Catalytic Role for Water in the Atmospheric Production of ClNO

Thumbnail Image
Supplemental Files
Date
2010-03-01
Authors
Njegic, Bosiljka
Raff, Jonathan
Finlayson-Pitts, Barbar
Gordon, Mark
Gerber, R. Benny
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

High level ab initio calculations of clusters comprised of water, HCl, and ON-ONO2 are used to study nitrosyl chloride (ClNO) formation in gas phase water clusters, which are also mimics for thin water films present at environmental interfaces. Two pathways are considered, direct formation from the reaction of gaseous HCl with ON-ONO2 and an indirect pathway involving the hydrolysis of ON-ONO2 to form HONO, followed by the reaction of HONO with HCl to form ClNO. Surprisingly, direct formation of ClNO is found to be the dominant channel in the presence of water despite the possibility of a competing hydrolysis of ON-ONO2 to form HONO. A single water molecule effectively catalyzes the ON-ONO2 + HCl reaction, and in the presence of two or more water molecules the reaction to form ClNO becomes spontaneous. Direct formation of ClNO is fast at room and ice temperatures, indicating the possible significance of this pathway for chlorine activation chemistry in both the polar and midlatitude troposphere, in volcanic plumes and indoors. The reaction enthalpies, activation energies, and rate constants for all studied reactions are reported. The results are discussed in light of recent experiments.

Comments

Reprinted (adapted) with permission from Journal of Physical Chemistry A 114 (2010): 4609, doi:10.1021/jp912155a. Copyright 2010 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections