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Emergent Magnetic Degeneracy in Iron Pnictides due to the Interplay
between Spin-Orbit Coupling and Quantum Fluctuations

Abstract
Recent experiments in iron pnictide superconductors reveal that, as the putative magnetic quantum critical
point is approached, different types of magnetic order coexist over a narrow region of the phase diagram.
Although these magnetic configurations share the same wave vectors, they break distinct symmetries of the
lattice. Importantly, the highest superconducting transition temperature takes place close to this proliferation
of near-degenerate magnetic states. In this Letter, we employ a renormalization group calculation to show that
such a behavior naturally arises due to the effects of spin-orbit coupling on the quantum magnetic
fluctuations. Formally, the enhanced magnetic degeneracy near the quantum critical point is manifested as a
stable Gaussian fixed point with a large basin of attraction. Implications of our findings to the
superconductivity of the iron pnictides are also discussed.
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Recent experiments in iron pnictide superconductors reveal that, as the putative magnetic quantum
critical point is approached, different types of magnetic order coexist over a narrow region of the phase
diagram. Although these magnetic configurations share the same wave vectors, they break distinct
symmetries of the lattice. Importantly, the highest superconducting transition temperature takes place close
to this proliferation of near-degenerate magnetic states. In this Letter, we employ a renormalization group
calculation to show that such a behavior naturally arises due to the effects of spin-orbit coupling on the
quantum magnetic fluctuations. Formally, the enhanced magnetic degeneracy near the quantum critical
point is manifested as a stable Gaussian fixed point with a large basin of attraction. Implications of our
findings to the superconductivity of the iron pnictides are also discussed.
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Introduction.—Magnetism in the iron pnictide super-
conductors remains an intensely studied subject, not least
due to its impact on unconventional superconductivity
[1–3], but also as a playground for exploring unusual types
of magnetic orders [4–6]. While early experiments reported
the prevalence of a stripe spin-density wave (SSDW) in the
phase diagrams of these systems [7,8], a series of recent
experiments in several different compounds found a richer
behavior [9–24]. As optimal doping is approached, the
SSDW transition temperature is suppressed to zero, signal-
ing a putative magnetic quantum critical point (QCP). In
this region, other types of magnetic orders proliferate.
Although these are characterized by the same wave vectors
as the SSDW phase,Q1;2 ¼ ðπ; 0Þ; ð0; πÞ, they do not break
the tetragonal symmetry of the lattice—hence being
dubbed C4 magnetic phases [12]. The proximity of the
superconducting dome to this peculiar regime of inter-
twined magnetic phases with comparable transition temper-
atures raises important questions about the interplay
between magnetism, quantum fluctuations, and supercon-
ductivity. Phenomenologically, these C4 phases can be
understood as double-Q configurations corresponding to a
collinear or coplanar equal-weight superposition of ðπ; 0Þ
and ð0; πÞ orders—in contrast to the single-Q SSDW phase,
which breaks tetragonal symmetry and is thus called the C2

phase [6].
Several microscopic mechanisms have been proposed to

explain their origin [4,5,25–35]. However, they generally
suffer from two drawbacks. (i) The determination of the
ground state follows from a mean-field analysis, which is
unlikely to be valid near the putative QCP due to fluctuation

effects. (ii) The system is assumed isotropic in spin space.
The latter is in contradiction with the sizable spin-orbit
coupling (SOC) observed in these systems [36],whose100K
energy scale is comparable to the typical magnetic transition
temperature. As a result, the spin anisotropies induced by
SOC [29], which are experimentally observed by neutron
scattering and NMR [37–44], cannot be neglected near the
magnetic transition. More broadly, it is difficult to attribute
the observed near degeneracy between theC2 andC4 phases
only to material-specific properties, since this behavior is
often seen close to the putative quantum critical point [see
schematic Fig. 1(b)] and in several different unrelated
compounds, such as hole-doped BaFe2As2 [12–15], pres-
surized FeSe [45], and electron-doped CaKFe4As4 [11].
In this Letter, we argue that this behavior is not a result of

fine-tuned interactions, but instead is a universal property of
the magnetism of the iron pnictides, provided that SOC and
fluctuations are taken into account. Although this result is
complementary to previous works on this topic, it provides a
significant departure from the interpretation that the C2-C4

magnetic degeneracy arises solely from band structure
effects. Universal properties are naturally described in terms
of the renormalization-group (RG) approach, which we
employ throughout this Letter. The RG flow describes
how the system’s mean-field parameters are renormalized
by fluctuations. This allows us to assess the ground states and
the character of the corresponding phase transitions.
The main results of our RG analysis near the putative

magnetic QCP are shown schematically in Fig. 1(a). For the
isotropic system (horizontal line), the RG flow pushes the
system deep into either the C2 or the C4 phase. Moreover,
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the magnetic transition becomes first-order, indicating the
absence of quantum critical fluctuations. Thus, even if the
mean-field parameters (obtained, e.g., from band structure
calculations) place the system close to the degeneracy
between the C2 and C4 phases, fluctuations strongly
remove this degeneracy. On the other hand, upon including
the spin anisotropy promoted by the SOC (vertical line), a
new fixed point in the RG flow emerges, in which the C2

and C4 magnetic phases are degenerate. Importantly, when
the mean-field parameters are within the basin of attraction
of this fixed point [indicated by the region between the
dashed lines in Fig. 1(a)], the fluctuations will drive the
system to the C2-C4 degenerate point. Indeed, the mean-
field results of, e.g., Refs. [30,31] lie within this region.
Thus, our main point is that the experimentally observed
proliferation of nearly degenerate C2 and C4 magnetic
phases in the iron pnictides is not a result of fine-tuning, but
an emergent universal property of the magnetism of these
systems. In the remainder of the Letter, we derive these
results and discuss their implications for the superconduct-
ing state of the pnictides.
Renormalization group flow of the isotropic case.—

Magnetic order in the iron pnictides is characterized by two
distinct ordering wave vectorsQ1 ¼ ðπ; 0Þ andQ2 ¼ ð0; πÞ
(using single iron Brillouin zone notation). The relative
orientations and amplitudes of the magnetic vector order
parameters Mi allow three types of order [6], as illustrated
in Fig. 1(c): (i) A single-Q SSDW, which takes place when
only one of the Mi is nonzero. This is the phase observed
in most iron pnictide parent compounds [46–48]. (ii) A
collinear double-Q order dubbed charge-spin density-wave
(CSDW), corresponding to M1 ¼ �M2. This phase is
realized, e.g., in Na-doped SrFe2As2 [13]. (iii) A coplanar
double-Q order dubbed spin-vortex crystal (SVC), char-
acterized by M1⊥M2 and jM1j ¼ jM2j. This phase is
realized in Ni-doped CaKFe4As4 [11]. Although the three
types of order share the same magnetic wave vectors, they
break distinct symmetries of the lattice: the SSDW phase is
orthorhombic whereas the CSDW and SVC phases are
tetragonal [4,6,31].
To discuss the universal properties of the magnetic phase

diagram, we introduce the magnetic action in terms of
M1 and M2 [4,5,25,28]. In the spin-isotropic case, there
are four terms allowed by tetragonal and time-reversal
symmetries:

S ¼
Z
k
r0ðkÞðM2

1 þM2
2Þ þ

u
2

Z
r
ðM2

1 þM2
2Þ2

−
g
2

Z
r
ðM2

1 −M2
2Þ2 þ 2w

Z
r
ðM1 ·M2Þ2: ð1Þ

The coefficient of the quadratic term, r0ðkÞ¼r0þk2þγjωnj,
is the inverse bare susceptibility, with r0 ∝ x − xc denoting
the distance to the mean-field QCP xc. Here, k is the
momentum,ωn ¼ 2πnT is the bosonicMatsubara frequency
with temperature T, and γ is the Landau damping coefficient
arising from the decay of magnetic excitations into particle-
hole pairs. Note that k ¼ ðiωn;kÞ and x ¼ ðτ; rÞ withR
k ≡T

P
ωn

R
d2k=ð2πÞ2 and Rr ≡ R 1=T

0 dτ
R
d2r. The quartic

coefficient u > 0 penalizes strong amplitude fluctuations
and ensures that the free energy is bounded. The quartic
coefficient g favors either single-Q or double-Q configura-
tions depending on whether it is positive or negative.
Similarly, the quartic coefficient w favors collinear

(a)

(b) (c)

FIG. 1. (a) Schematics of our RG results. The arrows show how
fluctuations affect the coefficients of the free energy, moving
them away from their mean-field values derived from a micro-
scopic band structure calculation. In the spin-isotropic case,
fluctuations bring the system deep into either the C2 or a C4

phase, removing any fine-tuned degeneracy from the system that
may exist at a mean-field level. When spin anisotropies are
included, a new fixed point emerges in which the C2 and C4

phases are degenerate. Systems whose mean-field parameters lie
within the fan of dashed lines are pushed to this fixed point by
fluctuations. (b) Schematic phase diagram based on our renorm-
alization-group calculations. Here, T is temperature and x is an
external tuning parameter, such as doping or pressure. As the
putative quantum critical point (QCP, denoted by a star) is
approached, the interplay between spin anisotropy (driven by
the spin-orbit coupling) and quantum fluctuations leads to a near
degeneracy between the C2 and C4 magnetic phases. While the
C2 phase is always the stripe-spin density-wave (SSDW) state,
the C4 phase can be either the spin-vortex crystal (SVC) or the
charge-spin density-wave (CSDW) state depending on whether
the spin anisotropies force the moments in the plane or out of the
plane, respectively, see (c).
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(w < 0) or coplanar (w > 0) double-Q configurations. The
mean-field phase diagram, obtained from straightforward
minimization [4,32], is shown in Fig. 2(a).
Microscopic calculations are needed to obtain the coef-

ficients for specific materials. Different approaches have
been proposed, from first-principle to low-energy model
calculations [4,5,25–31]. Several of them have found
regimes in which, as a function of doping, the quartic
coefficients change from favoring aC2 (i.e., single-Q) phase
to aC4 (i.e., double-Q) phase, an effect essentially driven by
changes in the band structure. Experimentally, however, the
emergence of near-degenerate C2-C4 phases is observed for
systems with rather different band structures, such as hole-
doped BaFe2As2, electron-doped CaKFe4As4, and undoped
pressurized FeSe. This suggests that the appearance of theC4

phase may be associated with the universal properties of the
action (1), and not only with material specific details.
To investigate this possibility, and go beyond the mean-

field analysis of previous works, we take into account
the effects of fluctuations via a renormalizaton-group (RG)
calculation. In this approach, the microscopic results
discussed above provide the starting point, which are the
“bare” (i.e., mean-field) values of the quartic coefficients
u0, g0, and w0. Upon integrating out the high-energy
magnetic fluctuations from the cutoff energy scale Λ to
the energy E, these coefficients are renormalized, and
become functions of the ratio Λ=E, often expressed in
terms of the variable l≡ ln ½ðΛ=EÞ�. Near the putative
magnetic QCP, the two-dimensional system is at its upper
critical dimension, and we can use standard techniques [49]
to derive the first-order differential RG flow equations for
uðlÞ, gðlÞ, and wðlÞ. The goal is to find the fixed points

that govern the critical behavior of these coefficients for a
large number of different “initial conditions” u0, g0, andw0,
corresponding to different microscopic band structures.
The RG equations of Eq. (1) have been previously

derived [50–53], but the fixed point analysis was generally
restricted to the subspace of the SSDW phase. Our global
analysis reveals that, for three-component vectors, no stable
fixed points exist. Instead, the RG flow displays three fixed
trajectories, in which the quartic coefficients diverge at
l ¼ lc, but their ratios remain fixed. They are illustrated by
the colored thick lines in Fig. 2(a): in all of them,
uðl → lcÞ → −∞, but the ratios acquire different values.
The blue fixed trajectory has gðlcÞ=uðlcÞ ¼ −1 and
wðlcÞ=gðlcÞ ¼ 0, corresponding to a system deep inside
the SSDW phase. The basin of attraction corresponds to the
blue region of the mean-field phase diagram in Fig. 2(a),
implying that fluctuations do not alter the nature of the
mean-field ground state. Similarly, the two other fixed
trajectories are the red line wðlcÞ=uðlcÞ ¼ 1 and
gðlcÞ=wðlcÞ ¼ 0, corresponding to a system deep inside
the CSDW phase, and the green line gðlcÞ=uðlcÞ ¼ 0 and
gðlcÞ=wðlcÞ ¼ −1, corresponding to a system deep inside
the SVC phase.
Thus, fluctuations move the system deep into one of

the ordered phases, lifting any near degeneracy between the
C2 and C4 phases obtained from microscopic models in
the mean-field level. This makes it difficult to explain
the proliferation of coexisting C2 and C4 phases near the
different optimal-doped compounds. Furthermore, the
action becomes unbounded at the fixed trajectories, indi-
cating a first-order quantum phase transition, and thus no
quantum critical fluctuations.

(a) (b) (c)

FIG. 2. (a) Mean-field magnetic phase diagram in the spin-isotropic case (colored background) and the RG flow lines for the zero-
temperature, two-dimensional system. There are three fixed trajectories where the quartic coefficients diverge but their ratios remain
finite. They are denoted by the thick darkly shaded lines, which lie deep inside each of the magnetic states. Because the flow lines are
projections onto the g − w plane, they appear to cross. (b)–(c) Flow diagrams for the cases of dominant (b) in-plane spin anisotropy
(α1 < α2, α3 or α2 < α1, α3) and (c) out-of-plane spin anisotropy (α3 < α1, α2). Light gray areas denote regions in which the free energy
is unbounded, corresponding to a first-order transition. The dark gray regions are inaccessible to any flow. Here, darker colors denote the
regions attracted to the Gaussian fixed point, while lighter colors denote regions attracted to the fixed trajectories.
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Renormalization group flow of the anisotropic case.—
A crucial ingredient missing in the analysis above is
the spin anisotropy that is generated by the spin-orbit
coupling present in these systems [36,44,54]. Indeed,
experimentally, the magnetic moments of each configura-
tion are found to point to well-defined directions: in the
SSDW phase, the moments point in-plane, parallel to the
wave-vector direction [8]; in the SVC phase, the moments
also point in-plane, making 45° with respect to the wave-
vector directions [11]; in the CSDW phase, the moments
point out-of-plane [13,16] [see Fig. 1(c)]. At the quadratic
level, the spin-orbit coupling gives rise to three different
spin-anisotropic terms [29,55]:

Sð2ÞSOC ¼
Z
k
r0ðkÞðM2

1 þM2
2Þ þ α1

Z
k
ðM2

x;1 þM2
y;2Þ

þ α2

Z
k
ðM2

x;2 þM2
y;1Þ þ α3

Z
k
ðM2

z;1 þM2
z;2Þ: ð2Þ

The physical interpretation of each term is apparent: a
small α1 favors in-plane moments parallel to the wave-
vector directions; a small α2 favors in-plane moments
perpendicular to the wave-vector directions; and a small
α3 favors out-of-plane moments. While the SSDW supports
any of these three magnetization directions, SVC is only
compatible with the α1 and α2 terms, and CSDWonly with
the α3 term. Thus, the presence of spin anisotropies makes
it impossible for the three magnetic ground states to be
nearly degenerate, but they do allow, in principle, for
SSDW to be near degenerate with either CSDW or SVC.
Note that the anisotropy in the quadratic terms generates

anisotropies in the quartic terms. While a full solution of
the RG equations is presented in Ref. [56], here we focus on
limiting cases that capture the main properties of the RG
flow. Because of their scaling dimension, the quadratic
coefficients r0 þ αi can display two possible asymptotic
behaviors as l → lc. Either r0 þ αi → ∞, in which case
the associated spin components are quenched and do not
contribute to the action, or r0 þ αi → −∞, signaling a
transition and the condensation of the spin components
related to αi. Importantly, the quadratic coefficient αi with
the smallest bare value selects which components will
condense.
Let us first consider the case of dominant in-

plane anisotropy, where initially α1ðl ¼ 0Þ < α2ðl ¼ 0Þ,
α3ðl ¼ 0Þ. The possible ground states are the SSDW phase
with moments pointing parallel to the ordering vectors and
the (hedgehog)-SVC phase [11]; see Fig. 1(c). According
to the discussion above, only the components associated
with α1 (namely, Mx;1 and My;2) will condense, while the
others can be neglected. Hence, the universal properties of
the action are the same as those of the action (1) restricted
only to theMx;1 andMy;2 fields. As a consequence, w plays
no role in this case. The RG flow of this action is shown in
Fig. 2(b). Besides the two fixed trajectories equivalent

to the SSDW and SVC fixed trajectories of Fig. 2(b),
a new Gaussian fixed point uα1ðlcÞ¼ gα1ðlcÞ¼ 0 emerges.
Interestingly, we find a wide range of parameters for which
this Gaussian fixed point is attractive, indicated by the
region enclosed by the dashed lines in Fig. 2(b). We note
that the same phase diagram appears in the case
α2ð0Þ < α1ð0Þ, α3ð0Þ.
In the case of dominant out-of-plane anisotropy,

α3ð0Þ < α1ð0Þ, α2ð0Þ, the effective action has the same
form as Eq. (1), but restricted only to the Mz;1 and Mz;2
fields. In this case, w cannot be ignored although its effect
can be incorporated in a shift of u and g, as seen in the axes
of Fig. 2(c). The possible ground states in this case are the
SSDW and CSDW with out-of-plane moments. As shown
in Fig. 2(c), the RG flow is analogous to the case of
dominant in-plane anisotropy. It displays two fixed trajec-
tories corresponding to the SSDW and CSDW states, and
the Gaussian fixed point where the quartic coefficients
vanish.
The main result of our analysis is the appearance of an

attractive Gaussian fixed point in the RG flow of the
anisotropic spin action. To understand its significance, we
first note that it signals a second-order quantum phase
transition (and thus quantum critical fluctuations), in
contrast to the case of fixed trajectories, which signals
first-order transitions. More importantly, at the Gaussian
fixed point, the SSDW state is degenerate with one of the
C4 phases—either the SVC phase for dominant in-plane
anisotropy or the CSDW phase for dominant out-of-plane
anisotropy. This degeneracy is due to the fact that, when
g ¼ w ¼ 0 in the action (1), the energies of the C2 and C4

magnetic ground states have the same value. The fact that
the Gaussian fixed point has a wide basin of attraction
implies that, even if the bare (mean-field) values of g and w
are not near the phase boundary between the C2 and the C4

phases, quantum fluctuations will bring the system to this
special point of the phase diagram.
Discussion.—Our results provide a compelling scenario

to explain the experimentally observed proliferation of C4

phases in close proximity to the C2 symmetric SSDW
phase as optimal doping is approached in different iron-
based compounds [9–24]. Instead of attributing this behav-
ior to band structure effects, which requires fine-tuning in a
wide range of compounds, our approach reveals that the
emergence of C4 phases near the putative magnetic QCP is
a universal property of the low-energy magnetic properties
of these materials. It arises from the interplay between spin-
orbit coupling and magnetic fluctuations. We emphasize
that these results are not contradictory, but complementary
to the microscopic calculations [4,5,25–31]. In fact, our
results in tandem with the mean-field results of, e.g.,
Refs. [30,31] show that as long as the band structure
effects bring the system closer, rather than farther from the
degeneracy points, fluctuations will take over and move the
system closer to the degeneracy point. Importantly, this
effect is prominent near the putative magnetic QCP, when
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the system is at its upper critical dimension. This sheds new
light on why the proliferation of C2 and C4 phases takes
place near optimal doping, where the magnetic transition
temperature is suppressed to zero.
An important question is how this emergent C2-C4 near-

degeneracy impacts superconductivity. Several works have
proposed an sþ− state driven by fluctuations of the SSDW
state [1–3]. Usually, the existence of additional channels of
magnetic fluctuations does not guarantee an enhancement
of Tc. On the contrary, in the case of ferromagnetic [57] or
Néel fluctuations [58], they can cause pair breaking and
promote competing superconducting states that suppress Tc
of the sþ− state. In our case, however, fluctuations
associated with the C2 and C4 phases are peaked at the
same wave vectors ðπ; 0Þ and ð0; πÞ, and thus support the
same pairing state. Therefore, one expects that this near
degeneracy, by enhancing the phase space of fluctuations,
may cause an enhancement of Tc.
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