨Bn⟩ = +k⟨An⟩ − ∇JB
n>n+1, for 3 ≤ n ≤ L − 2, (1)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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where

JC
n>n+1 = h[⟨CnEn+1En+2⟩ − ⟨En−1EnCn+1⟩] (2)

is the net diffusion flux of C = A or B from cell n to cell
n + 1. Also ∇Kn = Kn − Kn−1 denotes a discrete derivative.
Separate equations apply for the end cells, n = 1, 2 and L − 1,
L, reflecting the non-trivial adsorption-desorption boundary
conditions described above. See Appendix D. The overall
conversion rate of A to B is given by Rtot = k


n⟨An⟩

simply reflecting the total amount of reactant inside the
pore. Eq. (1) is not closed due to the appearance of triplet
probabilities in JC

n>n+1, but equations can be developed for
such multisite probabilities generating a coupled hierarchy.
See again Appendix D.

Adding (1) for ⟨An⟩ and (1) for ⟨Bn⟩ leads to the pure
diffusion equations

d/dt ⟨Xn⟩ = −∇JX
n>n+1, for 3 ≤ n ≤ L − 2, (3)

for the total concentration ⟨Xn⟩ = ⟨An⟩ + ⟨Bn⟩, for diffusion
flux JX

n>n+1 = h[⟨XnEn+1En+2⟩ − ⟨En−1EnXn+1⟩]. Again, sepa-
rate equations are needed for end cells, n = 1,2 and L − 1, L.
In the steady-state, the spatial Markov property of 1D lattice
models with NN interactions ensures the pair approximation
factorization becomes exact, e.g.,

⟨XnEn+1En+2⟩ = ⟨XnEn+1⟩⟨En+1En+1⟩/⟨En+1⟩
= ⟨Xn⟩(1 − ⟨Xn⟩ − ⟨Xn+1⟩)/(1 − ⟨Xn+1⟩). (4)

In obtaining the reduced expression after the last equality, we
have also exploited NN exclusion. Using a similar relation
for ⟨En−1EnXn+1⟩ together with the adsorption-desorption
boundary conditions, one can solve exactly a coupled set
of equations for ⟨Xn⟩ to recover the oscillations in the total
concentration shown in Fig. 2. See Appendix E. Such exact
solution for steady-state ⟨Xn⟩ does not extend to the transient
regime of pore filling, or to the individual reactant and product
concentrations.

The fundamental challenge in solving the reaction-
diffusion Equation (1) is to develop appropriate expressions
for the diffusion fluxes, JC

n>n+1. MF-type factorization
approximations for probabilities of multi-cell configurations
can fail dramatically. The site approximation neglects all
spatial correlations and thus fails even to account for NN
exclusion. Furthermore, it greatly overestimates diffusion
fluxes for SFD, reactant penetration in the pore, and
thus reactivity. The refined pair approximation accounts
for NN correlations and thus excludes NN occupancy,
but it still significantly overestimates diffusion fluxes and
related quantities. See Appendix D. Substantial additional
insights into these shortcomings are provided below. An
alternative hydrodynamic treatment applies for slowly varying
concentration gradients, as mentioned previously. Thus, it is
not geared to describe concentration oscillations occurring
on the nanoscale near pore openings, but it is potentially
relevant for description of longer mesoscale concentration
variations deeper in the pore which do correspond to a classic
counter-diffusion mode. The hydrodynamic diffusion fluxes
satisfy JC

n>n+1 = −Dtr∇⟨Cn+1⟩, where Dtr is the tracer diffusion
coefficient for particles X.2,12,19 However, for SFD, such Dtr
are negligible, specifically decreasing to zero inversely with

the pore length.25–28 Consequently, this formulation greatly
underestimates diffusion fluxes, reactant penetration, and thus
reactivity for typical length pores.

Thus, another strategy is required to treat diffusive
transport on the mesoscale, also accounting for concentration
oscillations. A key ingredient which is motivated by
generalized hydrodynamic (GH) treatments of fluids22 is
to replace hydrodynamic transport coefficients with ones
appropriate for a shorter mesoscale. In our case, these reflect
distinct behavior near the pore openings where fluctuations in
adsorption-desorption processes are prominent. Specifically,
we replace Dtr with a spatially varying Dtr(n,n + 1) for
each NN pair of cells which is enhanced near the pore
openings (see below).13 In addition, to ensure the diffusion flux
vanishes in the steady-state, we define fractional coverages
⟨cn⟩ = ⟨Cn⟩/⟨Xn⟩ for C = A or B (and c = a or b) and adopt a
specific GH form

JC
n>n+1 = −Dtr(n,n + 1) 1/2 (⟨Xn⟩ + ⟨Xn+1⟩)∇⟨cn+1⟩. (5)

Note that Eq. (5) automatically recovers the standard choice
for conventional hydrodynamic counter-diffusion where JC
= −Dtr ∇⟨C⟩ in a continuum setting.2,12,19

Next, we outline the determination of the GH Dtr(n,n + 1)
from analysis of the so-called tracer counter-permeation
(TCP).19 Here, a species labeled 1 enters a pore only from
the left, and differently labeled species 2 (which is identical
in terms of interactions and diffusional dynamics) enters
only from the right. Otherwise adsorption and desorption
are treated as for the above simulations incorporating non-
trivial boundary conditions at the pore opening. The TCP
simulations reach a steady-state with equal and opposite
fluxes of magnitude JTCP of 1 from left to right, and 2 in the
opposite direction through the pore. See Fig. 3(a). Measuring
the concentrations at different sites and equating the total
flux with an expression of the type (5) allows extraction
of the generalized tracer diffusion coefficients. Results are
shown in Fig. 3(b) for L = 30 (and for larger L in the
supplementary material Fig. S2). As expected, Dtr is naturally
strongly reduced for higher total concentrations. Also,
the GH Dtr(n,n + 1) decays to a non-zero plateau value,
Dtr(plateau), in the pore center for sufficiently large L. Adapt-
ing previous studies which considered the overall tracer diffu-
sivity for SFD in finite systems without NN exclusion13,19,27,28

to account for NN exclusion in our model, we anticipate
that

Dtr(plateau) ∼ ⟨Xint⟩−1(1 − 2⟨Xint⟩)h/L, for large L. (6)

Here, ⟨Xint⟩ is the plateau value of the total concentration ⟨Xn⟩
in the pore center. For L = 30, we find that ⟨Xint⟩ = 0.272,
0.210, 0.134, and 0.059 for longer pores exceeds the
external bulk fluid concentration ⟨Xb⟩ = 0.20, 0.15, 0.10,
0.05, respectively. This relation for Dtr(plateau) reasonably
estimates precise KMC values reported in Fig. 3(c).

Finally, we remark that the above-mentioned overestima-
tion of the diffusion fluxes by the site and pair approximations
can be understood from the corresponding results for tracer
diffusivity,

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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FIG. 3. (a) TCP concentration profiles
for L = 30 and ⟨Xb⟩= 0.20; (b) GH
Dtr(n,n+1) versus n for L = 30 for var-
ious external fluid concentrations ⟨Xb⟩;
(c) variation Dtr(plateau)∼γh/L with
increasing L, where γ = 2.07, 3.23,
5.99, 15.3 for ⟨Xb⟩= 0.2, 0.15, 0.1,
0.05, respectively.

Dtr(site) = h(1 − ⟨Xint⟩)
and

Dtr(pair) = h(1 − 2⟨Xint⟩)/(1 − ⟨Xint⟩), (7)

which far exceed Dtr(plateau) for typical L. Derivation of
these results is indicated in Appendix D.

B. Predictions of analytic theory

Numerical solution of the GH reaction-diffusion Equa-
tion (1) is implemented incorporating the expression (2)
for JC

n>n+1 and our exact analytic solution for ⟨Xn⟩. The
results almost exactly recover the individual reactant and
product concentration profiles (including the concentration
oscillations) obtained from KMC simulations shown in Fig. 2
for k/h = 0.001, L = 30, and ⟨Ab⟩ = 0.2. The degree of
success of the GH theory for a range of k/h retaining
⟨Ab⟩ = 0.2 is shown in Fig. 4 focusing on the reactant
profiles. Since ⟨Xn⟩ is recovered exactly, slight discrepancy

in predicting reactant profiles is counterbalanced by a
discrepancy of the same magnitude in prediction product
profiles. To contrast the success of the GH theory, Fig. 4
also shows shortcomings of the pair approximation which
predicts far too great a reactant penetration into the pore
due to overestimation of the diffusion flux in the presence of
SFD. See the supplementary material Fig. S3 for additional
results. Since the total reaction rate, Rtot, for conversion
of A to B simply reflects the total amount of reactant in
the pore, success in predicting the reactant concentration
profile automatically translates into success in predicting
Rtot.

The above results indicate that our GH theory is well-
suited to describe the regime of small k/h ≤ 0.001 where the
reactant concentration exhibits slower mesoscale decay into
the pore. For larger k/h where the reactant concentration
decays more quickly on the nanoscale, the mesoscale
GH treatment becomes somewhat less precise (although
still reasonably accurate and certainly qualitatively correct).

FIG. 4. (a) Comparison of GH solu-
tions (long dashed curves) and pair ap-
proximation PA (short-dashed curves)
predictions with precise KMC results
(solid curves) for reactant concentration
⟨An⟩ for a pore of length L = 30 for
⟨Ab⟩= 0.20 and varying k/h. (b). Ex-
panded view of behavior near the left
end of the pore. GH and KMC results
are indistinguishable for k/h = 0.0001,
and very close for k/h = 0.001.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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The analytic treatment is readily further refined for an
even more complete assessment of concentration oscillations.
We have also performed a more complete Monte Carlo
simulation analysis of the semi-infinite system with NN
exclusion. However, ⟨X−2⟩, ⟨X−3⟩, etc., are very close to ⟨Xb⟩,
so the above more limited analysis provides an essentially
complete picture.

APPENDIX B: CONCENTRATION VARIATIONS
IN THE EXTERNAL FLUID

Our tailored simulations to extract adsorption and
desorption parameters (described in Sec. II B) produce non-
trivial and distinct concentration variations in the external
fluid which might be regarded as a semi-infinite system.
For the former, the concentration just depends on distance
from the wall. For the latter there is a complicated three-
dimensional variation with the strongest deviation from the
bulk fluid concentration occurring around the cell specified
empty just outside the pore. We argue that information from
these tailored simulations provides boundary conditions at
pore openings which allow simulation of the reaction model
just in the pore region (which in turn recovers reaction
behavior in the entire pore + external fluid system). From this
perspective, one would also expect that information from the
tailored simulations should allow recovery of the equilibrium
concentration variations in the external fluid under steady-
state conditions. We note that these equilibrium variations are
distinct from those in tailored simulations for either adsorption
or desorption parameters.

The tailored simulations for adsorption correspond to the
situation where the end cell of the pore is empty, which occurs
a fraction ⟨E1⟩ = 1 − ⟨X1⟩ of the time. Those corresponding
to desorption correspond to the situation where this end cell
in the pore is occupied, which occurs a fraction ⟨X1⟩ of
the time. Thus, we claim that the equilibrium distribution
for the model is simply given by a corresponding weighted
average of the distributions in the tailored simulations. This
feature is illustrated schematically in Fig. 7, where we just
show concentration variation along a 1D line of cells in the
fluid which extend out from the pore opening. The ability
to reconstruct the equilibrium distribution from the tailored
simulations also reflects a spatial Markov field property
of lattice-gas models with NN interactions29 which applies

not just for infinite systems, but also in more complex
(e.g., pore + external fluid) geometries. We will elaborate
on this feature in a separate paper dealing with more general
models.

APPENDIX C: INTERNAL PORE VERSUS EXTERNAL
FLUID CONCENTRATIONS

It is appropriate to provide further insight into the strong
enhancement of total concentration in the center of the pore,
⟨Xint⟩, relative to that in the external bulk fluid, ⟨Xb⟩. The
concentration in the center of long pores can be determined
directly in terms of ⟨Xb⟩ by considering an infinite 3D lattice-
gas model with NN exclusion suitably coupled to a 1D lattice-
gas model with NN exclusion. Analogous to Appendix A, this
coupling is realized by direct exchange between the systems
described by rate r , where exchange events are consistent
with NN exclusion. In equilibrium, the corresponding flux
of atoms from the 3D to the 1D system, J3D→1D, and the
reverse flux from the 1D to the 3D system, J1D→3D, must
balance. If P7 denotes the probability of an empty cell in the
3D system with all neighbors empty as in (A1), then one has
that

J1D→3D = r⟨Xint⟩P7, (C1)

where a pair approximation estimate of P7 is given in (A1). If
P3 denotes the probability of an empty cell in the 1D system
with both neighbors empty, then one has that

J3D→1D = r⟨Xb⟩P3,

where

P3 = (1 − 2⟨Xint⟩)2/(1 − ⟨Xint⟩). (C2)

For this 1D model, a pair approximation factorization is in
fact exact, so the only approximation is in the factorization
of P7 in (C1). Then, from the equality J1D→3D = J3D→1D,
one obtains ⟨Xint⟩ ≈ 0.3057 (versus the precise KMC value
of 0.273) for ⟨Xb⟩ = 0.20. One also obtains ⟨Xint⟩ ≈ 0.1374
(versus the KMC value of 0.134) for ⟨Xb⟩ = 0.10, etc.
Not surprisingly, one finds that the pair approximation is
somewhat less accurate in predicting the strong enhancement
of concentration in the pore interior relative to the bulk (at
least for higher ⟨Xb⟩) compared to its success in predicting
the weak enhancement near infinite walls in Appendix A.

FIG. 7. Relationship of concentration in external fluid in tailored simulations for adsorption and desorption parameters to the equilibrium concentration
distribution for the model. Shown is a 1D cut of the concentration for a line of cells extending from the left end of the pore (where n= 0 is just outside
the pore, n=−1 is further out, etc.). Behavior is shown for L = 30 and ⟨Xb ⟩ = 0.2 where ⟨X1⟩ = 0.321 and ⟨E1⟩ = 0.679.
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There are other analytic strategies which could be employed,
e.g., matching chemical potentials for the 1D and 3D systems,
where the latter might be determined, e.g., from virial
expansion. However, the pair approximation clearly captures
the key feature of concentration enhancement inside the
pore.

Precise direct assessment of concentration enhancement
inside the pore can naturally also be achieved by Monte
Carlo simulation of the coupled 3D and 1D systems. We have
implemented such simulations and recover the previously
reported values of ⟨Xint⟩ from KMC simulations of the reaction
model.

APPENDIX D: FURTHER ANALYSIS
OF REACTION-DIFFUSION EQUATIONS

In Sec. III A, we have described just the lowest-order
equations in the coupled hierarchy of exact evolution equations
for the stochastic reaction model, e.g.,

d/dt ⟨An⟩ = −k⟨An⟩ − ∇JA
n>n+1,

where

JA
n>n+1 = h[⟨AnEn+1En+2⟩ − ⟨En−1EnAn+1⟩] (D1)

for 3 ≤ n ≤ L − 2. As indicated in Sec. III A, separate
equations are needed for cells at the end of the pore. For
example, for n = 1, one has

d/dt ⟨A1⟩ = −k⟨A1⟩ − h[⟨A1E2E3⟩ − ⟨E0⟩⟨E1A2E3⟩]
− h[P5⟨A1⟩ − ⟨A0⟩⟨E1E2⟩] (D2)

and

d/dt ⟨A2⟩ = −k⟨A2⟩ − h[⟨A2E3E4⟩ − ⟨E1E2A3E4⟩]
− h[⟨E0⟩⟨E1A2⟩ − ⟨A1E2E3⟩], (D3)

where ⟨E0⟩ = 1 − ⟨A0⟩,⟨E1A2E3⟩ = ⟨E1A2⟩ = ⟨A2⟩, and appro-
priate factorizations are implemented for probabilities of
hopping involving the state of cells both inside and just
outside the pore. An example of a next-highest-order equation
in the hierarchy is

d/dt ⟨AnEn+1En+2⟩
= −k⟨AnEn+1En+2⟩ − h[⟨AnEn+1En+2⟩ − ⟨En−1EnAn+1En+2⟩]
− h[⟨En−2En−1AnEn+1En+2⟩ − ⟨An−1EnEn+1En+2⟩]
− h[⟨AnEn+1En+2An+3⟩ − ⟨AnEn+1An+2En+3En+4⟩]
− h[⟨AnEn+1En+2Bn+3⟩ − ⟨AnEn+1Bn+2En+3En+4⟩]. (D4)

We have grouped terms for forward and reverse hopping
events between pairs of sites corresponding to loss and gain
of the configuration of interest. Since cells adjacent to A or
B must be empty, including this feature means that grouped
hopping terms include the same set of cells. For example,
⟨AnEn+1En+2⟩ = ⟨En−1AnEn+1En+2⟩ specifies the state of cells
n − 1,n,n + 1, and n + 2, as does ⟨En−1EnAn+1En+2⟩.

Next, we comment further on MF-type factorization
approximations which facilitate truncation of the hierarchy
to yield a closed set of evolution equations. The site
approximation ignoring all correlations sets

⟨CnDn+1Fn+2⟩ ≈ ⟨Cn⟩⟨Dn+1⟩⟨Fn+2⟩, (D5)

so, e.g., ⟨AnEn+1En+1⟩ ≈ ⟨An⟩⟨En+1⟩⟨En+2⟩, leading immedi-
ately to a closed set of equations for ⟨An⟩ and ⟨ Bn⟩. However,
as noted previously, this approximation does not impose
the basic constraint for models with NN exclusion that the
concentration in any cell should be no higher than 1/2. The
pair approximation sets

⟨CnDn+1Fn+2⟩ ≈ ⟨CnDn+1⟩⟨Dn+1Fn+2⟩/⟨Dn+1⟩, (D6)

so, e.g., ⟨AnEn+1En+2⟩ ≈ ⟨AnEn+1⟩⟨En+1En+2⟩/⟨En⟩
= ⟨An⟩(1 − ⟨X1⟩ − ⟨X2⟩)/(1 − ⟨X1⟩). This again leads to a
closed set of equations for ⟨An⟩ and ⟨Bn⟩. Results from
numerical analysis of these equations are shown in Figs. 4-6,
and in the supplementary material. The triplet approximation
sets

⟨CnDn+1Fn+2Gn+3⟩ ≈ ⟨CnDn+1Fn+2⟩
× ⟨Dn+1Fn+2Gn+3⟩/⟨Dn+1Fn+2⟩. (D7)

Thus, this approximation does not directly approximate
any quantities (in the flux terms) in the lowest-order
equations. However, in higher-order equations such as (D4),
one must implement factorization, e.g., ⟨An−1EnEn+1En+2⟩
≈ ⟨An−1EnEn+1⟩⟨EnEn+1En+2⟩/⟨EnEn+1⟩. This expression
can be recast noting that ⟨EnEn+1En+2⟩ = ⟨En+1En+2⟩
− ⟨AnEn+1En+2⟩ − ⟨BnEn+1En+2⟩ and ⟨En+1En+2⟩ = 1 − ⟨Xn+1⟩
− ⟨Xn+2⟩. From numerical analysis of the equations for the
triplet approximation, we find only minor improvement over
the pair approximation. See the supplementary material Fig.
S4. This further demonstrates the challenge of capturing
strong non-equilibrium spatial correlations with MF-type
approximations, and also highlights the success of the GH
approach.

Finally, we discuss the evaluation of tracer diffu-
sivity within the site and pair approximations. To this
end, consider the generic form of the reaction-diffusion
equations, and specifically the diffusion flux, away from
the pore openings where ⟨En⟩ ≈ ⟨Eint⟩ = 1 − ⟨Xint⟩ is effec-
tively constant. In the site approximation, factorizing
⟨AnEn+1En+2⟩ ≈ ⟨Eint⟩2⟨An⟩ and ⟨En−1EnAn+1⟩ ≈ ⟨Eint⟩2⟨An+1⟩
yields JX

n>n+1 = −h⟨Eint⟩2 ∇⟨An+1⟩. On the other hand, first
utilizing exact identities and then factorizing corresponding
to ⟨AnEn+1En+2⟩ = ⟨An − En+2⟩ ≈ ⟨Eint⟩⟨An⟩ and similarly for
⟨En−1EnAn+1⟩, yields

JA
n>n+1(site) = −h⟨Eint⟩∇⟨An+1⟩. (D8)

We adopt the last analysis which to some extent
accounts for NN exclusion. Noting that this analysis
applies for a standard counter-diffusion mode, it follows
that Dtr(site) = h⟨Eint⟩ = h(1 − ⟨Xint⟩). In the pair approx-
imation, factorizing ⟨AnEn+1En+2⟩ ≈ ⟨EnEn+1⟩⟨An⟩/⟨En⟩
≈ (1 − 2⟨Xint⟩)⟨An⟩/(1 − ⟨Xn⟩) and similarly for ⟨En−1EnAn+1⟩
yields

JA
n>n+1(pair) = −h(1 − 2⟨Xint⟩)/(1 − ⟨Xint⟩)∇⟨An+1⟩. (D9)

Noting that this analysis applies for a standard
counter-diffusion mode, it follows that Dtr(pair)
= h(1 − 2⟨Xint⟩)/(1 − ⟨Xn⟩). Hence, these analyses provide
a derivation of (7).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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APPENDIX E: FURTHER ANALYSIS OF DIFFUSION
EQUATIONS FOR ⟨Xn⟩

The (pure) diffusion equations, d/dt ⟨Xn⟩ = −∇JX
n>n+1,

for the total concentration profile ⟨Xn⟩ within the pore are
non-trivial due to the NN exclusion constraint. The non-
trivial feature is the appearance of triplet probabilities in the
expression for the diffusion flux, JX

n>n+1 = h[⟨XnEn+1En+2⟩
− ⟨En−1EnXn+1⟩], for 3 ≤ n ≤ L − 2. As with reaction-
diffusion equations, some modification is required for the
end sites within the pore. For example, one has that

d/dt ⟨X1⟩ = −h[P5⟨X1⟩ − ⟨X0⟩⟨E1E2⟩]
− h[⟨X1E2E3⟩ − ⟨E0⟩⟨E1X2⟩] (E1)

and

d/dt ⟨X2⟩ = −h[⟨E0⟩⟨E1X2⟩ − ⟨X1E2E3⟩]
− h[⟨X2E3E4⟩ − ⟨E1E2X3⟩], (E2)

where ⟨E0⟩ = 1 − ⟨X0⟩, and appropriate factorizations are
implemented for probabilities of hopping involving the state
of cells both inside and just outside the pore.

Our interest in these equations is the behavior of the
solutions in the equilibrium steady-state. We have argued in
(4) that in the equilibrium state (but not for time evolution),
the factorization of the pair approximation, e.g., ⟨XnEn+1En+2⟩
= ⟨XnEn+1⟩⟨En+1En+1⟩/⟨En+1⟩, becomes exact. This is a
consequence of the Markov random field property of
equilibrium lattice-gas models in any dimension with NN
interactions.29 It is applied here for the special case of a 1D
lattice-gas model with NN exclusion. To clarify this issue,
consider the conditional probabilities,

⟨Cn|Dn+1Fn+1 . . .⟩ ≡ ⟨CnDn+1Fn+1 . . .⟩/⟨Dn+1Fn+1 . . .⟩, (E3)

for cell n to be in state C given that cell n + 1 is in
state D, cell n + 2 is in state F, etc. Then the spatial
Markov property implies that ⟨Cn|Dn+1Fn+1 . . .⟩ = ⟨Cn|Dn+1⟩,
and in particular that ⟨Cn|Dn+1Fn+1⟩ = ⟨Cn|Dn+1⟩. The latter
equality demonstrates that the factorization used in the pair
approximation becomes exact.

Application of this factorization allows exact solution for
steady-state ⟨Xn⟩ by solution of the resulting coupled set of
equations given the values of ⟨X0⟩ and P5 in Sec. II B recover
exactly the oscillations in total concentration within the pore,
i.e., the concentration oscillation which would be seen in the
coupled 1D pore + 3D extended fluid system.

As a final aside, we offer a simple test case for the validity
of our strategy of capturing behavior in the pore for a coupled
system with analysis just of the pore. Consider a coupled

1D pore + 1D extended fluid again with NN interactions.
This just corresponds to an infinite 1D lattice-gas model
with NN exclusion so the concentration should be constant,
⟨Xb⟩, everywhere in equilibrium. Refining the above equations
for this 1D case (where ⟨X0⟩ is replaced by ⟨Xb⟩/(1 − ⟨Xb⟩)
and P5 is replaced by (1 − 2⟨Xb⟩)/(1 − ⟨Xb⟩)), we find that
the equations are consistent with a solution ⟨Xn⟩ = ⟨Xb⟩ for
all n.
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