Beginning to offer drinking water at birth increases the species richness and the abundance of Faecalibacterium and Bifidobacterium in the gut of preweaned dairy calves

Thumbnail Image
Date
2020-03-12
Authors
Wickramasinghe, H. K. J. P.
Anast, J. M.
Schmitz-Esser, S.
Serão, N. V. L.
Appuhamy, J. A. D. R. N.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Animal ScienceMicrobiology
Abstract

We previously demonstrated that dairy calves having access to drinking water since birth (W0) achieved greater body weight, fiber digestibility, and feed efficiency than those that first received drinking water at 17 d of age (W17). Since gut microbiota composition could be linked to growth and development of animals, the objective of this study was to examine the effect of offering drinking water to newborn calves on composition of bacteria in the gut using a fecal microbiota analysis. Fresh feces were collected directly from the rectum of calves in W0 (n = 14) and W17 (n = 15) at 2, 6, and 10 wk of age. All of the calves were fed pasteurized waste milk, weaned at 7 wk of age, and offered tap water according to the treatment. The DNA was sequenced using 16S rRNA gene-amplicon sequencing on an Illumina MiSeq system (Illumina Inc., San Diego, CA). The sequences were clustered into operational taxonomic units (OTU) with a 99% similarity threshold. Treatment effects on α-diversity indices and relative abundance of the 10 most abundant genera were analyzed using GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). Statistical significance (q-value) of treatment effects on the 50 most abundant OTU was determined with a false discovery rate analysis. At 2 wk of age, W0 had a greater number of observed OTU (5,908 vs. 4,698) and species richness (Chao 1 index) than W17. The number of OTU and richness indices increased from wk 2 to 6, but the increment of W17 was greater than that of W0. The Shannon and inverse-Simpson indices increased linearly with age, but no difference was observed between W0 and W17 at any time point. The Firmicutes to Bacteroidetes ratios were also similar at every time point but decreased markedly when calves were weaned. The relative abundance of genera Faecalibacterium and Bacteroides was greater in W0 than W17 at 2 wk of age. The genus Faecalibacterium continued to be more abundant in W0 than W17 at 6 wk of age but had similar abundance 3 wk after weaning (10 wk of age). The abundance of Faecalibacterium at wk 6 was positively correlated with apparent total-tract digestibility of acid detergent fiber at 10 wk of age. Calves receiving water since birth had greater abundance of OTU related to Faecalibacterium prausnitzii, and Bifidobacterium breve at 6 wk of age (q < 0.085). These species are known to improve growth in preweaned calves. The abundance of none of the genera and OTU was different between W0 at W17 at 10 wk of age (q > 0.100). Overall, beginning to offer drinking water at birth has a potential to modulate gut microbiota composition and thereby positively affect performance of young dairy heifer calves (≤10 wk of age).

Comments

This is a manuscript of an article published as Wickramasinghe, H. K. J. P., J. M. Anast, S. Schmitz-Esser, N. V. L. Serão, and J. A. D. R. N. Appuhamy. "Beginning to offer drinking water at birth increases the species richness and the abundance of Faecalibacterium and Bifidobacterium in the gut of preweaned dairy calves." Journal of Dairy Science (2020). doi: 10.3168/jds.2019-17258. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020
Collections