A Systematic Multireference Perturbation-Theory Study of the Low-Lying States of SiC3

Thumbnail Image
Date
2006-01-01
Authors
Rintelman, Jamie
Gordon, Mark
Fletcher, Graham
Ivanic, Joseph
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

The three known lowest-energy isomers of SiC3, two cyclic singlets (2s and 3s) and a linear triplet (1t), have been reinvestigated using multireference second-order perturbation theory (MRPT2). The dependence of the relative energies of the isomers upon the quality of the basis sets and the sizes of the reference active spaces is explored. When using a complete-active-space self-consistent-field reference wave function with 12 electrons in 11 orbitals [CASSCF (12, 11)] together with basis sets that increase in size up to the correlation-consistent polarized core-valence quadruple zeta basis set (cc-pCVQZ), the MRPT2 method consistently predicts the linear triplet to be the most stable isomer. A new parallel direct determinant MRPT2 code has been used to systematically explore reference spaces that vary in size from CASSCF (8,8) to full optimized reaction space [FORS or CASSCF (16,16)] with the cc-pCVQZ basis. It is found that the relative energies of the isomers change substantially as the active space is increased. At the best level of theory, MRPT2 with a full valence FORS reference, the 2s isomer is predicted to be more stable than 3s and 1t by 4.7 and 2.2kcal∕mol, respectively.

Comments

This article is from Journal of Chemical Physics 124 (2006): 034303, doi:10.1063/1.2140687.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections