Measurements of Multiparticle Correlations in d + Au Collisions at 200, 62.4, 39, and 19.6 GeV and p + Au Collisions at 200 GeV and Implications for Collective Behavior

C. Aidala
University of Michigan

Nicole J. Apadula
Iowa State University

John C. Hill
Iowa State University

Nels J. Hotvedt
Iowa State University

John G. Lajoie
Iowa State University, lajoie@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/physastro_pubs

Part of the [Nuclear Commons](https://lib.dr.iastate.edu/physastro_pubs)

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/physastro_pubs/494. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Physics and Astronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Physics and Astronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Measurements of Multiparticle Correlations in d + Au Collisions at 200, 62.4, 39, and 19.6 GeV and p + Au Collisions at 200 GeV and Implications for Collective Behavior

Abstract
Recently, multiparticle-correlation measurements of relativistic p/d(3)He + Au, p + Pb, and even p + p collisions show surprising collective signatures. Here, we present beam-energy-scan measurements of two, four-, and six-particle angular correlations in d + Au collisions at root s(NN) = 200, 62.4, 39, and 19.6 GeV. We also present measurements of two-and four-particle angular correlations in p + Au collisions at root s(NN) = 200 GeV. We find the four-particle cumulant to be real valued for d + Au collisions at all four energies. We also find that the four-particle cumulant in p + Au has the opposite sign as that in d + Au. Further, we find that the six-particle cumulant agrees with the four-particle cumulant in d + Au collisions at 200 GeV, indicating that nonflow effects are subdominant. These observations provide strong evidence that the correlations originate from the initial geometric configuration, which is then translated into the momentum distribution for all particles, commonly referred to as collectivity.

Disciplines
Nuclear

Comments

Authors

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/physastro_pubs/494
Measurements of Multiparticle Correlations in $d + Au$ Collisions at 200, 62.4, 39, and 19.6 GeV and $p + Au$ Collisions at 200 GeV and Implications for Collective Behavior

Recently, multiparticle-correlation measurements of relativistic $p/d/\text{He} + \text{Au}$, $p + \text{Pb}$, and even $p + p$ collisions show surprising collective signatures. Here, we present beam-energy-scan measurements of two-, four-, and six-particle angular correlations in $d + \text{Au}$ collisions at $\sqrt{s_{NN}} = 200$, 62.4, 39, and 19.6 GeV. We also present measurements of two- and four-particle angular correlations in $p + \text{Au}$ collisions at $\sqrt{s_{NN}} = 200$ GeV. We find the four-particle cumulant to be real valued for $d + \text{Au}$ collisions at all four energies. We also find that the four-particle cumulant in $p + \text{Au}$ has the opposite sign as that in $d + \text{Au}$. Further, we find that the six-particle cumulant agrees with the four-particle cumulant in $d + \text{Au}$ collisions at 200 GeV, indicating that nonflow effects are subdominant. These observations provide strong evidence that the correlations originate from the initial geometric configuration, which is then translated into the momentum distribution for all particles, commonly referred to as collectivity.

DOI: 10.1103/PhysRevLett.120.062302

One of the key discoveries at the Relativistic Heavy Ion Collider (RHIC) is the identification of the quark-gluon plasma and its characterization as a near perfect fluid via its collective flow [1–4]. It has previously been assumed that only nucleus-on-nucleus collisions create a system large enough and hot enough to create the quark-gluon plasma. However, five years ago, collective signatures were discovered in $p + \text{Pb}$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV at the large hadron collider (LHC) [5–7]. Since then, similar evidence has been observed in $p/d/\text{He} + \text{Au}$ collisions at $\sqrt{s_{NN}} = 200$ GeV at RHIC [8–11] and high-multiplicity $p + p$ collisions at $\sqrt{s_{NN}} = 2.76$–13 TeV at the LHC [12–14]. Additionally, collective signatures at the LHC have been found not only with two-particle correlations, but with multiparticle correlations as well [15–18]. Multiparticle correlations are not a unique signature of a hydrodynamically flowing medium [19,20], and thus it is imperative that all calculational frameworks make quantitative predictions for these correlations. This Letter presents the measurement of multiparticle correlations in $d + \text{Au}$ collisions as part of a beam energy scan at $\sqrt{s_{NN}} = 200$, 62.4, 39, and 19.6 GeV, as well as in $p + \text{Au}$ collisions at $\sqrt{s_{NN}} = 200$ GeV.

The azimuthal distribution of particles produced in a collision can be described by a Fourier series with harmonic coefficients v_n, where n is the harmonic number [21]. This analysis uses direct calculations of cumulants [22]. The two-particle correlator is

$$\langle 2 \rangle = \langle \cos (n(\phi_1 - \phi_2)) \rangle = \langle v_n^2 \rangle,$$

(1)

where $\phi_{1,2}$ denote the azimuthal angles of two different particles in a single event and the single brackets denote an average over particles in a single event. The four-particle correlator is

$$\langle 4 \rangle = \langle \cos (n(\phi_1 + \phi_2 - \phi_3 - \phi_4)) \rangle = \langle v_n^4 \rangle,$$

(2)

where $\phi_{1,2,3,4}$ denote the azimuthal angles of four different particles in a single event. Finally, the six-particle correlator is

$$\langle 6 \rangle = \langle \cos (n(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)) \rangle = \langle v_n^6 \rangle,$$

(3)

where $\phi_{1,2,3,4,5,6}$ denote the azimuthal angles of six different particles in a single event. Quite generally, any m-particle correlation will have contributions from lower-order correlations, and m-particle cumulants $c_n\{m\}$ are constructed to remove these. In the case of the two-particle cumulant, the relation is simply

$$c_n\{2\} = \langle 2 \rangle,$$

(4)

where the double bracket indicates first an average over particles in a single event and then an average over events. In the case of the four- and six-particle cumulant, the relations are

$$c_n\{4\} = \langle 4 \rangle - 2\langle 2 \rangle^2$$

and

$$c_n\{6\} = \langle 6 \rangle - 9\langle 4 \rangle\langle 2 \rangle + 12\langle 2 \rangle^3,$$

(5)

(6)

where it can be seen by construction that the lower-order correlations are removed. The harmonic coefficients are related to the cumulants by

$$v_n\{2\} = (c_n\{2\})^{1/2},$$

(7)

$$v_n\{4\} = (-c_n\{4\})^{1/4},$$

(8)

$$v_n\{6\} = \left(\frac{1}{4} c_n\{6\} \right)^{1/6}. $$

(9)

In this Letter we focus on the second harmonic, $n = 2$, which is interpreted as arising from elliptic flow. For a given...
Comparisons of the different cumulants can yield insights in the strength of the elliptic flow. In this case the observed \(v_2 \) is not a single value but rather a distribution. The different cumulants have different sensitivities to the fluctuations of the \(v_2 \) distribution. The \(v_2 \{2\} \) has a positive contribution from the variance of the distribution, whereas \(v_2 \{4\} \) and \(v_2 \{6\} \) have negative contributions from the variance. Comparisons of the different cumulants can yield insights into not only the central value of the \(v_2 \) but also the nature of its event-by-event fluctuations.

Not all angular correlations are global in nature. The term nonflow is used to describe angular correlations arising from anything not considered global or collective in nature, and typically includes resonance decays, quantum interference correlations, Coulomb interactions, jet correlations, etc. Most of these generate correlations among only a small subset of the total produced particles; thus, four-particle correlations are typically much less sensitive than two-particle correlations to nonflow effects. For that reason, comparison between two-, four-, and six-particle correlations can also yield insights into nonflow effects. Considering the event-by-event \(v_2 \) fluctuations (in the Gaussian limit) and nonflow, one has

\[
\begin{align*}
v_2 \{2\} &= (v_2^2 + \sigma^2 + \delta^2)^{1/2} \\
v_2 \{4\} &\approx v_2 \{6\} \approx (v_2^2 - \sigma^2)^{1/2},
\end{align*}
\]

where \(\sigma^2 \) is the variance of the distribution and \(\delta^2 \) parameterizes the nonflow [23].

In 2016, the PHENIX experiment [24] at RHIC collected data from \(d + Au \) collisions at four different energies (\(\sqrt{s_{NN}} = 200, 62.4, 39, \) and 19.6 GeV). In 2015, data from \(p + Au \) collisions at \(\sqrt{s_{NN}} = 200 \) GeV were collected. PHENIX triggered on minimum bias and high multiplicity events utilizing a beam beam counter [25] at 200 and 62.4 GeV or a forward silicon detector (FVTX) [26] at 39 and 19.6 GeV. Using information from the beam beam counter and FVTX, we require events to have a collision vertex within \(|z| < 10 \) cm of the nominal center of the PHENIX coordinate system.

The particle correlations are formed from reconstructed tracks in the FVTX, which has two arms covering \(-3 < \eta < -1 \) and \(+1 < \eta < +3 \) in pseudorapidity. The FVTX does not provide momentum information, but simulations have determined that the efficiency is momentum independent for \(p_T \geq 0.3 \) GeV/c. We require tracks in the FVTX to have a distance of closest approach to the reconstructed vertex less than 2 cm and to have hits in at least three of the four layers of the FVTX. We evaluate all quantities as a function of the number of reconstructed tracks in the FVTX, \(N_{\text{FVTX}} \). The \(\langle 6 \rangle \), \(\langle 4 \rangle \), and \(\langle 2 \rangle \) are evaluated in events categorized by a single integer value of \(N_{\text{tracks}} \). Event categories are then combined into wider bins as needed to achieve adequate statistical precision. As an illustrative example, \(10 < N_{\text{tracks}} < 30 \) corresponds to centralities in \(d + Au \) of 1.3%–52%, \(4.1 \times 10^{-3}\%–33\% \), \(6.5 \times 10^{-4}\%–21\% \), and \(3.3 \times 10^{-6}\%–10\% \) at 200, 62.4, 39, and 19.6 GeV respectively, and in \(p + Au \) at 200 GeV of 0.22%–29%.

Figures 1(a) and 1(c) show the \(\langle 4 \rangle \) and \(2\langle 2 \rangle^2 \) and Figs. 1(b) and 1(d) the cumulant \(c_2 \{4\} \) for [Figs. 1(a) and 1(b)] \(p + Au \) collisions and [Figs. 1(c) and 1(d)] \(d + Au \) collisions at \(\sqrt{s_{NN}} = 200 \) GeV. In both cases, only statistical uncertainties are shown. The cumulant in \(p + Au \) is
positive, indicating that v_2^4 is complex. In contrast, in $p + \text{Pb}$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV, the cumulant is negative and the v_2^4 is real for sufficiently high multiplicity [15–18]. However, the cumulant in $d + \text{Au}$ collisions at $\sqrt{s_{NN}} = 200$ GeV is negative, indicating that v_2^4 is real. For now, we focus on the $d + \text{Au}$ results and we will return to the $p + \text{Au}$ system later.

Figure 2 shows the calculated v_2^2 and v_2^4 in $d + \text{Au}$ collisions at 200, 62.4, 39, and 19.6 GeV. Systematic uncertainties, shown as colored bands, are point-to-point correlated and are determined as the quadrature sum of the following contributions. We vary the event vertex cut from the 10 cm default to 5 cm as a check on the z dependence of the FVTX acceptance and find a systematic uncertainty of approximately 1% (10%) for two-particle (four-particle) correlations. The distance of closest approach cut is varied from the default 2 cm cut to 1.5 cm, and we find a systematic difference of approximately 1%. The azimuthal acceptance in the FVTX is not uniform due to detector inefficiencies, so corrections need to be applied. We use the Q-vector recentering method [27] as the default and compare to the isotropic terms in Ref. [22]. We assess an uncertainty of 10% of the value of the v_2^2 and v_2^4 due to this correction, which is the dominant source of systematic uncertainty.

Rather strikingly, we observe real-valued v_2^4 in $d + \text{Au}$ at all four collision energies. This is additional evidence in support of collective behavior in small systems [8–11]. The same patterns seen in $p + \text{Pb}$ collisions at the LHC appear to persist in $d + \text{Au}$ at collision energies a factor of 250 lower.

Further, Fig. 2 shows the v_2^6 in $d + \text{Au}$ collisions at 200 GeV. The v_2^6 is consistent with v_2^4 across the full $N_{\text{tracks}}^\text{FVTX}$ range. This shows that, at least at 200 GeV, the v_2^4 is dominated by flow, rather than nonflow. The statistics at the lower energies are not enough to determine a reliable v_2^6.

Figure 3 shows the v_2^2 and v_2^4 in $d + \text{Au}$ collisions as a function of $\sqrt{s_{NN}}$ when averaged over 10 < $N_{\text{tracks}}^\text{FVTX}$ < 30. We find that $v_2^4 < v_2^2$ at the higher energies, as expected from Eqs. (10) and (11) where both the event-to-event v_2 fluctuations and nonflow contribute positively to v_2^2, and the v_2 fluctuations contribute negatively to v_2^4 while nonflow should be significantly reduced. However, there is a trend that the difference between the v_2^2 and v_2^4 decreases with decreasing energy, with $v_2^2 \approx v_2^4$ within uncertainties at 19.6 and 39 GeV. If Eqs. (10) and (11) are valid at these low multiplicities, the v_2^2 and v_2^4 may converge if the flow fluctuations (σ) or the nonflow (δ) decrease at lower $d + \text{Au}$ energies. Monte Carlo Glauber calculations indicate that the event-by-event fluctuations in the initial geometry are quite similar for $d + \text{Au}$ collisions at all four energies. In the case of nonflow, while jet contributions decrease at lower energy, the expectation is that δ increases because one has a nonflow correlation from a fixed particle number N that is diluted by the total number of particles in the event, M, which is smaller for lower energy $d + \text{Au}$ collisions.
collisions even at a fixed number of FVTX tracks. The
measured two- and four-particle correlations appear to be
more complex than the assumptions in Eqs. (10) and (11).

To explore these trends in more detail, we utilize the
A-Multi-Phase-Transport (AMPT) model that includes
parton production via string melting, parton scattering,
hadronization via coalescence, and hadronic scattering
[28]. The AMPT model has been successful at qualitatively
describing many signatures of collectivity in small and
large collision systems [29–31], and we utilize the identical
parameters and setup as in Ref. [31]. Modeling the FVTX
acceptance and efficiency, we find reasonable agreement
with the experimental FVTX track distribution and then
calculate the \(v_2\{2\}\) and \(v_2\{4\}\) from the AMPT model as
shown in Fig. 3. The AMPT calculations include event-
by-event geometry fluctuations via Monte Carlo Glauber
calculations [32], flow (defined here as momentum
anisotropy relative to the initial geometry), and nonflow.
The AMPT model gives a reasonable description of the
magnitude and trend of \(v_2\{4\}\), while underpredicting
the \(v_2\{2\}\); this may be due to an underestimation of
the nonflow.

Our measurement of \(v_2\{2\}\) is particularly susceptible
to nonflow contributions because we allow combinations
that may be close in pseudorapidity. Analyses of LHC
data (e.g., Refs [15–18]) introduce a pseudorapidity gap
\(|\Delta \eta| > 2\) between all pairs thus reducing contributions
from particle decays, intrajet correlations, etc. In our case,
because of the FVTX acceptance, such an \(\eta\) gap neces-
sitates requiring one particle per arm. In \(d + Au\) collisions,
particularly at the lower energies, this means that the
kinematics for the \(v_2\{2, |\Delta \eta| > 2\}\) and \(v_2\{4\}\) are very
different and the former will be strongly effected by asymmetries
in \(v_2\) between forward and backward rapidity,
as well as longitudinal decorrelations [33,34].

Nonetheless, we calculate \(v_2\{2, |\Delta \eta| > 2\}\) and show the
results in Fig. 2. We find that \(v_2\{2, |\Delta \eta| > 2\} < v_2\{2\}\) for
all four energies as expected from the reduction in nonflow
contributions; however, we also find that \(v_2\{2, |\Delta \eta| > 2\} < v_2\{4\}\), which cannot be reconciled within the context
of Eqs. (10) and (11) alone. In the AMPT model, the true \(v_2\)
at forward (\(d\)-going) rapidity \(v_2^f\) is significantly lower than
\(v_2\) at backward (\(Au\)-going) rapidity \(v_2^b\). The \(v_2\{2, |\Delta \eta| > 2\} = \sqrt{v_2^f v_2^b}\) whereas the \(v_2\{4\}\) is heavily weighted
towards \(v_2^b\) where there are more tracks in the FVTX.
This difference in kinematic sensitivity makes a quantitative
comparison with \(v_2\{4\}\) challenging, while opening the door
to new sensitivity to the longitudinal structure of the
correlations.

Let us now return to the results in \(p + Au\) collisions,
where the \(v_2\{4\}\) is complex. Following Eq. (11), if the
event-by-event \(v_2\) fluctuations are larger in \(p + Au\) com-
pared with \(d + Au\) to the extent that \(\sigma > v_2\), this would
explain the sign change. In the case of ideal hydrodynamic
evolution, the flow \(v_2\) is proportional to the initial elliptical
geometric eccentricity \(\varepsilon_2\) [35]. Thus, we show in Fig. 4 the
\(\varepsilon_2\) distributions from Monte Carlo Glauber calculations
[32] for \(p + Au\) and \(d + Au\) at \(\sqrt{s_{NN}} = 200\) GeV. The
average \(\varepsilon_2\) for \(d + Au\) is almost twice the value for \(p + Au\),
and both distributions are highly non-Gaussian. The \(\varepsilon_2\)
distribution in \(p + Au\) collisions has large positive skew
and the \(\varepsilon_2\) distribution in \(d + Au\) collisions is significantly
platykurtic. The exact values of the skewness \(s\) and kurtosis
\(k\) are listed in the figure. We can define cumulants of \(\varepsilon_2\)
effectively as one does for the \(v_2\) in Eqs. (4)–(9). If we do not
restrict ourselves to the Gaussian approximation, but
instead include all higher moments, we find \(\varepsilon_2\{4\}\) values
that could result in \(\varepsilon_2\{4\}\) becoming positive in \(p + Au\) collisions.
In fact, calculations utilizing the AMPT model, which describe
the negative \(c_2\{4\}\) and thus real \(v_2\{4\}\) in \(d + Au\), yield a
positive valued \(c_2\{4\}\) in \(p + Au\) collisions, as shown by
the green curves in Fig. 1. It is notable that these AMPT
calculations utilize the identical Monte Carlo Glauber
initial conditions as shown in Fig. 4, and thus this sign
change is definitively from additional fluctuation effects.

In summary, we have presented measurements of \(v_2\) from multiparticle correlations in \(p + Au\)
collisions at \(\sqrt{s_{NN}} = 200\) GeV and in \(d + Au\) collisions at

![FIG. 4. Eccentricity distributions for \(p + Au\) and \(d + Au\) at \(\sqrt{s_{NN}} = 200\) GeV as determined via Monte Carlo Glauber calculations. The exact values for the mean \(\varepsilon_2\), standard deviation \(\sigma\), skewness \(s\), and kurtosis \(k\) are listed on the figure.](image)
We thank the staff of the Collider-Accelerator and physics departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, the Abilene Christian University Research Council, the Department of Energy, the National Science Foundation, and the staff of the other PHENIX participating institutions and the Croatian Science Foundation and the Ministry of Science and Education (Croatia), the Ministry of Science, Education and Research of the Republic of Croatia, the Hungarian Academy of Sciences, the Ch. Simonyi Fund (Hungary), the Department of Education and Science, the Russian Academy of Sciences, the Federal Agency of Atomic Energy (Russia), the VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, and the US-Israel Binational Science Foundation.

\[\sqrt{s_{NN}} = 200, 62.4, 39, \text{and} 19.6 \text{GeV}. \]
We find real-valued \(v_2 \{ 4 \} \) in \(d + Au \) collisions at all collision energies, providing evidence for collectivity in \(d + Au \) collisions at all energies. At the highest energy in \(d + Au \) collisions, this evidence is further strengthened by the observation of \(v_2 \{ 4 \} \approx v_2 \{ 6 \} \). Indicating that nonflow contributions to \(v_2 \{ 4 \} \) are subdominant. We find \(v_2 \{ 4 \} \) is complex in \(p + Au \) at \(\sqrt{s_{NN}} = 200 \text{GeV} \). The \(v_2 \) distribution in \(p + Au \) collisions is highly non-Gaussian, leading to an \(\frac{v_2}{v_1} \) much lower than Gaussian expectations. Additional fluctuations in the translation of \(v_2 \) to \(v_4 \) may explain the observation of \(v_2 \{ 4 \} \) being complex in \(p + Au \) collisions. That collision systems with different initial geometries \((p + Au \text{ and } d + Au)\) at fixed collision energy (200 GeV) lead to significantly different cumulants indicates a geometrical and therefore collective origin of the correlations.

\[\begin{align*}
\sqrt{s_{NN}} &= 200, 62.4, 39, \text{and} 19.6 \text{GeV}. \end{align*} \]
We find real-valued \(v_2 \{ 4 \} \) in \(d + Au \) collisions at all collision energies, providing evidence for collectivity in \(d + Au \) collisions at all energies. At the highest energy in \(d + Au \) collisions, this evidence is further strengthened by the observation of \(v_2 \{ 4 \} \approx v_2 \{ 6 \} \). Indicating that nonflow contributions to \(v_2 \{ 4 \} \) are subdominant. We find \(v_2 \{ 4 \} \) is complex in \(p + Au \) at \(\sqrt{s_{NN}} = 200 \text{GeV} \). The \(v_2 \) distribution in \(p + Au \) collisions is highly non-Gaussian, leading to an \(\frac{v_2}{v_1} \) much lower than Gaussian expectations. Additional fluctuations in the translation of \(v_2 \) to \(v_4 \) may explain the observation of \(v_2 \{ 4 \} \) being complex in \(p + Au \) collisions. That collision systems with different initial geometries \((p + Au \text{ and } d + Au)\) at fixed collision energy (200 GeV) lead to significantly different cumulants indicates a geometrical and therefore collective origin of the correlations.

