2018

Corn Population and Nitrogen Trial

Matt Schnabel
Iowa State University, mschn@iastate.edu

Mark Licht
Iowa State University, lichtma@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/farmprogressreports

Part of the Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation
DOI: https://doi.org/10.31274/farmprogressreports-180814-2076
Available at: https://lib.dr.iastate.edu/farmprogressreports/vol2017/iss1/164

This Northern Research and Demonstration Farm is brought to you for free and open access by the Extension and Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Farm Progress Reports by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Corn Population and Nitrogen Trial

RFR-A1773
Matt Schnabel, farm superintendent
Mark Licht, assistant professor
Department of Agronomy

Introduction
Corn plant populations have increased at approximately 400 plants/acre per year over the last two decades. Seeding rates are now commonly in the 32,000 to 38,000 seeds/acre range with some hybrids being recommended at higher seeding rates. Because corn plant populations and grain yields are increasing, there has been a renewed interest in looking at corn seeding rate and nitrogen rate interactions.

Materials and Methods
This trial was conducted beginning in 2016 and repeated in 2017, using Stine 9538-20 planted April 19, 2016 and May 8, 2017. This trial was set up in a randomized complete block design. It was designed to compare seeding rates (35,000 and 45,000 seeds/acre, and added 40,000 seeds/acre in 2017) and two nitrogen rates (160 and 210 lb N/acre). Preplanting 160 lb N/acre of UAN was applied to all plots, an additional sidedress of 50 lb N/acre of UAN was applied to specific plots on June 9, 2016, and June 12, 2017.

Results and Discussion
The main effects and interaction effects of seeding rate and nitrogen rate were not found to be statistically significant in 2016 (Table 1). However, in 2017, the nitrogen rate (P = 0.0452) and seeding rate (P < 0.0001) main effects were statistically significant and the interaction of these variables was not significant (Table 2). In both years there was a 2.2 and 2.1 bushels/acre difference between the 160 lb N/acre and 210 lb N/acre plots. In 2017, there was a 9.4 and 13.9 bushels/acre difference for 35,000 seeds/acre versus the 40,000 seeds/acre and 45,000 seeds/acre, respectively. This was quite different from the previous year, 2016, where there was only 3.4 bushels/acre difference between 35,000 and 45,000 seeds/acre.

The 45,000 seeds/acre and 210 lb N/acre treatment were higher yielding, however, only occasionally was there a high enough yield response to cover the additional cost of seed and nitrogen.

Acknowledgements
This trial would not have been possible without contributions from Stine Seed Company.
Table 1. Corn grain yields and cost of added inputs for the seeding rate x nitrogen trial in 2016.

<table>
<thead>
<tr>
<th></th>
<th>160 lb N/ac</th>
<th>210 lb N/ac</th>
<th>35,000 seeds/ac</th>
<th>45,000 seeds/ac</th>
<th>160 lb N/ac</th>
<th>210 lb N/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain yield (bushels/acre)</td>
<td>192.4</td>
<td>194.6</td>
<td>35,000 seeds/ac</td>
<td>35,000 seeds/ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P = 0.5467</td>
<td></td>
<td>45,000 seeds/ac</td>
<td>45,000 seeds/ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference in cost</td>
<td></td>
<td></td>
<td></td>
<td>$15.50</td>
<td>$34.30</td>
<td>$49.80</td>
</tr>
</tbody>
</table>

1P-values within boxes are used to compare yields of the main effects or interaction effects within each box.
2Difference in cost between the baseline treatment 35,000 seeds/ac and 160 lb N/ac and added input.
Note: Difference in cost was calculated based on $3.43/1,000 seeds and $0.31/lb N (Source: Estimated Cost of production FM1712 publication). The difference in cost was then divided by the calendar year corn price of $3.40 (Source: Ag Decision Maker File A2-11 for Iowa Cash Corn & Soybean Prices).

Table 2. Corn grain yields and cost of added inputs for the seeding rate x nitrogen trial in 2017.

<table>
<thead>
<tr>
<th></th>
<th>160 lb N/ac</th>
<th>210 lb N/ac</th>
<th>35,000 seeds/ac</th>
<th>40,000 seeds/ac</th>
<th>45,000 seeds/ac</th>
<th>160 lb N/ac</th>
<th>210 lb N/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain yield (bushels/acre)</td>
<td>230.8</td>
<td>233.0</td>
<td></td>
<td>224.1</td>
<td>233.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P = 0.0452</td>
<td></td>
<td></td>
<td>$15.50</td>
<td>$16.50</td>
<td>$32.00</td>
<td></td>
</tr>
<tr>
<td>Difference in cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$33.00</td>
<td>$48.50</td>
</tr>
</tbody>
</table>

1P-values within boxes are used to compare yields of the main effects or interaction effects within each box. Mean values with different superscript letters (a, b, or c) were statistically different from the other treatments.
2Difference in cost between the baseline treatment 35,000 seeds/ac and 160 lb N/ac and added input.
Note: Difference in cost was calculated based on $3.30/1,000 seeds and $0.31/lb N (Source: Estimated Cost of production FM1712 publication). The difference in cost was then divided by the calendar year corn price of $3.40 (Source: Ag Decision Maker File A2-11 for Iowa Cash Corn & Soybean Prices).