2016

Stabilization of a Metastable Fibrous Bi$_{21.2}(1)(\text{Mn}_{1-x}\text{Co}_x)_{20}$ Phase with Pseudo-Pentagonal Symmetry Prepared Using a Bi Self-Flux

Srinivasa Thimmaiah
Ames Laboratory

Valentin Taufour
iowa State University and Ames Laboratory

Scott Sanders
iowa State University

Stephen March
iowa State University

Yuemei Zhang
iowa State University

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_manuscripts

Part of the Materials Chemistry Commons

Recommended Citation
Thimmaiah, Srinivasa; Taufour, Valentin; Sanders, Scott; March, Stephen; Zhang, Yuemei; Kramer, Matthew J.; Canfield, Paul C.; and Miller, Gordon J., "Stabilization of a Metastable Fibrous Bi$_{21.2}(1)(\text{Mn}_{1-x}\text{Co}_x)_{20}$ Phase with Pseudo-Pentagonal Symmetry Prepared Using a Bi Self-Flux" (2016). *Ames Laboratory Accepted Manuscripts*. 510.
https://lib.dr.iastate.edu/ameslab_manuscripts/510

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Stabilization of a Metastable Fibrous Bi$_{21.2(1)}$(Mn$_{1-x}$Co$_x$)$_{20}$ Phase with Pseudo-Pentagonal Symmetry Prepared Using a Bi Self-Flux

Abstract

Bi$_{21.2(1)}$(Mn$_{1-x}$Co$_x$)$_{20}$ is a new metastable phase which is synthesized via Bi self-flux, adopts a highly fibrous morphology, and decomposes endothermically near 168 °C. It crystallizes in the orthorhombic space group Imma with unit cell parameters a = 19.067(4) Å, b = 4.6071(10) Å and c = 11.583(4) Å, adopting a low-temperature modification of BiNi-type structure by forming columns along the b-axis. Wavelength-dispersive X-ray spectroscopy (WDS) confirms the presence of Co in the structure, which is found to be 7 at.%. In each column, the transition metal (T) and Bi atoms construct a double-walled nanotubular arrangement of atoms around the disordered central Bi atoms. Electronic structure calculations (LMTO-ASA, LSDA) show that the calculated Fermi level falls into a pseudogap and also indicate a possible low-temperature magnetic ordering in the phase.

Disciplines

Materials Chemistry

Authors

Srinivasa Thimmaiah, Valentin Taufour, Scott Sanders, Stephen March, Yuemei Zhang, Matthew J. Kramer, Paul C. Canfield, and Gordon J. Miller
Stabilization of a Metastable Fibrous Bi$_{21.2(1)}$(Mn$_{1-x}$Co$_x$)$_{20}$ Phase with Pseudo-Pentagonal Symmetry Prepared Using a Bi Self-flux

Srinivasa Thimmaiah, Valentin Taufour, Scott Saunders, Stephen March, Yuemei Zhang, Matthew J. Kramer, Paul C. Canfield and Gordon J. Miller

ABSTRACT: Bi$_{21.2(1)}$(Mn$_{1-x}$Co$_x$)$_{20}$ is a new metastable phase which is synthesized via Bi self-flux, adopts a highly fibrous morphology, and decomposes endothermically near 168 °C. It crystallizes in the orthorhombic space group Imma with unit cell parameters $a = 19.067(4)$ Å, $b = 4.6071(10)$ Å and $c = 11.583(4)$ Å, adopting a low-temperature modification of BiNi-type structure by forming columns along the b-axis. Wavelength-dispersive X-ray spectroscopy (WDS) confirms the presence of Co in the structure, which is found to be 7 at.%. In each column, the transition metal (T) and Bi atoms construct a double-walled nanotubular arrangement of atoms around the disordered central Bi atoms. Electronic structure calculations (LMTO-ASA, LSDA) show that the calculated Fermi level falls into a pseudogap and also indicate a possible low-temperature magnetic ordering in the phase.

Permanent magnets are exceptionally critical for many environmentally friendly, energy harvesting technologies in our energy demanding modern world. In particular, rare earth (RE) based permanent magnets such as Nd$_2$Fe$_{14}$B$_2$ and SmCo$_5$ are extensively used for energy conversion purposes, mainly in high-power generators and motors found in wind turbines and electric vehicles, due to their very high energy product (BH_{max}) and light weight. In particular, demand for RE-based permanent magnets has been growing exponentially in recent years. Therefore, to ease reliance on RE-based permanent magnets, development of low cost alternative materials that have high energy products and high Curie temperatures are critical for future sustainability. Mn-based intermetallic compounds are examples gaining ground as an effective alternative, especially the ferromagnetic, low temperature (LT) BiMn phase adopting the NiAs-type structure and exhibiting a large uniaxial magnetic anisotropy ($K = 2.2 \times 10^7$ erg cm$^{-3}$ at 500 K). At temperatures exceeding 300 K, LT-BiMn shows remarkably high coercivity, which is even larger than that for Nd$_2$Fe$_{14}$B$_2$ magnets, making LT-BiMn suitable for high temperature applications. However, at 633 K ferromagnetic LT-BiMn transforms to a paramagnetic, high-temperature phase (HTP), which, upon rapid quenching, results in a ferromagnetic phase that shows an interesting magneto-optical property applicable for magneto-optical memory devices. There are two structural transitions reported for LT-BiMn: one at ca. 100 K where spin reorientation occurs; and another above its Curie or decomposition temperature (633 K). Theoretical calculations suggested that partial replacement of Mn by other transition metals could stabilize its
structure in the hexagonal NiAs-type, which is essential for retaining the magnetic properties as well as increasing the magnetic anisotropy20, 21, but experimental results reveal a change in crystal structure upon doping22. Herein, we report a new phase Bi\textsubscript{21.2(1)}(Mn\textsubscript{1-}\textit{x}Co\textsubscript{\textit{x}})\textsubscript{20} (\textit{x} \sim 0.15) that was discovered during systematic substitution of 3\textit{d} and 4\textit{d}22 transition metals for Mn in LT-BiMn (NiAs-type) as a theoretically predicted strategy to increase magnetic anisotropy and stabilization of NiAs-type structure at elevated temperature.

\textit{Figure 1:} SEM micrographs of Bi\textsubscript{21.2(1)}(Mn\textsubscript{1-}\textit{x}Co\textsubscript{\textit{x}})\textsubscript{20} crystals showing fibrous morphology.
Crystals of a new metastable Co-doped BiMn phase were grown using Bi as a self-flux at 280 °C23. Figure 1 shows the soft and highly fibrous nature of these crystals, which split into submicron-size strands upon applied pressure. According to DSC, the Co-doped BiMn phase decomposes endothermically on heating around 168 °C, with no evidence of formation of a new phase during cooling (see Supporting Information, Figure S2). This clearly indicates the metastable nature of the new phase. On the contrary, typical high-temperature reaction conditions of a sample with nominal composition of Mn\textsubscript{43}Co\textsubscript{7}Bi\textsubscript{50} resulted in the hexagonal NiAs-type structure (\(a = 4.2907(1)\) Å, \(c = 6.1199(3)\) Å),24 which decomposes around 355 °C (see Supporting Information, Figure S4) upon heating.

Single crystal x-ray diffraction revealed that the new phase crystallizes in orthorhombic symmetry, space group \(Imma\), and the refined composition is Bi\(_{21.2(1)}\)(Mn\(_{1-x}\)Co\(_{x}\))\(_{20}\) (\(x \sim 0.15\)). However, the positions of Co atoms in the crystal structure could not be established precisely due to the similar X-ray scattering contrasts of Mn and Co. Thus, wavelength-dispersive X-ray spectroscopy was employed to estimate the amount of Co to be 7(1) at.% in the structure. To evaluate any possible chemical ordering of Co in the structure, we have calculated total energies for two different compositions, each with three different coloring schemes, using VASP. The calculated energy differences among these various coloring models were found to be negligible (11–64 meV/cell or 0.26–1.52 meV/atom), (see Supporting Information, Figure S7) indicating low probability for chemical ordering of Co atoms in the structure under these synthetic conditions. Therefore, we can conclude that Co atoms are essentially randomly mixed with Mn atoms at the 3\textit{d} metal positions.

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{figure2.png}
 \caption{Crystal structure of Bi\(_{21.2(1)}\)(Mn\(_{1-x}\)Co\(_{x}\))\(_{20}\) showing doubled walled structural arrangement of Bi and Mn/Co atoms along [0 1 0] direction.}
\end{figure}
As illustrated in **Figure 2**, the orthorhombic crystal structure of $\text{Bi}_{21.2(1)}(\text{Mn}_{1-x}\text{Co}_x)_{20}$ exhibits 1D $[\text{Bi}_{0.32}@\text{T}_5@\text{Bi}_3]$ (T = Mn/Co) columns along the [010] direction arranged in a hexagonal rod packing manner with respect to the ac-plane. The center of each column is occupied by a Bi atom whose site occupancy was freely refined to 32 (1) %. The arrangement of the atoms in each column mimics local pentagonal symmetry, although long range ordering of pentagonal symmetry is disrupted by the hexagonal rod-packing of the columns, as observed from reflections in reciprocal space (see Supporting Information, **Figure S5**). Although the refined electron density inside these columns can also be interpreted as a fully occupied Mn/Co (T) position, T–T distances between this site are too short (2.3035(5) Å) to be considered as fully occupied by a Mn/Co mixture. Therefore, atoms in the center have been treated as partially occupied by Bi atoms, an assumption that corroborates well with similar features observed for $\text{Bi}_{28}\text{Ni}_{25}$ and $\text{Bi}_{8}\text{Ni}_{8}\text{S}$.

The shell of T atoms around the disordered central Bi atoms forms a pentagonal antiprismatic column along the [010] direction. T–T distances range from 2.690(3) to 2.777(5) Å, which are rather short compared to Mn–Mn distances in ferromagnetic LT-BiMn (3.0456 Å). The Mn–Mn distances play a critical role for the onset of ferromagnetism in NiAs-type structures as well as other rare-earth based intermetallic compounds due to direct-exchange interactions. Furthermore, each plane of pentagons of T5 atoms is surrounded by Bi atoms in the staggered manner creating a local pentagonal symmetry. The Bi–Bi distances in the structure range between 3.5056(10) and 3.6632(12) Å, which are well within the range observed for BiMn and BiNi.

Analysis of the X-ray powder diffraction pattern indicates that a noticeable amount of unreacted Bi flux occurs as a minority product, along with $\text{Bi}_{21.2(1)}(\text{Mn}_{1-x}\text{Co}_x)_{20}$ (see Supporting Information, **Figure S1**), but there is no evidence for the presence of LT-BiMn or the formation of any superstructure due to partially ordered Bi atoms inside the columns. LT-BiMn is a very stable phase that forms rapidly in the absence any additional transition metals or metalloids (<10 at.%). These added transition metals or metalloids frequently trigger the formation of a superstructure by incorporating into empty trigonal bipyramidal sites of the NiAs-type structure, thereby triggering complex superstructures which can be commensurate or incommensurately modulated.
The structural motif of $\text{Bi}_{21.2(1)}(\text{Mn}_{1-x}\text{Co}_x)_{20}$ is very similar to other metastable phases $\text{Bi}_{28}\text{Ni}_{25}^{25}$ and $\text{Bi}_8\text{NiS}^{26}$. Both of these are obtained via pseudomorphic transformation by reduction of the corresponding subiodide, although they decompose irreversibly upon heating to NiAs-type BiNi at 145 °C and 180 °C, respectively. In our case, crystals of $\text{Bi}_{21.2(1)}(\text{Mn}_{1-x}\text{Co}_x)_{20}$ can be obtained directly at 280 °C using the Bi self-flux, which is a useful technique to arrest many metastable phases$^{39-41}$. These structural features are also closely related to those in $\text{Na}_{2.8}\text{Cu}_{5}\text{Sn}_{5.6}^{42}$, in which the inner shell is composed of Cu atoms, the outer shell by Sn atoms, and a disordered arrangement of Sn atoms occupies the center of the columns.

Electronic structure calculations were performed on an ordered structure model “$\text{Bi}_{22}\text{Mn}_{20}$” using TB-LMTO-ASA. Figure 3a and Figure 3c show, respectively, the electronic density of states (DOS) various metal-metal crystal orbital Hamilton populations (COHP) curves using LDA. The region near the Fermi level is mainly dominated by Mn 3d with some contributions from Bi 6p orbitals. The Bi 6s states, centered at -11 eV, broaden slightly by ca. 3.5 eV due to weak interactions with Mn 4s orbitals. Evaluation of the electron localization function (ELF) also reveals the existence of a nearly spherical, localized electronic basin around Bi atoms, indicative of a lone pair on the Bi atoms as shown in Figure 3d (ELF isovalue = 0.71). A small extent of valence s-p
mixing at Bi can be seen in the Bi PDOS, an outcome that is typical for Group 15 elements43, 44. The Fermi level falls within a narrow peak of the DOS, which suggests a potential electronic instability that can be relieved through spin-polarization leading to ferromagnetic or antiferromagnetic ordering in the material45. In the corresponding COHP curves, this peak originates from Mn–Mn antibonding interactions, whereas the Mn–Bi interactions are optimized and Bi–Bi interactions are essentially nonbonding. Furthermore, analysis of the integrated COHP (ICOHP) values over all occupied states revealed that Mn–Mn and Mn–Bi interactions constitute 40.9% and 54.1%, respectively for bonding, whereas Bi–Bi contacts contribute only 5%.

Upon spin polarization, the DOS curves, shown in Figure 3b, split into majority- and minority-spin states and the Fermi level no longer resides within a sharp peak, but instead falls in a pseudogap. Moreover, the spin-polarized (LSDA) calculation lowers the total energy of the system by 5.3 eV per unit cell compared to non-spin polarized (LDA) calculation. The DOS projections reveal that the Mn 3d states show significant exchange splitting, whereas the Bi 6p states show small exchange splitting. Several different magnetic models were examined, but they converged to one of two different ferrimagnetic arrangements with the majority of magnetic moments on the Mn sites and small moments on the Bi sites. In the corresponding spin-polarized COHP curves, Mn–Mn and Mn–Bi interactions are no longer antibonding at the Fermi level (see Supporting Information, Figure S5). Based on these computational results, we anticipate some magnetic ordering in Bi$_{21.2(1)}$(Mn$_{1-x}$Co$_x$)$_{20}$ at low temperature. However, we have been unable to confirm these properties due to the highly fibrous nature of the crystals and the presence of a small amount of unreacted Bi flux in the final product.

In summary, the new metastable phase Bi$_{21.2(1)}$(Mn$_{1-x}$Co$_x$)$_{20}$(x ~0.15) can be synthesized using a flux method in the presence of a small amount of cobalt. The arrangement of the atoms in the structure mimics pentagonal symmetry. Total energy calculations using VASP revealed that no chemical ordering of cobalt occurs in that structure \textit{i.e.}, Co is randomly distributed on the Mn sites, and that low-temperature magnetic ordering is possible.
Experiment:

Synthesis: Single crystals of Co-doped BiMn were grown using an approximately 5g mixture of Co (99.9%), Mn (99.995% ROC/RIC), and Bi (99.99% Alfa Aesar) placed into a 2 mL alumina crucible with a molar ratio of Mn:Co:Bi = (10−x): x: 90 (x = 0.0, 0.5, 1.0, 2.0). The crucible with the elements was sealed in a fused silica ampoule under an argon atmosphere, which was then heated to 1150° C, held at 1150° C for 5 hours, and then cooled to 390° C over 5 hours. Samples were kept at 390° C for 2 hours, and then cooled at a rate of approximately 1° C per hour to 280° C. Once the temperature was stabilized at 280° C, the excess Bi was removed by centrifugation.

X-ray powder diffraction data were collected on a Rigaku Miniflex diffractometer operating in a Bragg-Brentano geometry using Cu Kα radiation at room temperature. Because of the soft nature of product, the crystals were immersed in liquid nitrogen for a few minutes before grinding into powder. The powder was evenly spread over the zero background single crystal silicon wafer sample holder with the aid of a thin film of Dow Corning high vacuum grease.

Elemental analysis of the samples was performed using wavelength-dispersive X-ray spectroscopy (WDS) in a JEOL JXA-8200 electron probe microanalyzer. WDS data were collected and averaged from multiple points on a clear and shiny as-grown surface for determination of the sample composition, i.e., regions with residual Bi flux were avoided. Scanning electron micrographs were recorded using a JEOL 5910LV scanning electron microscope.

Structure determination: Single crystal diffraction data were collected on a Bruker APEX II CCD diffractometer equipped with graphite monochromator using MoKα radiation at room temperature (60 s/frame and 50 mm detector distance). An empirical absorption correction was applied using the program SADABS. The crystal structure was solved using SHELXT and refined on F² by means of full-matrix least-squares methods using SHEXL2014, with anisotropic displacement parameters for all atoms. During structure refinement all the mixed Mn/Co positions were refined as Mn. Crystal data: orthorhombic Imma; a = 19.067(4) Å, b = 4.6071(10) Å, c = 11.583(4) Å, V = 1017.4(4) Å³, R1/wR2= 0.0526/0.0938 for the observed data and R1/wR2 = 0.1087/0.1099 for all data.

Electronic Structure Calculations: Total energy calculations were performed using the projector augmented wave (PAW) method of Blöchl19,50 coded in the Vienna ab initio simulation package (VASP)51. All VASP calculations employed the generalized gradient approximation (GGA) with exchange and correlation treated by the Perdew-Burke-Enzerhoff (PBE) functional52. The cutoff energy for the plane wave calculations was set to 500 eV and the Brillouin zone integration was carried out using a 13 × 3 × 5 k-point mesh. The density of states (DOS), crystal overlap Hamilton populations (COHP)53, band structures and the electron localization function (ELF)54
were calculated using the Stuttgart LMTO-ASA program55. The calculations were performed on “Bi\textsubscript{22}Mn\textsubscript{20}” in space group \textit{Pnma} with Bi vacancies on either the 2\textit{a} or 2\textit{d} sites, and “Bi\textsubscript{24}Mn\textsubscript{20}” in space group \textit{Imma} with no vacancies.

ACKNOWLEDGMENT

We would like to thank Dr. Warren Straszheim for doing WDS on various samples. S.T., and G.J.M., were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. V.T., S.S., S.M., M.J.K., and P.C.C. were supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. This work was carried out at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

REFERENCES

42. Stegmaier, S.; Fässler, T. F., Na2.8Cu5Sn5.6: A Crystalline Alloy Featuring Intermetalloid \{Sn0.6@Cu5@Sn5\} Double-Walled Nanorods with Pseudo-Five-Fold Symmetry. *Angew. Chem. Int. Ed.* **2012**, *51*, 2647-2650.