Measurements of mass-dependent azimuthal anisotropy in central p + Au, d + Au, and 3He + Au collisions at $\sqrt{s_{NN}} = 200$ GeV

A. Adare  
*University of Colorado, Boulder*

Nicole J. Apadula  
*Iowa State University and Stony Brook University*

Sarah C. Campbell  
*Iowa State University and Columbia University*

John C. Hill  
*Iowa State University*

Nels J. Hotvedt  
*Iowa State University*

See next page for additional authors

Follow this and additional works at: [https://lib.dr.iastate.edu/physastro_pubs](https://lib.dr.iastate.edu/physastro_pubs)

Part of the [Nuclear Commons](https://lib.dr.iastate.edu/physastro_pubs/493)
Measurements of mass-dependent azimuthal anisotropy in central p + Au, d + Au, and 3He + Au collisions at \(\sqrt{s_{NN}} = 200\) GeV

Abstract

We present measurements of the transverse-momentum dependence of elliptic flow \(\upsilon_2\) for identified pions and (anti)protons at midrapidity (vertical bar \(\eta\) vertical bar < 0.35), in 0%-5% central p + Au and He-3 + Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. When taken together with previously published measurements in d + Au collisions at root \(s(NN) = 200\) GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of \(\upsilon_2(p(T))\) in d + Au and He-3 + Au collisions, just as in large nucleus-nucleus (A + A) collisions, and a smaller splitting in p + Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low \(p(T)\) (<1.5 GeV/c), but fail to describe various features at higher \(p(T)\). In all systems, the \(\upsilon_2\) values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark \((KET/n(q))\), which was also seen previously in A + A collisions.

Disciplines
Nuclear

Comments

Authors

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/physastro_pubs/493
Measurements of mass-dependent azimuthal anisotropy in central $p + Au$, $d + Au$, and $^3He + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV


PHYSICAL REVIEW C 97, 064904 (2018)
We present measurements of the transverse-momentum dependence of elliptic flow \( v_2 \) for identified pions and (anti)protons at midrapidity (|\( \eta \)| < 0.35), in 0%-5% central \( p + A \) and \( ^3\!\!\mathrm{He} + \mathrm{Au} \) collisions at \( \sqrt{s_{_{NN}}} = 200 \text{ GeV} \). When taken together with previously published measurements in \( d + \mathrm{Au} \) collisions at \( \sqrt{s_{_{NN}}} = 200 \text{ GeV} \), the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of \( v_2(p_T) \) in \( d + \mathrm{Au} \) and \( ^3\!\!\mathrm{He} + \mathrm{Au} \) collisions, just as in large nucleus-nucleus (\( A + A \)) collisions, and a smaller splitting in \( p + \mathrm{Au} \) collisions. Both hydrodynamic and transport model calculations successfully describe the data at low \( p_T \) (<1.5 GeV/c), but fail to describe various features at higher \( p_T \). In all systems, the \( v_2 \) values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark (\( K E_T/n_q \)), which was also seen previously in \( A + A \) collisions.

DOI: 10.1103/PhysRevC.97.064904

I. INTRODUCTION

Recent years have seen a paradigm shift in our understanding of the minimum conditions required for the production of the quark-gluon plasma (QGP). In large nucleus-nucleus (\( A + A \)) collisions, signals of collective behavior—such as the azimuthal momentum anisotropy of final-state particles relative to the event plane—have been successfully understood in the context of nearly inviscid hydrodynamic calculations, thus establishing the notion of a strongly interacting, nearly perfect fluid being formed in this class of collisions [1].

However, the discovery of the same azimuthal anisotropy signals in a variety of small collision systems (i.e., \( p,d,^3\!\!\mathrm{He} + \mathrm{Au} \) at \( \sqrt{s_{_{NN}}} = 200 \text{ GeV} \) [2–4]; \( p + \mathrm{Pb} \) at \( \sqrt{s_{_{NN}}} = 5.02 \text{ TeV} \); \( p + p \) at \( \sqrt{s} = 2.76, 5.02, \) and 13TeV [5–11]; and an earlier observation of long-range two-particle correlations in \( p + p \) collisions at \( \sqrt{s} = 7 \text{ TeV} \) [10]) pose a challenge. It was believed that the system size in this class of collisions is too small to create any significant amount of hot nuclear matter, which in any case would be very short lived. There are also alternative explanations for these anisotropy signals based on momentum space domains and color recombination, such as in [12,13], although they lack quantitative predictions for small-system observables at the BNL Relativistic Heavy Ion Collider (RHIC). Therefore, in small collision systems, the identification of collective behavior with the hydrodynamic expansion of any potential QGP requires further scrutiny.

Measurements of elliptic and triangular flow (\( \nu_2, \nu_3 \)) at RHIC in \(^3\!\!\mathrm{He} + \mathrm{Au} \) collisions, as well as of \( \nu_2 \) in \( d + \mathrm{Au} \) and \( p + \mathrm{Au} \) collisions, demonstrated that the observed collective response in small collision systems is directly correlated with the event geometry [3,4,14], just as in \( A + A \) collisions where the geometric configuration of the overlapping nuclei determines the pressure gradients that drive the expansion of the resulting QGP. Viscous hydrodynamic calculations successfully describe the measurements in the geometry-controlled experiments at RHIC [15–18], as well as those made at the CERN Large Hadron Collider (LHC) in \( p + \mathrm{Pb} \), and even in \( p + p \) collisions [19]. The success of hydrodynamics in describing small-system collectivity over such a wide range of energies and for a variety of systems is taken as evidence for the claim that the QGP is formed in these collisions and through its expansion translates initial geometry into final-state momentum anisotropy.

If collectivity in small systems can indeed be understood as arising from the expansion of QGP droplets along pressure gradients determined by geometry, there should necessarily be a mass ordering of \( \nu_2(p_T) \) for identified final-state hadrons. Strong radial expansion in the hydrodynamic evolution results in a shifting of the anisotropy pattern to higher \( p_T \) for higher mass hadrons due to a common velocity boost [1]. This fingerprint of hydrodynamic expansion on the \( \nu_2(m,p_T) \) is one of the key signatures of the nearly inviscid fluid nature of the QGP formed in \( A + A \) collisions; see for example [20]. Recently, such mass ordering has been observed in \( d + \mathrm{Au} \) collisions at RHIC [3] and in \( p + \mathrm{Pb} \) collisions at the LHC [21,22].

It is notable that a multiphase transport model (AMPT), an instance of a broader family of kinetic transport models [23], also finds a mass ordering of \( \nu_2(p_T) \) in both \( A + A \) and small systems, despite having only a modest number of parton scatterings and thus nothing close to a radial velocity field as in hydrodynamics [24]. Within AMPT the mass ordering is found to arise from the hadronic rescattering phase, after all partons have coalesced into hadrons, incorporating the different inelastic cross sections for different hadrons [24]. There are other approaches with fragmentation of saturated gluon states [25] and with color strings followed by hydrodynamics [26] that achieve some degree of mass ordering, though currently lacking in any predictions for small systems at RHIC energies.

The present study completes the set of small-system projectile geometry results at top RHIC energy by providing \( \nu_2 \) measurements for pions and (anti)protons (henceforth referred to as “protons”) in central \( p + \mathrm{Au} \) and \(^3\!\!\mathrm{He} + \mathrm{Au} \) collisions at \( \sqrt{s_{_{NN}}} = 200 \text{ GeV} \), and compares to \( \nu_2 \) measurements for pions and (anti)protons in central \( d + \mathrm{Au} \) collisions at the same energy [3]. Detailed comparisons are then made with theory calculations from viscous hydrodynamics, as encoded in the SUPersonic [27] and the \( \mathrm{iebe-vishnu} \) models [18], and the kinetic transport model AMPT.

II. METHODS

The PHENIX collaboration has measured the \( \nu_2(p_T) \) of identified particles in \( p + \mathrm{Au}, \ d + \mathrm{Au}, \) and \(^3\!\!\mathrm{He} + \mathrm{Au} \) collisions. We apply the same analysis procedure to all three
systems in the same centrality class to provide a controlled comparison from which to draw conclusions.

A complete description of the PHENIX detector and its subsystems can be found in [28,29]. Charged particles are reconstructed with the two central arm spectrometers, comprising drift chambers (DCs) and multiwire proportional pad chambers (PCs). Each arm covers an acceptance of $|\eta| < 0.35$ in pseudorapidity and $\pi/2$ in azimuth. Tracks in the drift chamber are matched to hits in the outer detectors. The distribution of differences between hits and projections is approximately Gaussian, with an additional underlying background caused by random associations. To suppress background from particle weak decays and photon conversions, tracks reconstructed with the DCs and the first layer of PCs are required to be matched to the third layer of PCs within three $\sigma$ in the longitudinal and transverse planes, where $p_T$ and charge sign dependent $\sigma$ values are determined from Gaussian fits to residual distributions between PC clusters and the projections of the flow vector. Particle identification (PID) is based on the particle mass with $p_T$-dependent selections in mass-squared calculated using the particle momentum, time of flight, and path length. After track matching and PID selections, some residual background remains in the proton sample at low $p_T$ ($< 1$ GeV/c). In this $p_T$ range, up to 15% of the reconstructed protons are secondary particles that originate from interactions of energetic particles produced in the collisions with detector material, primarily the silicon vertex tracker (VTX), which covers the pseudorapidity range $|\eta| < 1.2$. Detector simulations using GEANT3 [32] indicate that the contamination in the proton sample is negligible for $p_T > 1$ GeV/c, not present in the antiproton distributions, and negligible in the charged-pion sample at all $p_T$. To remove the background in the proton sample, the VTX detector [33] is used in conjunction with the DC to select proton tracks with $p_T < 1$ GeV/c based on their distance of closest approach (DCA) to the primary vertex in the $x$-$y$ plane transverse to the beam direction. The tracks are required to be within two standard deviations of the mean value of the DCA distribution. This additional selection is not applied at higher $p_T$ nor for particle species for which the secondary-particle contamination is negligible. The pions and protons selected for the analysis are identified with purity of over 98% for $p_T$ up to $3$ GeV/c in all collision systems.

The beam-beam counters (BBCs) comprise two arrays of 64 quartz radiator Čerenkov detectors, placed longitudinally $\pm 1.44$ m away from the center of the interaction region (IR), covering $3.0 < |\eta| < 3.9$ and $2\pi$ in azimuth. The forward vertex detector (FVTX) is a silicon detector comprised of two identical end-cap assemblies symmetrically arranged in the longitudinal direction around the IR, covering the pseudorapidity acceptance $1.0 < |\eta| < 3.0$. Using hit clusters, it can detect charged particles with an efficiency greater than 95%. The arms of the BBC and FVTX in the Au-going direction (i.e., $\eta < 0$) are designated as the south arms and designated BBC-S and FVTX-S, respectively. We use the south arm of each of these detectors to determine the event plane of the collision. In addition, timing information from the BBC is used to determine the $z$ vertex of the collision. In this analysis, a $\pm 10$ cm cut on the collision $z$ vertex is applied.

The $p + Au$ data set for this analysis, taken during the 2015 run at RHIC, comprises $0.84 \times 10^7$ minimum-bias (MB) triggered events and $1.4 \times 10^5$ high-multiplicity (HM) triggered events. The MB trigger is defined as a coincidence in the same event between both arms of the BBC detector [34], requiring that at least one photomultiplier tube (PMT) fire in each. This definition allows $84 \pm 4\%$ of the total inelastic $p + Au$ events to be captured. The HM trigger is based on the MB trigger, but with the additional requirement of more than 35 photomultiplier tubes firing in the BBC-S. Events that satisfy this trigger condition correspond roughly to the 5% most central event class. The use of this high-multiplicity trigger allows us to increase our central $p + Au$ event sample size by a factor of 25. The $\text{^3He} + Au$ data set for this analysis were recorded during the 2014 run at RHIC, and comprises $1.6 \times 10^9$ MB events and $480 \times 10^7$ HM events. The HM trigger used in $\text{^3He} + Au$ is also based on the MB trigger, but with the additional requirement of more than 48 photomultiplier tubes firing in the BBC-S. The $d + Au$ data set was recorded during the 2008 run, and comprises $1.56 \times 10^7$ MB events.

In this analysis, we select the 0%–5% most central events in all collision systems, where centrality classes are defined as percentiles of the total charged-particle multiplicity as measured in the BBC-S, following the procedure presented in [35]. We follow the identical analysis procedure that was previously used in $\text{^3He} + Au$ and $p + Au$ collisions [4,14] to measure $v_2$ for inclusive charged hadrons. Namely, we measure $v_2$ for final-state single hadrons at midrapidity with respect to the event plane [36] of the collision, as follows:

$$v_2(p_T) = \frac{\cos 2(\phi_{\text{particle}}(p_T) - \psi_{\text{VTX}})}{\text{Res}(\psi_{\text{VTX}})}.$$  

(1)

The event-plane angle is determined by the event flow vector $Q_2$ measured in the Au-going direction where the particle multiplicity is higher. The $Q$ vectors are recentered according to the standard procedure described in [36]. The raw event-plane angle is estimated by

$$\psi_{\text{raw}} = \text{atan2}(Q_{2x}^2, Q_{2y}^2)/2,$$  

(2)

where $Q_{2x}$ and $Q_{2y}$ are the $x$ and $y$ projections of the flow vector. A standard flattening procedure described in [36] is applied to the $\psi_{\text{raw}}$ distributions to remove detector acceptance effects. The second-order event-plane angle $\psi_{2,\text{VTX}}$ is determined using the FVTX-S detector. Its resolution $\text{Res}(\psi_2)$ is evaluated using the standard three-subevent method [36], correlating independent measurements made in the BBC-S, FVTX-S, and the central arms. The resolution of the event plane is found to be $\text{Res}(\psi_{2,\text{VTX}}, p + Au) = 0.171$ in $p + Au$ collisions, and $\text{Res}(\psi_{2,\text{VTX}}, \text{^3He} + Au) = 0.274$ in $\text{^3He} + Au$ collisions. If the event plane is instead measured using the BBC-S detector, we obtain a lower resolution $\text{Res}(\psi_2, \text{BBC-S}, p + Au) = 0.062$ in $p + Au$ collisions and $\text{Res}(\psi_2, \text{BBC-S}, \text{^3He} + Au) = 0.070$ in $\text{^3He} + Au$ collisions.
The event-plane resolution depends on the particle multiplicity registered in the detectors used for event-plane determination, which results in better resolution in the FVTX-S than in the BBC-S.

III. SYSTEMATIC UNCERTAINTIES

We identify the following as the main sources of systematic uncertainty in the $v_2(p_T)$ measurement:

Background tracks from weak decays, photon conversions, and misreconstructed tracks. We estimate the magnitude of this uncertainty by narrowing the spatial matching windows of the tracks and the hits in the outermost layer of the PC, from $3\sigma$ to $2\sigma$ and comparing the resulting values of $v_2(p_T)$. The relative uncertainty in $v_2$ is 2% in both $p + Au$ and $^3$He + Au collisions.

Multiple collisions per bunch crossing. Also referred to as event pile-up, these are observed to occur at an average rate of 8% (4%–5%) in the centrality class of interest in $p + Au$ ($^3$He + Au) collisions. We estimate the associated systematic uncertainty by analyzing low- and high-luminosity subsets of the data. The measured $v_2$ was found to decrease in events with higher pile-up rates, and an asymmetric systematic uncertainty of $+7\%$ was assigned in $p + Au$, and $+5\% - 0\%$ was assigned in $^3$He + Au collisions.

Nonflow correlations from elementary processes. There are many sources of correlations among particles which enhance the measured $v_2$, yet are unrelated to collective flow, such as momentum conservation. We use a reference method previously employed in PHENIX analyses of small-system collectivity [14] to assign a $p_T$-dependent asymmetric uncertainty with a maximum value of $+12\% - 23\%$ for the highest $p_T$ bin in $p + Au$ collisions. This can be compared to the corresponding values of $+10\% - 20\%$ [3] and $+19\% - 23\%$ [4] in $d + Au$ and $^3$He + Au collisions, respectively. The nonflow effect has a larger relative contribution in $p + Au$ collisions due to the smaller multiplicity in this system.

Detector acceptance asymmetry. In $p + Au$ collisions, there exists an asymmetry between the east ($\pi/2 < \phi < 3\pi/2$) and west ($-\pi/2 < \phi < \pi/2$) acceptance of the detectors, originating from a 3.6 mrad offset between the beams at the collision point and the longitudinal axis of PHENIX. This offset is necessary to compare to $p + Au$ collisions at the same momentum per nucleon. We account for this effect by performing a counter-rotation on every central arm track and detector element in the FVTX and the BBC, taking care to restore their azimuthal anisotropy by re-weighting. There remains a small residual asymmetry after applying these corrections in $p + Au$. Meanwhile in $^3$He + Au collisions this beam angle is negligible and we assign a value of 5% for this systematic uncertainty by taking the difference of $v_2$ when measured exclusively in the east or west arms in both $p + Au$ and $^3$He + Au collisions.

Event plane measured with different detectors. We observe the measured $v_2(p_T)$ to differ when using the event plane as determined using the BBC-S or the FVTX-S detectors. Despite the large difference in event-plane resolution in these two detectors, the differences in the measured $v_2(p_T)$ values are only of the order 3% in $p + Au$, and 5% in $^3$He + Au collisions, which demonstrates that the corrections for event-plane resolution are well understood.

Particle identification purity. The effect of particle identification purity on the measured $v_2$ values is evaluated by varying the width of particle selection windows in the mass-squared vs $p_T$ space from $2\sigma$ to $1.5\sigma$. The uncertainty is found to be at most 2% for both pions and protons in both collision systems.

Table I summarizes all these systematic uncertainties, categorized by type: A, point-to-point uncorrelated between $p_T$ bins; B, point-to-point correlated between $p_T$ bins; and C, overall normalization uncertainty in which all data points are scaled by the same multiplicative factor.

IV. RESULTS AND DISCUSSION

Figure 1 shows $v_2(p_T)$ for identified pions and protons in 0%–5% central $p + Au$, $d + Au$ [3], and $^3$He + Au collisions. For both pions and protons the $v_2(p_T)$ values are higher in $d + Au$ and $^3$He + Au collisions than in $p + Au$ collisions, as previously observed for inclusive charged hadrons [14]. These values follow the ordering of the initial geometric eccentricity $\varepsilon_2(p + Au) < \varepsilon_2(3\text{He} + Au) \approx \varepsilon_2(d + Au)$.

In the $d + Au$ and $^3$He + Au systems, there is a clear separation between the pion and proton $v_2$, with the pion $v_2$ being larger than the proton $v_2$ for $p_T \lesssim 1.5$ GeV/$c$ and this order being reversed at higher $p_T$. In the $p + Au$ system, the pion and proton $v_2(p_T)$ values show smaller overall splitting. The splitting pattern and the reversal of the mass ordering above $p_T \gtrsim 1.5$ GeV/$c$ is qualitatively the same as has been observed in $Au + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV [20,37].

Figure 1 compares the measured $v_2(p_T)$ with hydrodynamic calculations using the SUPERSONIC model [38]. This model comprises standard Monte Carlo Glauber initial conditions followed by a viscous hydrodynamic expansion stage with $\eta/s = 0.08$, Cooper-Frye hadronization at $T = 170$ MeV, and a subsequent hadronic cascade code, B3D [39]. The SUPERSONIC model additionally incorporates pre-equilibrium dynamics via a calculation in the context of the anti–de Sitter-space/conformal-field-theory (AdS/CFT) correspondence [40–42]. These hydrodynamic calculations are matched to the measured charged-particle density at midrapidity in the 0%–5% centrality class for $d + Au$ and $^3$He + Au (i.e., $dN_{ch}/d\eta = 20.0$ and 27.0, respectively [43]). Because $dN_{ch}/d\eta$ has not yet been measured in $p + Au$ collisions, a value of $dN_{ch}/d\eta = 10.0$ was extrapolated for this system [38].
FIG. 1. Transverse momentum dependence of $v_2$ for identified pions and protons within $|\eta| < 0.35$ in 0–5% central $p + Au$, $d + Au$ [3], and $^{3}\text{He} + Au$ collisions. The measurements are compared to hydrodynamic calculations using the SUPERSONIC model [38], matched to the same multiplicity at midrapidity as the data. Note that the data points shown include nonflow contributions, whose estimated magnitude is accounted for in the asymmetric systematic uncertainties.

We observe that the hydrodynamic calculations agree with the data within uncertainties at low $p_T$, but fail to describe the reversal of the pion and proton $v_2$ ordering for $p_T > 1.5$ GeV/c. Viscous hydrodynamic calculations similarly describe Au + Au $v_2$ data at low $p_T$ but do not match the strong reverse ordering at higher $p_T$. For $p_T < 1.5$ GeV/c, the mass splitting increases in going from $p + Au$ to $d + Au$ and $^{3}\text{He} + Au$ as also seen in the data. Within the context of hydrodynamic calculations, this is due to the increased radial flow and consequently larger velocity boost when going from the smaller and lower multiplicity systems to the larger and higher multiplicity systems.

In the case of ideal hydrodynamics, i.e., with zero viscosity, the $v_2$ values for all hadrons asymptotically approach each other at high $p_T$ [44]. However, viscous effects and the incorporation of late-stage hadronic rescattering have the effect of lowering the high $p_T$ $v_2$ values, more strongly so for pions. This can be seen in the SUPERSONIC calculations. However, the predicted high $p_T$ splitting is much smaller than that seen in the $d + Au$ and $^{3}\text{He} + Au$ data. It is in this high $p_T$ region in $A + A$ collisions that proposals of hadronization via recombination [45] have been set forth to explain the $v_2$ splitting as well as the observation of enhanced baryon yields [46,47].

Figure 2 shows results from another viscous hydrodynamic calculation, iEBE-VISHNU [18]. The calculation includes event-by-event fluctuating initial conditions via Monte Carlo Glauber simulation and then viscous hydrodynamics starting at $\tau_0 = 0.6$ fm/c. The hydrodynamic evolution utilizes an $\eta/s = 0.08$ for RHIC energies and ends at $T = 155$ MeV. After that point, hadronization occurs and hadronic rescattering is implemented using URQMD 3.4 [48,49]. The calculation results with viscous hydrodynamics followed by hadronic rescattering show good agreement with the experimental data for all three small systems. Also shown are results with no hadronic rescattering that reveal almost no change in the $v_2$ for pions and protons for $p_T < 1.5$ GeV/c. The authors [18] conclude that hadronic

FIG. 2. Same as Fig. 1, but also shown are $v_2(p_T)$ calculations using the iEBE-VISHNU hydrodynamic model [18], illustrating the effect of hadronic rescattering on the mass-dependent $v_2$ values.
rescattering plays a modest but important role in the system development and particle species dependence of $v_2$ in these small systems.

Figure 3 compares the experimental data to transport model calculations of $v_2(p_T)$ for each system using AMPT [23]. The AMPT model has been successful in describing various features of small-system collectivity at RHIC and the LHC, over a wide range of collision energies [50–54]. It uses Monte Carlo Glauber initial conditions, and it models the evolution of the system via strings that melt into partons, followed by a succession of partonic scattering, spatial coalescence, and late-stage hadronic scattering implemented in ART [55]. We show results from the full AMPT time evolution with a partonic cross section $\sigma_{\text{part}} = 1.5$ mb, as well as results with the hadronic rescattering turned off. We calculate $v_2$ in central (i.e., $b < 2$ fm) AMPT events, relative to the parton participant plane. That is, the event plane is calculated using the initial coordinates of the partons, as they emerge from string melting at early times. We observe that the full AMPT describes the mass-dependent splitting in $d + Au$ and $^3He + Au$ for $p_T < 1.5$ GeV/c. In $p + Au$ collisions, the model results in a smaller mass splitting, which is reversed at high $p_T$ yet below the experimental data. As noted in [24], AMPT generates significant $v_2$, and in particular mass splitting, in the hadronic rescattering stage. As also shown in Fig. 3, the results without rescattering have significantly lower $v_2$ values and almost no mass splitting for $p_T < 1$ GeV/c. At higher $p_T$, the feature of $v_2$ for protons being greater than pions remains without hadronic rescattering and is associated with the spatial coalescence implementation for hadronization.

Figure 4 shows the ratio of pion to proton $v_2(p_T)$ in all collision systems, with the corresponding theory curves overlaid. In the ratio, many systematic uncertainties cancel and thus one sees more precisely that the data exhibit a similar trend in all collision systems where pion $v_2$ is larger than proton $v_2$ for $p_T < 1.5$ GeV/c, with the order reversed at higher $p_T$. Linear fits on these ratios ranged from 0.5 to 3.0 GeV/c, which include both the statistical and the systematic uncertainties, yield slope values of $-0.22 \pm 0.07$ in $p + Au$ collisions, $-0.40 \pm 0.07$ in $d + Au$ collisions, and $-0.34 \pm 0.03$ in $^3He + Au$ collisions. In this ratio, one can clearly see that SUPERSONIC, iEBE-VISHNU, and full AMPT modeling describe the mass splitting in $d + Au$ and $^3He + Au$ for $p_T < 1.5$ GeV/c. In the $p + Au$ case, it appears that the
calculations over predict the more modest splitting at the lowest measured $p_T = 0.5$ GeV/$c$. The results from AMPT without hadronic rescattering have very little mass splitting at low $p_T$ in disagreement with the experimental data, particularly for $d + Au$ and $^3He + Au$ collisions. Above the crossing point, SUPERSONIC, and EBE-VISHNU predict nearly flat ratios, while AMPT describes the ratio of the $v_2$ values, but not their individual magnitudes. These differences may be attributed to the different hadronization mechanisms (e.g., if recombination is included) in the models.

The observation of a mass-dependent $v_2$ strengthens the case for associating small-system collectivity with the expansion of QGP droplets formed in these collisions, where the splitting can be understood in terms of the presence of a common radial flow field with anisotropic modifications driven by initial geometry. However, the theoretical calculations presented in this paper provide several alternative explanations of how the azimuthal anisotropies for different particle species may occur. For instance, in kinetic transport, parton scattering translates initial geometry into final-state momentum anisotropy, but it does not account for the observed mass splitting. Instead, this feature has been shown to arise solely from the hadronic rescattering stage where different hadrons have different inelastic cross sections [24]. There is more hadronic rescattering in $^3He + Au$ and $d + Au$ than in $p + Au$ for these central collisions because they have a higher particle density. It is interesting that this conclusion based on AMPT regarding the contribution of the hadronic rescattering stage is opposite to that reached using viscous hydrodynamics [18]. Differences in the hadronic scattering packages B3D [39] used in SUPERSONIC, URQMD [49] used in EBE-VISHNU, and ART [23] used in AMPT warrant further investigation.

Finally, we return to the high $p_T$ region where neither viscous hydrodynamics nor parton transport calculations match the data. Figure 5 shows the scaling of $v_2$ with constituent quarks as a function of transverse kinetic energy per quark $K_{T}/n_{q} = (p_{T}^{2} + m^{2} - m)/n_{q}$, where $m$ is the mass of the hadron and $n_{q}$ represents the number of constituent quarks in the hadron. In all three systems, the $v_2/n_{q}$ for pions and protons as a function of $K_{T}/n_{q}$ follow an approximate quark-number scaling. The same scaling was previously observed in $A + A$ collisions [20, 37, 56, 57]. At intermediate $p_T$ ($1.5 - 4$ GeV/$c$), the enhancement of baryons over mesons and the reversed mass ordering of $v_2$ in $A + A$ collisions have been interpreted in terms of hadronization via recombination. At even higher $p_T$, the scaling breaks down in noncentral $A + A$ collisions [58]. Similar to the observations in $A + A$, the enhancement of baryon over meson yields at intermediate $p_T$ has been observed in central $d + Au$ collisions [31], and now we also see the scaling with $n_{q}$ in all three small collision systems. The scaling works better in $d + Au$ and $^3He + Au$ collisions, where the projectile sizes and the particle densities are higher.

V. SUMMARY

We have presented results on the transverse momentum dependence of elliptic flow $v_2$ of identified pions and (anti)protons in central 0%-5% $p + Au$, $d + Au$, and $^3He + Au$ at $\sqrt{s_{NN}} = 200$ GeV. The $d + Au$ and $^3He + Au$ data show a clear mass splitting with $v_2$ for pions larger than $v_2$ for protons for $p_T < 1.5$ GeV/$c$, and then a reversal of the ordering at higher $p_T$. The mass dependence is smaller in $p + Au$ collisions than in $d + Au$ and $^3He + Au$ collisions. Theoretical calculations, from viscous hydrodynamics and parton transport, yield a reasonable description of the low $p_T$ mass splitting, despite having quite different mechanisms responsible for the observed mass dependence. At higher $p_T$, both models fail to describe the data, missing either the absolute value or the observed mass dependence. A scaling of $v_2$ with the number of constituent quarks, motivated by recombination, is observed in the data and is found to hold better in $d + Au$ and $^3He + Au$ collisions, where the particle multiplicities are larger. All of these observations are qualitatively similar to previously measured effects in $A + A$ collisions. This again puts into sharp focus the question of whether the observations can be understood as arising from the same underlying physics, e.g., inviscid fluid expansion, in both large and small collisions systems. While alternative physics mechanisms have been
proposed, detailed comparisons with the experimental results are not yet available. This paper provides important constraints on the mass dependence of the particle correlations in small collision systems.

ACKNOWLEDGMENTS

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of the Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), J. Bolyai Research Scholarship, EFOP, the New National Excellence Program (ÚNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the U.S.-Hungarian Fulbright Foundation, and the U.S.-Israel Binational Science Foundation.

APPENDIX: DATA TABLES

Tables II and III show the values of \(v_2(p_T)\) for pions, kaons, and protons in central 0%–5% \(p + \text{Au}\) and \(^3\text{He} + \text{Au}\) collisions at \(\sqrt{s_{NN}} = 200\) GeV.

### TABLE II. Values of \(v_2(p_T)\) for pions, kaons, and protons in central 0%–5% \(p + \text{Au}\) collisions at \(\sqrt{s_{NN}} = 200\) GeV.

<table>
<thead>
<tr>
<th>(p_T) range (GeV/c)</th>
<th>(v_2)</th>
<th>(\pm) stat</th>
<th>(\pm) syst</th>
<th>(\pm) syst</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.40–0.60)</td>
<td>0.030</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>(0.60–0.80)</td>
<td>0.046</td>
<td>0.002</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>(0.80–1.00)</td>
<td>0.059</td>
<td>0.002</td>
<td>0.004</td>
<td>0.009</td>
</tr>
<tr>
<td>(1.00–1.20)</td>
<td>0.073</td>
<td>0.003</td>
<td>0.005</td>
<td>0.013</td>
</tr>
<tr>
<td>(1.20–1.50)</td>
<td>0.088</td>
<td>0.003</td>
<td>0.006</td>
<td>0.016</td>
</tr>
<tr>
<td>(1.50–1.90)</td>
<td>0.100</td>
<td>0.005</td>
<td>0.007</td>
<td>0.021</td>
</tr>
<tr>
<td>(1.90–2.40)</td>
<td>0.113</td>
<td>0.008</td>
<td>0.008</td>
<td>0.025</td>
</tr>
<tr>
<td>(2.40–3.00)</td>
<td>0.147</td>
<td>0.018</td>
<td>0.011</td>
<td>0.035</td>
</tr>
</tbody>
</table>

### APPENDIX: DATA TABLES

### TABLE III. Values of \(v_2(p_T)\) for pions, kaons, and protons in central 0%–5% \(^3\text{He} + \text{Au}\) collisions at \(\sqrt{s_{NN}} = 200\) GeV.

<table>
<thead>
<tr>
<th>(p_T) range (GeV/c)</th>
<th>(v_2)</th>
<th>(\pm) stat</th>
<th>(\pm) syst</th>
<th>(\pm) syst</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.40–0.60)</td>
<td>0.051</td>
<td>0.001</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>(0.60–0.80)</td>
<td>0.074</td>
<td>0.001</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>(0.80–1.00)</td>
<td>0.091</td>
<td>0.001</td>
<td>0.005</td>
<td>0.007</td>
</tr>
<tr>
<td>(1.00–1.20)</td>
<td>0.108</td>
<td>0.002</td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>(1.20–1.40)</td>
<td>0.124</td>
<td>0.002</td>
<td>0.007</td>
<td>0.009</td>
</tr>
<tr>
<td>(1.40–1.60)</td>
<td>0.130</td>
<td>0.003</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>(1.60–1.80)</td>
<td>0.135</td>
<td>0.004</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>(1.80–2.00)</td>
<td>0.143</td>
<td>0.005</td>
<td>0.008</td>
<td>0.011</td>
</tr>
<tr>
<td>(2.00–2.20)</td>
<td>0.138</td>
<td>0.008</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>(2.20–2.40)</td>
<td>0.135</td>
<td>0.010</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>(2.40–2.60)</td>
<td>0.142</td>
<td>0.014</td>
<td>0.008</td>
<td>0.010</td>
</tr>
<tr>
<td>(2.60–2.80)</td>
<td>0.133</td>
<td>0.021</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>(2.80–3.00)</td>
<td>0.134</td>
<td>0.029</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>(0.40–0.60)</td>
<td>0.041</td>
<td>0.003</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>(0.60–0.80)</td>
<td>0.054</td>
<td>0.003</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>(0.80–1.00)</td>
<td>0.077</td>
<td>0.003</td>
<td>0.004</td>
<td>0.006</td>
</tr>
<tr>
<td>(1.00–1.20)</td>
<td>0.093</td>
<td>0.004</td>
<td>0.005</td>
<td>0.007</td>
</tr>
<tr>
<td>(1.20–1.40)</td>
<td>0.109</td>
<td>0.005</td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>(1.40–1.60)</td>
<td>0.115</td>
<td>0.006</td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>(1.60–1.80)</td>
<td>0.123</td>
<td>0.007</td>
<td>0.007</td>
<td>0.009</td>
</tr>
<tr>
<td>(1.80–2.00)</td>
<td>0.142</td>
<td>0.009</td>
<td>0.008</td>
<td>0.010</td>
</tr>
<tr>
<td>(0.40–0.60)</td>
<td>0.037</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>(0.60–0.80)</td>
<td>0.049</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>(0.80–1.00)</td>
<td>0.072</td>
<td>0.002</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>(1.00–1.20)</td>
<td>0.093</td>
<td>0.003</td>
<td>0.005</td>
<td>0.007</td>
</tr>
<tr>
<td>(1.20–1.40)</td>
<td>0.108</td>
<td>0.004</td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>(1.40–1.60)</td>
<td>0.127</td>
<td>0.005</td>
<td>0.007</td>
<td>0.009</td>
</tr>
<tr>
<td>(0.40–0.60)</td>
<td>0.142</td>
<td>0.006</td>
<td>0.008</td>
<td>0.010</td>
</tr>
<tr>
<td>(0.60–0.80)</td>
<td>0.151</td>
<td>0.007</td>
<td>0.008</td>
<td>0.011</td>
</tr>
<tr>
<td>(0.80–1.00)</td>
<td>0.163</td>
<td>0.009</td>
<td>0.009</td>
<td>0.012</td>
</tr>
<tr>
<td>(1.00–1.20)</td>
<td>0.174</td>
<td>0.012</td>
<td>0.009</td>
<td>0.013</td>
</tr>
<tr>
<td>(1.20–1.40)</td>
<td>0.184</td>
<td>0.014</td>
<td>0.010</td>
<td>0.014</td>
</tr>
<tr>
<td>(1.40–1.60)</td>
<td>0.189</td>
<td>0.018</td>
<td>0.010</td>
<td>0.014</td>
</tr>
<tr>
<td>(0.40–0.60)</td>
<td>0.169</td>
<td>0.016</td>
<td>0.013</td>
<td>0.040</td>
</tr>
</tbody>
</table>


[58] A. Adare et al. (PHENIX Collaboration), Deviation from quark-number scaling of the anisotropy parameter $v_2$ of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 85, 064914 (2012).