Changes in Catalytic and Adsorptive Properties of 2 nm Pt3Mn Nanoparticles by Subsurface Atoms

Zhenwei Wu
Purdue University

Brandon C. Bukowski
Purdue University

Zhe Li
Iowa State University

Cory Milligan
Purdue University

Lin Zhou
Ames Laboratory, linzhou@ameslab.gov

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_manuscripts

Part of the Catalysis and Reaction Engineering Commons, and the Nanoscience and Nanotechnology Commons

Recommended Citation

Wu, Zhenwei; Bukowski, Brandon C.; Li, Zhe; Milligan, Cory; Zhou, Lin; Ma, Tao; Wu, Yue; Ren, Yang; Ribeiro, Fabio H.; Delgass, W. Nicholas; Greeley, Jeffrey; Zhang, Guanghui; and Miller, Jeffrey T., "Changes in Catalytic and Adsorptive Properties of 2 nm Pt3Mn Nanoparticles by Subsurface Atoms" (2018). Ames Laboratory Accepted Manuscripts. 504.
https://lib.dr.iastate.edu/ameslab_manuscripts/504

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Changes in Catalytic and Adsorptive Properties of 2 nm Pt3Mn Nanoparticles by Subsurface Atoms

Abstract
Supported multimetallic nanoparticles (NPs) are widely used in industrial catalytic processes, where the relation between surface structure and function is well-known. However, the effect of subsurface layers on such catalysts remains mostly unstudied. Here, we demonstrate a clear subsurface effect on supported 2 nm core–shell NPs with atomically precise and high temperature stable Pt3Mn intermetallic surface measured by in situ synchrotron X-ray Diffraction, difference X-ray Absorption Spectroscopy, and Energy Dispersive X-ray Spectroscopy. The NPs with a Pt3Mn subsurface have 98% selectivity to C–H over C–C bond activation during propane dehydrogenation at 550 degrees C compared with 82% for core–shell NPs with a Pt subsurface. The difference is correlated with significant reduction in the heats of reactant adsorption due to the Pt3Mn intermetallic subsurface as discerned by theory as well as experiment. The findings of this work highlight the importance of subsurface for supported NP catalysts, which can be tuned via controlled intermetallic formation. Such approach is generally applicable to modifying multimetallic NPs, adding another dimension to the tunability of their catalytic performance.

Disciplines
Catalysis and Reaction Engineering | Chemical Engineering | Nanoscience and Nanotechnology

Authors
Zhenwei Wu, Brandon C. Bukowski, Zhe Li, Cory Milligan, Lin Zhou, Tao Ma, Yue Wu, Yang Ren, Fabio H. Ribeiro, W. Nicholas Delgass, Jeffrey Greeley, Guanghui Zhang, and Jeffrey T. Miller

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ameslab_manuscripts/504
Changes in Catalytic and Adsorptive Properties of 2 nm Pt₃Mn Nanoparticles by Subsurface Atoms

Zhenwei Wu†, Brandon C. Bukowski†, Zhe Li†, Cory Milligan‡, Lin Zhou§, Tao Ma§, Yue Wu‡, Yang Ren†, Fabio H. Ribeiro†, W. Nicholas Delgass†, Jeffrey Greeley§, Guanghui Zhang*,†, Jeffrey T. Miller*,†

† Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
‡ Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
§ Department of Materials Science, Ames Laboratory, Ames, IA, USA
* X-Ray Science Division, Argonne National Laboratory, Argonne, IL, USA

Supporting Information Placeholder

ABSTRACT: Supported multimetallic nanoparticles (NPs) are widely used in industrial catalytic processes, where the relation between surface structure and function is well-known. However, the effect of subsurface layers on such catalysts remains mostly unstudied. Here, we demonstrate a clear subsurface effect on supported 2 nm core-shell NPs with atomically precise and high temperature stable Pt₃Mn intermetallic surface measured by in situ synchrotron X-ray Diffraction, difference X-ray Absorption Spectroscopy and Energy Dispersive X-ray Spectroscopy. The NPs with a Pt₃Mn subsurface have 98% selectivity to C-H over C-C bond activation during propane dehydrogenation at 550 °C compared with 82% for core-shell NPs with a Pt subsurface. The difference is correlated with significant reduction in the heats of reactant adsorption due to the Pt₃Mn intermetallic subsurface as discerned by theory as well as experiment. The findings of this work highlight the importance of subsurface for supported NP catalysts, which can be tuned via controlled intermetallic formation. Such approach is generally applicable to modifying multimetallic NPs, adding another dimension to the tunability of their catalytic performance.

INTRODUCTION

Supported multimetallic nanoparticles (NPs) are among the most widely used catalysts in industry and their properties are highly tunable by control of their composition and structure.1,2 The geometric and electronic effects related to the NP surface have been well studied since the early work of Sinfelt.3 It has been, however, very difficult to identify any subsurface effects on NPs, even while changing the subsurface metal atoms has been observed to have a large impact on single crystal model catalysts by surface science and Density Functional Theory (DFT) studies,4-7 as well as recently in electrochemical processes.5,9

For supported NPs, the challenges to study the effect of subsurface layers lie in the difficulties in preparing and characterizing materials with the same surface structure but different subsurface phases. It was previously suggested that substituting a Pt NP core with a second noble metal improved its activity for preferential oxidation of carbon monoxide in hydrogen below 200 °C.10,11 Nevertheless, the structure of such catalyst was not determined under reaction condition, and it was not stable at higher temperatures due to diffusion between the surface and subsurface, forming a solid solution. This type of phase has randomly disordered bimetallic surface as well as subsurface as typical for noble metal mixtures.10,12 Further identification and investigation of the subsurface effect on supported NPs require improved methods to separately control and characterize surfaces and subsurfaces that are atomically precise and high temperature stable.

More stable NP core-shell structures can be achieved by intermetallic compound phases which feature precisely ordered arrays of different metals.13,14 They contain strong heteroatomic bonds that minimize diffusion and minimized structural changes.15,16 NPs with intermetallic shells on top of a heterogeneous core have been recently shown to maintain surface ordering at high temperatures.17 Herein, we investigate the effect of subsurface composition on supported 2 nm core-shell NPs (Pt₃Mn shell on Pt core) versus full-body intermetallic NPs (Pt₃Mn shell on Pt₃Mn core). A Pt₃Mn subsurface instead of Pt significantly improves the catalytic selectivity for C-H activation for propane dehydrogenation at 550 °C, which is correlated to a large decrease of adsorbate binding strength according to DFT calculation as well as experimental measurements. The subsurface effect offers enhanced catalytic performance and tunable adsorptive properties, demonstrating its potential in modifying NP catalysts for many reactions.

EXPERIMENTAL SECTIONS

Catalyst synthesis Two Pt-Mn/SiO₂ catalysts, namely Pt-Mn and Pt₃Mn-s, were synthesized by sequential incipient wetness impregnation (IWI). The pH of the impregnated solutions was controlled to be around 11, guided by the strong electrostatic adsorption (SEA) method, which ensured uniform nanoparticle sizes. To prepare Pt-Mn, 2.28 g manganese nitrate tetrahydrate (Sigma-Aldrich) and 3.49 g citric acid (Sigma-Aldrich) were dissolved in 3.0 mL of de-ionized water. The pH of the solution was adjusted by adding 30 % ammonium hydroxide solution (Sigma-Aldrich), and the volume was adjusted to 7.5 mL by adding de-ionized water. This manganese precursor solution was then added dropwise to 10.0 g of silica (Davasil 636 silica gel from Sigma–Aldrich, 480 m²/g and 0.75 mL/g pore volume) and stirred. The resulting solids were dried overnight at 125 °C and calcined at 550 °C for 3.0 h. On the obtained Mn/SiO₂, a second impregnation was conducted to load platinum. 0.20 g of tetrachloroplatinum nitrate (Sigma–Aldrich) was dissolved in 3 mL of de-ionized water, whose pH was again adjusted to 11 by 30 % ammonium hydroxide solution. The resulting solution was added dropwise to 5.0 g of Mn/SiO₂ and the resulting material was dried overnight at 125 °C, calcined at 225 °C for 3 h and further reduced at 550°C in 5% H₂/N₂ at 50 cm²/min.
for 0.5 h. The same procedure was used to prepare the Pt:Mn-s catalyst except that in the first step, 0.91 g manganese nitrate tetrahydrate and 1.40 g citric acid were used to prepare the manganese precursor solution. Also prepared was a monometallic Pt/SiO₂ catalyst with 2 wt. % Pt, on which platinum was loaded by the same procedure as the second impregnation step in the preparation of Pt-Mn catalysts.

Characterization of supported 2 nm NPs. Scanning transmission electron microscopy (STEM) images were taken at Birck Nanotechnology Center at Purdue University using an FEI Titan Scanning Transmission Electron Microscope (80-300 kV, 1 nm spatial resolution in STEM). Energy-Dispersive X-ray Spectroscopy was measured on a Titan Themis 300 probe corrected TEM with a Super-X E DX detector from Sensitive Instrument Facility of Ames Laboratory. In situ synchrotron X-ray diffraction (sxXRD) measurements were performed at the 11-ID-D insertion device beamline at the advanced photon source (APS), Argonne National Laboratory. Data were acquired in Laue transmission mode using X-rays at 105.59 keV (λ = 0.117418 Å) and a PerkinElmer large area detector with typical exposure times of 5 s, a total of 30 exposures and 3 scans for each sample. Samples were pressed into a thin pellet and loaded into a Linkam Thermal Stage which allowed reactant gas flow during the in situ measurements. In situ X-ray absorption spectroscopy (XAS) at the Pt L₃ edge (11.564 keV) and Mn K edge (6.539 keV) were taken on the 10-BM bending magnet beamline of the Materials Research Collaborative Access Team (MRCAT) at the Advanced Photon Source (APS). Argonne National Laboratory. The data were collected in transmission mode. Catalyst samples as well as reference compounds were ground into fine powders and pressed into a cylindrical sample holder, which was loaded into a tube reactor allowing gas flow during in situ measurement. X-ray photoelectron spectroscopy (XPS) data were obtained using a Kratos Axis Ultra DLD spectrometer with monochromatic Al Kα radiation (1486.6 eV) at pass energy of 20 and 160 eV for high-resolution and survey spectra, respectively. A commercial Kratos charge neutralizer was used to avoid non-homogeneous electric charge of non-conducting powder and to achieve better resolution. The XPS data were collected on reduced samples after they were transferred in vacuum to the spectrometer sample stage and were not exposed to air.

Propane Dehydrogenation Evaluation of the propane dehydrogenation performance was carried out in a quartz fixed-bed reactor with 3/8-inch (~1 cm) inner diameter. The catalysts with weights ranging from 10 mg to 100 mg were diluted with SiO₂ to achieve total bed weight of 1 g and height of ~3 cm. A thermocouple within a stainless steel thermosteal well was placed at the center of the catalyst bed to measure the reaction temperature inside the bed. The products were analyzed with Agilent 7890A gas chromatograph system equipped with a Flame Ionization Detector (FID). Before each test at 550 °C, the catalyst was first reduced under 50 cm³/min 5% H₂/N₂ while the temperature was raised to 550 °C at a rate of 15 °C/min and held at 550 °C for 30 minutes. For all propane dehydrogenation measurements, the reaction atmosphere contained 1.25 % C₃H₄ and varied concentration of H₂ balanced in N₂ with a total flow rate of 200 cm³/min.

CO equilibrium chemisorption The CO chemisorption uptakes were measured at various temperatures from -115 °C to 500 °C on a Micromeritics Autochem 2920 automated catalyst characterization system. Around 0.1 g of the catalyst was loaded into a U-shaped quartz reactor tube. Before each chemisorption experiment, the catalyst was first heated to 550 °C at 20 °C/min in 50 cm³/min of 5% H₂/N₂ and kept at this temperature for 0.5 h, then cooled to 350 °C in the same atmosphere before the flow was switched to 50 cm³/min of He. After purging with He at 350 °C for 0.5 h, the catalyst was further cooled or heated to the temperature where the CO pulses were dosed and the measurements taken. CO coverages at different temperatures (θ/T) were calculated by normalizing the corresponding CO uptakes to the saturated CO adsorption.

Density Functional Theory All DFT calculations are performed with self-consistent, periodic, density function theory using the Vienna Ab-initio Simulation Package (VASP). The Perdew-Burke-Ernzerhof (PBE) exchange-correlation function was using projector-augmented wave (PAW) pseudopotentials in the full potential linearized augmented plane wave (FLAPW) formalism. All calculations are performed with spin polarization. For bulk lattices of Pt and Pt:Mn a cutoff energy of 600 eV was considered with a force-convergence criterion of 20 meV/Å. The Methfessel-Paxton smearing method was used with a Gamma-centered 10x10x10 K-point grid. Relaxed lattice constants for bulk Pt and Pt:Mn were found to be a = 3.98 Å and a = 3.93 Å, respectively. 2x2x5 surface slabs of the (111) surface were cut for both Pt and Pt:Mn and included 10 Å of vacuum above the surface. A dipole correction was applied parallel to the plane of the slab to reduce image-image interaction errors. The bottom two layers of the slab were constrained to their bulk lattice positions while the top three layers were allowed to relax. A cutoff energy of 450 eV was used for all slab calculations with a Gamma-centered 7x7x1 K-point grid with a similar force-convergence criterion of 20 meV/Å. High index (211) surfaces were cut from the same bulk to have 4 terrace layers and a step length of 4 Platinum atoms. A 4x4x1 Gamma-centered K-point grid was used for the high index surfaces. Adsorption of all adsorbates was considered at all symmetrically distinct (111) sites corresponding to a 0.25 ML coverage. For gas-phase adsorbate calculations, the same cutoff energy was used with Gaussian smearing of the Fermi energy in an oblong simulation box with dimensions 12x13x14 Å. For calculations with a Pt:Mn skin, a single Mn atom replaced Pt in the pure Pt(111) surface and then relaxed at the fixed pure Pt lattice constant. A similar process is used for films containing two layers of Pt:Mn. For high index (211) surfaces, CO was adsorbed along the step edges. Pt d-band centers were calculated as the first moment of the projected d-electron density of states of surface platinum atoms. The maximum allowed energy was 5 eV above the Fermi edge, consistent for all alloys. Projected density of states was calculated at the same computational parameters as reported for adsorption, with the exceptions being the use of tetrahedral smearing and a denser K-point grid of 15x15x1.

RESULTS AND DISCUSSION

2 nm Supported Intermetallic NPs with the Same Surface Structure but Different Subsurface. To obtain stable NPs with varying subsurface structures, catalyst synthesis was conducted through diffusion-controlled intermetallic compound formation between catalytic metal platinum and non-metal metal promoter manganese. The metal precursors were loaded on SiO₂ support sequentially and first reduced at 200 °C where monometallic Pt NPs formed. At higher temperature, Mn started to be reduced by hydrogen spilled over from the surface of Pt NPs. The reduced Mn diffused onto the Pt surface and then into the Pt lattice in a kinetically limited fashion, as has been observed for many other bimetallic catalysts prepared in similar way. Transformation from Pt to Pt:Mn intermetallic compounds occurred starting from the surface of the NPs. Manipulating the amount of Mn precursor resulted in partial or full intermetallic transformation, forming core-shell or full-body intermetallic NPs (named as Pt₆Mn-s (s stands for surface) and Pt₅Mn, respectively). The size of the intermetallic NPs depended on that of the parent Pt NPs, which was controlled during impregnation by anchoring of the positively charged metal precursors to the deprotonated surface hydroxyl groups on the support under controlled pH. The two Pt-Mn catalysts have almost identical sizes (~2.0 ± 0.5 nm) according to Scanning Transmission Electron Microscope (STEM) images (Fig. S1). A reference Pt catalyst with a similar size was prepared by the same procedure.
The numbers of Pt-南山-南山3, suggesting that it contains both Pt and Mn. To verify intermetallic formation to different extents, the crystal order of the catalysts was first characterized by diffraction (Fig. 1). Though diffraction is often considered as a standard technique, it is generally not possible for supported 2 nm NPs using either laboratory X-ray sources or an electron microscope. We turned to in situ synchrotron XRD (λ = 0.117418 Å) in Laue transmission configuration, which provides excellent signal to noise ratio and resolution for observing the very low intensity NP diffraction, even including the very small superlattice features. Background subtracted NP diffraction signals are shown in Fig. 1a. All three catalysts have broad peaks corresponding to 2 nm NPs. No features related to pure Mn metal are observed. Compared to the reference Pt catalyst, the two Pt-Mn catalysts both show diffraction peaks at slightly higher 2 thetas (Fig. 1b), indicating smaller average lattice constants (Table S1) and incorporation of Mn atoms. The pattern of the Pt-Mn catalyst (blue) matches well with the standard of Pt-Mn intermetallic compound (purple). Weak superlattice diffraction from the (210), (320) and (321) planes (Fig. 1b) characteristic of L12 ordering in Pt-Mn is also observed, diagnostic of Pt-Mn intermetallic compound (Fig. 1c) forming on this catalyst. The pattern of the Pt-Mn catalyst (red) also shows superlattice diffraction from L12 symmetry. Its major diffraction peaks, however, are between those of Pt and Pt-Mn (Fig. 1b), suggesting that it contains both Pt and Pt-Mn phases. The peaks are broader (Table S1) compared to the other two samples despite of their similar sizes, which implies larger microstrain characteristic of a coherent two-phase lattice, as expected for core-shell structures. We note, in passing, that this microstrain is not sufficiently large to impact the catalytic properties of the particles, as discussed in the SI.

Formation of a partial and full-body Pt-Mn phase was also inferred from in situ XAS. Comparing the reduced Pt-Mn catalysts to Pt NPs, Pt L3 edge X-ray Absorption Near Edge Structure (XANES, Fig. 2a) shows a slight increase of edge energy and decrease of white line due to incorporation of Mn. The changes are larger for Pt-Mn compared to Pt-Mn-s, consistent with the higher Mn content in the former sample. With increasing Mn content, the Pt L3 edge Extended X-ray Absorption Fine Structure (EXAFS) spectra (Fig. 2b) record decreasing Pt-Pt scattering intensity. Quantitative fitting results (Fig. S2, Table S2) are consistent with Pt-Mn NPs for the Pt-Mn catalyst (6.3 Pt-Pt at 2.70 Å and 2.8 Pt-Mn at 2.69 Å), as the ratio of Pt-Pt coordination number to Pt-Mn is around 2, the same as that of the ideal Pt-Mn structure featuring 8 Pt-Pt bonds and 4 Pt-Mn bonds for each Pt atom (the actual coordination numbers are lower due to coordination-unsaturated NP surface). The results for the Pt-Mn catalyst (7.4 Pt-Pt at 2.72 Å and 1.4 Pt-Mn at 2.70 Å) is characteristic of a mixture of Pt and Pt-Mn, with a coordination number ratio of Pt-Pt to Pt-Mn around 5. X-ray photoelectron spectroscopy (XPS) of the samples reduced in a spectrometer side chamber and not exposed to air also supports Pt-Mn intermetallic compound formation according to higher binding energy in the Pt 4f region and Mn² in the Mn 2p region (Fig. S3). The excess Mn in the catalysts stayed oxidized and highly dispersed according to XAS, XPS (Fig. S3, Fig. S4, Table S3) and sXRD.

To discern whether the Pt and Pt-Mn phases in the Pt-Mn catalyst do form a core-shell geometry or stay simply as a physical mixture of the two, the surface composition of the catalysts is investigated by taking the EXAFS difference (Fig. S5c) of the reduced (Fig. 2b) versus air exposed samples (Fig. S5b). Upon air exposure, the NP surface is oxidized and the numbers of Pt-Metal bonds decrease (note that the Pt-Mn phase contains Pt-Pt and Pt-Mn bonds). Such changes can be isolated in the difference XAS spectra and are reflective of the surface composition. The fitting results show that for Pt-Mn-s, the loss of surface metal-metal bonds includes both Pt-Pt and Pt-Mn paths (Table S4). The ratio between the number of Pt-Pt and Pt-Mn bonds is around 2, much smaller than the value obtained for the whole nanoparticle average (around 5), suggesting that the Mn concentration is much higher on the surface and that Pt-Mn catalyst is not a physical mixture of the Pt and Pt-Mn phases. More importantly, this surface coordination number ratio of 2 is the same as that of the ideal Pt-Mn intermetallic structure as well as the value obtained from the difference XAS of the Pt-Mn catalyst. Therefore, the surface of the Pt-Mn catalyst has the

Figure 1. a) Background subtracted in situ synchrotron XRD pattern of Pt, Pt-Mn-s and Pt-Mn compared with the simulated pattern of bulk Pt and Pt-Mn intermetallic phase; b) expanded view of the XRD pattern in the region of 4° to 7°, with color indicators of the peak shifts and superlattice diffraction peaks from the L12 symmetry in Pt-Mn intermettals; c) the unit cell of face centered cubic (fcc) Pt and L12 type Pt-Mn intermetallics.

Figure 2. a) Pt L3 edge XANES of the reduced catalysts; b) magnitude of Fourier Transform of the k² weighted EXAFS spectra of the reduced catalysts, Δk = 3.0 - 12.2 Å; c) local Mn concentration along the side surface of the NP vs down the NP top surface through the whole diameter for the Pt-Mn-s sample with core-shell structure measured by EDS on one of the few larger-than-average NPs.
Pt;Mn intermetallic structure. The monometallic Pt phase is present in the NP core. Formation of similar core-shell structures has been recently reported for NPs with other compositions prepared in the same way.25, 27 Energy-dispersive X-ray spectroscopy (EDS, Fig. S6) collected on the Pt;Mn-s catalyst further verified the core-shell structure. Point scans on one of the few larger-than-average NP generated enough counts (Fig. 2c). The molar percentage of Mn detected near the side surface of the NP (the magenta dot) was 23%, very close to the theoretical Mn concentration on a Pt;Mn phase, and much higher than that of the location through the diameter across the core region (4%, grey dot), confirming that the Pt;Mn phase located on and near the NP surface while Pt localized in the core.

Together, detailed structural characterizations establish that two different intermetallic Pt-Mn NP catalysts with different subsurfaces have been made (Fig. 3a). The Pt;Mn catalyst contains uniform intermetallic NPs with Pt;Mn structure on both the surface and subsurface, while Pt;Mn-s has core-shell NPs with an ordered Pt;Mn intermetallic surface on a Pt core. Comparing these two catalysts allows for evaluation of the effect of different subsurface (Pt vs Pt;Mn) on the catalytic performance of supported NPs with the same Pt;Mn surface. This subsurface effect can also be distinguished from a classic surface effect shown by the difference between Pt;Mn-s and the reference Pt catalyst.

Olefin (C-H Activation Product) Selectivity during Propane Dehydrogenation. The effect of NP subsurface composition on selectivity of C-H over C-C bond activation was evaluated by a model reaction propane dehydrogenation (PDH) at 550 °C for the two Pt-Mn catalysts together with the reference Pt NP catalyst.33 The selectivity to propylene (the product of C-H activation) was compared under the same propane concentrations, but varying co-fed hydrogen concentrations. The effect of the surface composition is observed from comparison of Pt;Mn-s and Pt. Fig. 3b shows that the selectivity of the Pt catalyst drops from 95% to 78% as the conversion increases in the absence of co-fed hydrogen, and further to ~35% as the H\textsubscript{2} to C\textsubscript{3}H\textsubscript{8} molar ratio (H\textsubscript{2}/C\textsubscript{3}H\textsubscript{8}) increases from 0 to 2. This is due to substantial activity for the side reaction hydrogenolyis, which breaks C-C bonds with the assistance of hydrogen, and is consistent with previous reports.33 In contrast, for the Pt;Mn-s catalyst (Fig. 3c), the C-H selectivity remains nearly constant with the PDH conversion, which is consistent with the absence of Pt phase on the core-shell NP surface. As the H\textsubscript{2}/C\textsubscript{3}H\textsubscript{8} increases from 0 to 2, the selectivity decreases from 95% to 82%, which is a smaller change compared to Pt.

Comparing Pt;Mn to Pt;Mn-s discloses a distinct subsurface effect that is independent from the surface structure. As shown in Fig. 3c, the selectivity of Pt;Mn remains high at 98% not only under varying conversion similar to Pt;Mn-s, but also under increasing H\textsubscript{2} to C\textsubscript{3}H\textsubscript{8} molar ratio. Increasing H\textsubscript{2}/C\textsubscript{3}H\textsubscript{8} from 0 to 2, which significantly lowers the selectivity of Pt;Mn-s as well as Pt, has little effect on Pt;Mn. The hydrogenolysis side reaction is almost completely suppressed on Pt;Mn. This implies that the interaction of PtMn with the reactants and intermediates is significantly altered by the subsurface composition.

The assignment of the promoted catalytic performance to different subsurface structures is strengthened by the observation that the Pt;Mn catalysts maintain their structures under reaction condition. In situ xSXA under propane dehydrogenation atmosphere at 550 °C and even 750 °C recorded identical patterns including the superlattice features and peak widths (Fig. S7, except for thermal lattice expansion) compared to the reduced catalysts at room temperature and 550 °C, suggesting that the Pt;Mn surface and/or subsurface on the NPs remained ordered during high temperature reaction. Not only the Pt;Mn intermetallic catalyst, but also the core-shell NPs in the Pt;Mn-s catalyst are stable during high temperature reaction due to limited solid state diffusion of Mn. After initial reduction of Mn and its subsequent diffusion into the Pt lattice, the oxidized Mn concentration near the NPs decreases, turning off further reduction by hydrogen spillover. Therefore, a structural evolution of the Pt;Mn catalysts is not observed and the NP structure is determined by the initial Mn concentration on the support surface.

The stable catalyst structure in part contributes to long-term stable catalytic performance. While Pt quickly deactivates with time on-stream, both Pt-Mn catalysts do not. They show stable conversion for PDH at 550°C for at least a week (the test was terminated, Fig. S8) with a turnover rates in the 0.1 to 1 s-1 range as expected for Pt catalysts according to the literature.34, 36, 37 STEM imaging on the spent catalysts after PDH for 1 week shows size distributions similar to those of the fresh catalysts (Fig. S9), indicating minimal particle sintering. The Pt;Mn catalyst was also evaluated for dehydrogenation of ethane, which requires higher reaction temperature. For 25 % ethane balanced in N\textsubscript{2} at 750 °C, the Pt;Mn catalyst show stable performance with >90% selectivity at around 40 % conversion for at least 1 day (Fig. S8), demonstrating the high temperature stability of this intermetallic phase during catalytic reaction.

Subsurface Electronic Effect on Surface Adsorption. To better understand the observed subsurface effect on the catalytic performance, DFT calculations were undertaken on models (Fig. 4a) representing the three catalyst structures. A Pt;Mn full-body intermetallic was considered for the Pt;Mn sample. A Pt;Mn shell on top of Pt with single or double layers of Pt;Mn was considered for Pt;Mn-s. This catalyst was expected to have between one or two outer Pt;Mn layers on 2 nm core-shell NPs, since the molar percentage of the Pt;Mn intermetallic shell out of the whole NP was estimated to be between ~40-60% according to the average lattice parameter measured by sXRD and the coordination number ratio of
Pt-Mn/Pt-Pt from EXAFS fits. The models were compared with monometallic Pt. The (111) facet was chosen based on its low surface free energy for both pure Pt and Pt-Mn. The binding energies for hydrogen (H) and methyl group (CH₃, as a model chemisorbed hydrocarbon species) were calculated, since the improvement in selectivity for light alkane dehydrogenation has been previously suggested to correlate with the altered adsorption strength of the catalyst to hydrocarbon molecules and hydrogen. The binding energy of carbon monooxide (CO) was also calculated as well as measured experimentally. The computational results are summarized in Fig. 4b. Compared to Pt, two layers of a Pt-Mn shell (Pt-Mn₂s(111)) reduces the binding energy by 0.02 eV, 0.07 eV, and 0.09 eV for H, CO, and CH₃ respectively, whereas binding energies are reduced by 0.08 eV, 0.17 eV, and 0.19 eV for H, CO and CH₃ on the full Pt-Mn intermetallic surface. Importantly, the Pt-Mn full-body intermetallic has a weaker adsorption energy for all investigated adsorbates as compared to the Pt-Mn intermetallic shell on Pt surface, confirming the presence of the subsurface effect. The results are consistent with the promotion of PDH selectivity of Pt-Mn compared to Pt-Mn-s, since the weaker adsorption are correlated with the preferential desorption of hydrocarbon and hydrogen species over their participation in the steps leading to C-C bond breaking side reaction hydrogenolysis.

The changes in catalyst adsorption capability due to subsurface effect is also evident from experimental measurements of equilibrium CO adsorption on the supported NPs, giving heats of adsorption on different catalysts. As seen in Fig. 4c, all three catalysts show one-step CO desorption, including Pt-Mn-s, again consistent with this catalyst having a single surface composition characteristic of core-shell structure rather than a physical mixture of Pt and Pt-Mn. For Pt, CO chemisorption is saturated at room temperature. In contrast, saturation uptake for Pt-Mn-s is not achieved until around 0 °C whereas for Pt-Mn it is only observed below -120 °C. Fitting the coverage-temperature data to the Temkin model (see SI), the heats of adsorption of CO on Pt at 0 and full coverage (ΔH(0) and ΔH(1)) are estimated to be ΔH(0) = -130 kJ/mol and ΔH(1) = -70 kJ/mol, close to literature results and giving an average heats of adsorption ΔHₐve = -100 kJ/mol. For Pt-Mn-s, the best fit Temkin desorption curve results in ΔH(0) = -85 kJ/mol, ΔH(1) = -40 kJ/mol and ΔHₐve = -63 kJ/mol and for Pt-Mn ΔH(0) = 30 kJ/mol, ΔH(1) = -25 kJ/mol, ΔHₐve = -28 kJ/mol respectively. The average heat of adsorption is lowered by 37 kJ/mol comparing Pt-Mn-s to Pt. Similarly, the average heats of adsorption of Pt-Mn is 35 kJ/mol lower than Pt-Mn-s. These experimental results on the NP catalysts are consistent with the trends seen in the DFT calculations and correlate well with the increasing propane dehydrogenation selectivity

for Pt-Mn-s and Pt-Mn. The changes in the reduction of heats of CO adsorption are higher than the DFT predictions, which is likely related to adsorption on corners and edges on the NPs. We note that adsorption of CO on a model high index surface, such as the (211) step, shows the same trend between different catalyst but with a larger reduction in binding energy due to subsurface Pt-Mn as compared to the (111) terrace (Table S4).

Additional DFT calculations were conducted on varying model structures. Constraining the lattice constant of the Pt-Mn shell to values between pure Pt-Mn and Pt only changes binding energies by less than 30 meV (Table S4), suggesting the absence of a major surface strain effect, which is also expected from the very similar lattice parameters between the Pt-Mn and the Pt phases. In addition, a single layer Pt-Mn shell on Pt does not reduce the binding energy significantly as compared to pure Pt (Table S5). Therefore, Mn in the subsurface plays a key role in reducing the surface adsorption strength, most likely through bonding of subsurface atoms with the catalytic surface. This is consistent with previous DFT studies on model structures containing other elements. According to the d band theory, an electronic effect leading to weaker adsorption strength is typically related with downward shifts of d states away from Fermi level, which is indeed observed from the calculated density of states, showing a -0.05 eV shift for Pt-Mn (111) compared to Pt-Mn₂s(111) (Figure S10). This shift of the overall d states usually leads to lower average energy of the occupied d states, but is also accompanied by a small upward shift of the average energy of the unoccupied part of the 5d states on Pt. The latter is observed on our Pt-Mn catalysts in the increase in the energy of the Pt 5d edge by in situ XANES (Fig. 2a). Such shifts of occupied and unoccupied d states were recently measured for a similar Pt/Zn intermetallic NP catalyst by in situ Resonant Inelastic X-ray Scattering (RIXS). The shifts are similar to typical changes of the HOMO and LUMO orbitals in a molecule upon bonding interactions and are likely results of the strong hetero-metal bonding interaction of the intermetallic compounds. This study suggests that such intermetallic interaction can be manipulated by a diffusion controlled solid state transformation starting from the NP surface to the core for tuning the subsurface structure of NPs. Such controlled intermetallic formation have been demonstrated for several intermetallic compositions and are possible for many other phases, both on noble metal NP cores as well as intermetallic cores. The resulting subsurface effect modifies the adsorptive properties of the surface sites to offer enhanced catalytic performance.

CONCLUSION

Supported NP catalysts with different subsurface composition were prepared by controlled intermetallic formation and confirmed...
by in situ characterization under reaction conditions at high temperature, allowing for evaluation of the influence of subsurface composition to the adsorptive and catalytic properties. With the same ordered NP surface, a PtMn intermetallic subsurface instead of monometallic Pt significantly improved the C-H activation selectivity during propane dehydrogenation by lowering the heats of hydrocarbon and hydrogen adsorption of the surface models. Presentations are provided here provide a beginning to microkinetic modeling to help in directly identifying the driving force for selectivity differences. This work highlights the distinct role of subsurface layers for altering the surface chemical and catalytic properties on NP catalysts. Such subsurface effect can be tuned via controlled synthesis of NPs with atomically precise intermetallic phases, promising a wide composition range for versatile catalyst design targeting different catalytic processes.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website. Experimental details, HAADF STEM images of fresh and spent catalysts, detailed EXAFS fitting results, XPS spectra, XANES spectra of Mn references, EDS spectra, XRD patterns, light alkane dehydrogenation conversion vs time and DFT binding energies.

AUTHOR INFORMATION

Corresponding Author
*gezhang@dlut.edu.cn (G.Z.)
*mill1194@purdue.edu (J.T.M.)

Current address
State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology (G.Z.)

Department of Chemical Engineering, Stanford University (Z.W.)

ACKNOWLEDGMENT

This paper is based upon work supported in part by the National Science Foundation under Cooperative Agreement No. EEC-1647722. Z.W. and J.T.M. gratefully acknowledge the financial support provided by Davidson School of Chemical Engineering, Purdue University and use of Electron Microscopy facility at Birck Nanotechnology Center, Purdue University. The XPS data was obtained at the Surface Analysis Facility of the Birck Nanotechnology Center of Purdue University. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. MRCA operations, beamline 10-BM, are supported by the Department of Energy and the MRCAF member institutions. The authors also acknowledge the use of beamline 11-ID-C at APS.

REFERENCES
