5-10-2018

Summary of Thermo–Time Domain Reflectometry Method: Advances in Monitoring In Situ Soil Bulk Density

Yili Lu  
China Agricultural University

Xiaona Liu  
University of Science and Technology, Taiyuan, China

Meng Zhang  
China Agricultural University

Joshua Heitman  
North Carolina State University

Robert Horton  
Iowa State University, rhorton@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/agron_pubs

Part of the Agronomy and Crop Sciences Commons, and the Soil Science Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/agron_pubs/472. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Summary of Thermo–Time Domain Reflectometry Method: Advances in Monitoring In Situ Soil Bulk Density

Abstract
Soil bulk density ($\rho_b$) is a key indicator of soil compaction and soil health that relates to water infiltration, plant rooting depth, nutrient availability, and soil microbial activity. Under field conditions, $\rho_b$ usually varies with time and depth because of agronomic practices, root growth, and environmental processes (e.g., rainfall events, wetting/drying, and freezing/thawing). The traditional technique (i.e., the coring method) for determining $\rho_b$ has the problems of destructive sampling, labor intensive, and is unable to capture the spatial and temporal variations. In a chapter of the recent Methods of Soil Analysis book, we present a review of the theory, instrumentation, and procedures of the thermo–time domain reflectometry (thermo-TDR) technique for monitoring in situ $\rho_b$ (Lu et al., 2017).

Disciplines
Agronomy and Crop Sciences | Soil Science

Comments

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Authors
Yili Lu, Xiaona Liu, Meng Zhang, Joshua Heitman, Robert Horton, and Tusheng Ren
Soil bulk density ($\rho_b$) is a key indicator of soil compaction and soil health that relates to water infiltration, plant rooting depth, nutrient availability, and soil microbial activity. Under field conditions, $\rho_b$ usually varies with time and depth because of agronomic practices, root growth, and environmental processes (e.g., rainfall events, wetting/drying, and freezing/thawing). The traditional technique (i.e., the coring method) for determining $\rho_b$ has the problems of destructive sampling, labor intensive, and is unable to capture the spatial and temporal variations. In a chapter of the recent Methods of Soil Analysis book, we present a review of the theory, instrumentation, and procedures of the thermo–time domain reflectometry (thermo-TDR) technique for monitoring in situ $\rho_b$ (Lu et al., 2017).

A thermo-TDR sensor (Fig. 1) measures soil thermal properties and water content ($\theta$) concurrently by integrating the functions of the heat-pulse and TDR sensors. The method employs available models that relate heat capacity (C) or thermal conductivity ($\lambda$) to soil texture, $\theta$, and $\rho_b$. With the prior information of sand/clay fractions and specific heat of soil solids, $\rho_b$ is estimated inversely from $\theta$ and C or $\lambda$ measurements made with thermo-TDR sensors. Laboratory and field tests have shown that the relative errors in $\rho_b$ estimates are generally within 10%. The new method provides in situ and continuous $\rho_b$ measurements with no calibration requirement, thus offers the potential for studying coupled heat and water processes in deformable soils where $\rho_b$ changes with time and depth.

REFERENCES