

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES ...v

LIST OF TABLES ... vi

NOMENCLATURE ... vii

ACKNOWLEDGMENTS ... viii

ABSTRACT ... ix

CHAPTER 1. INTRODUCTION ..10
Overview ... 10

Contributions ... 11

Organization .. 11

CHAPTER 2. CSI FUNDAMENTALS ..12
Introduction to CSI .. 12

Understanding MIMO ... 13

Data Transmission Quality .. 14

CHAPTER 3. EXPERIMENT DESIGN ...16
CSI Platforms .. 16

Tool Installation ... 17
Tool Operation ... 19

Experiments ... 25
Hardware ... 27

CHAPTER 4. DATA COLLECTION ...32

Data Sets .. 32
Troubleshooting ... 35

CHAPTER 5. DATA ANALYSIS ..37
Pre-Analysis Setup .. 37
Analysis ... 38

Results ... 41

CHAPTER 6. CONCLUSION...43
Summary .. 43
Lessons Learned .. 43

Future Work ... 44

REFERENCES ..46

APPENDIX A. USER’S GUIDE ...48

vii

NOMENCLATURE

 CSI Channel State Information

 MIMO Multiple-Input and Multiple-Output

 SISO Single-Input and Single-Output

 LOS Line of Sight

 RF Radio Frequency

 SNR Signal to Noise Ratio

 OFDM Orthogonal Frequency Division Multiplexing

 AP Access Point

 WPA Wi-Fi Protected Access

 WEP Wired Equivalent Privacy

 NIC Network Interface Card

 SSID Service Set Identifier

 PCA Principal Component Analysis

viii

ACKNOWLEDGMENTS

I want to express my gratitude and thanks to those who have assisted me in conducting

the research for this thesis during my graduate studies. I would like to thank my Major Professor

Dr. Daji Qiao for all of his guidance, motivation, and support throughout this research. I would

also like to thank my Uncle Russell for his expert guidance on proper antenna placement and the

reflector design. My Aunt Tammie provided an immense amount of help proofreading this paper

and I could not have done it without her. Next, I would like to thank my coworkers for their

expert troubleshooting support on wireless performance and hardware configurations. In

addition, I would also like to thank my friends, colleagues, and the department faculty and staff

for making my time at Iowa State University a wonderful experience. Lastly, I would like to

thank my dad, who taught me to always work hard and achieve my goals.

ix

ABSTRACT

This thesis presents a detailed look at channel state information (CSI), an efficient

approach to the shape detection of physical objects, and observations on how environment noise

affects CSI. CSI describes the communication link between a transmitter and receiver through

the properties of multiple channels. Once analyzed, these channels or subcarriers describe how

the signal travels from the transmitting device to the receiving device. While this information

was intended to help increase signal quality and strength of a communication link, many other

applications have been suggested.

The proposed application in this paper provides a way with minimal resources to capture

and utilize CSI for shape detection. Instead of relying on gestures or movements, I focus on the

experiment setup used to detect object shapes and their respective CSI signature. Hence, if I can

determine the shape an object should be, then I can detect when that shape changes and capture

specific events. In addition, I utilize Wi-Fi as a common source available to provide CSI in many

real-world applications without the need for additional resources. Experimentally, I demonstrate

how to build a system capable of capturing CSI, how to use CSI logging tools, how environment

noise affects CSI, and an approach to detect shape changes.

10

CHAPTER 1. INTRODUCTION

Overview

Radio Frequency (RF) signals are transmitted and captured by millions of devices. Wi-Fi,

a well-known RF frequency standard, continues to increase its presence all around the globe. Wi-

Fi signals contain information known as channel state information (CSI). CSI provides channel

properties of a communication link between the transmitter and receiver devices with the

intention of determining the expected performance of a wireless signal[1]. If an object is located

between a transmitting location and a receiving location, the transmitted Wi-Fi signal reflections

are different compared to a clear path [2]. Even if an object is not directly in the line of sight

(LOS) between the transmitting and receiving device, I can still detect a change in the Wi-Fi

signal’s path. This is due to the multiple-input and multiple-output standard, or MIMO. MIMO

utilizes multiple antennas for transmitting and receiving to allow multiple signals to reach their

destination via more than one path [3]. The resulting data contains CSI for each transmit and

receive antenna pair at each subcarrier frequency [4].

In addition to transferring information between devices, RF signals can be utilized for

other applications. There are many published research papers on CSI-based sensing. However,

there is a lack of research that provides a step-by-step guide to obtaining CSI and a simple

approach to detecting shape change in objects. I propose one such path and an application for the

shape detection of physical objects. Consider this practical example: Imagine an old deteriorating

bridge. One wishes to detect the movement of this bridge in the event the bridge becomes

structurally compromised. Normally this would be an expensive endeavor involving cameras,

sensors, and other devices consuming large amounts of energy. Consider another possibility that

requires minimal resources and provides an early warning of a structural integrity failure. I can

11

capture RF signals already being transmitted in the environment and monitor the bridge by

analyzing the signal’s CSI. To do this, I build a target reflector and place it on the bridge. I then

monitor shape change in the reflector. This allows high visibility of the bridge as it changes the

propagation of signals being captured by the receiver. As the bridge changes shape or moves, it

would in turn move the reflector and be detected.

Using minimal resources, this application provides a unique solution to shape detection.

Careful placement of the receiver and reflector would allow use of transmissions from nearby

sources to monitor an object and detect specific changes.

Contributions

The contributions of this paper include:

• Proposing a simple application for object shape detection

• Demonstrating experimentally how to detect shapes in CSI

• Demonstrating experimentally how to detect environment noise

• Developing MATLAB code to parse the CSI and generate shape detection plots

Organization

The rest of this thesis is organized as follows. In Chapter 2, I provide a detailed

introduction to CSI fundamentals. In Chapter 3, I discuss platforms for CSI and provide details

on the experimental design. In Chapter 4, I cover data collection and discuss technical issues

encountered. In Chapter 5, I provide basic observations and discussion on the data collected. I

show figures of the results and explain how they support the hypothesis. Finally, the thesis is

concluded in Chapter 6 with a summary, lessons learned, and possible future directions.

Appendix A includes a User’s Guide for the 802.11n CSI Tool. Appendix B includes MATLAB

code used to parse and analyze the CSI data.

12

CHAPTER 2. CSI FUNDAMENTALS

Introduction to CSI

Channel State Information (CSI) is the information generated by wireless signals between

a transmitting device and receiving device. CSI property values are derived from the physical

layer and based on the path the signal travels [5]. For example, an omnidirectional antenna will

transmit a wireless signal equally in all directions. The signal path is altered when there are

objects in the environment in proximity to the either the transmitter or receiver. The wireless

signals can be reflected off multiple surfaces and still reach the target receiver. The CSI captured

by the receiver contains a specific signature that reflects the path taken to reach the receiver. This

information can be analyzed to characterize events and detect shapes.

The CSI signature is typically measured by amplitude, phase angles, and the calculated

signal to noise ratio (SNR). Originally, the intention of CSI was to determine the expected

performance of a wireless signal. However, one or more of these properties can be used to

determine if an object has moved and changed shape. Movement of the transmitter, receiver, and

nearby objects are other possible events detectable by CSI [6]. Figure 1 shows a plot of SNR

[dB] on the y-axis and time on the x-axis for 30 subcarrier frequencies. The large SNR

fluctuations show detectable changes tied to events occurring in the environment. In this study,

these events correspond to a mix of large events, such as the garage door opening, to smaller

events, such as changing the shape of an object.

13

Figure 1. Plot of CSI Signal to Noise Ratio

By increasing the number of transmit and receive antennas, an increase in subcarrier

frequency groups (SFG) occurs. Each subcarrier, in its respective SFG, represents a different

frequency and provides an additional source of CSI information. The additional CSI data

captured is useful in detecting more features from an environment, because it increases the scope

of the environment observed. CSI is very sensitive to changes in the environment and therefore

can generate a lot of unwanted noise [7]. The noise makes it difficult to detect small events due

to their minimal impact to the environment. Therefore, in some cases, it is necessary to filter out

the noise to detect smaller actions [7]. One of the main goals of this study is to show proof of

concept for shape detection. Hence, I focus on larger event footprints that do not require noise

filtering to detect.

Understanding MIMO

The ability to capture large amounts of CSI from multiple subcarriers provides a higher

success rate of detecting specific events and eliminates the need for detecting objects. This

method of communication is known as multiple-input and multiple-out or MIMO. MIMO is a

communications standard used to increase throughput and enhance performance of wireless

signals by allowing multipath propagation of wireless signals. In other words, this technology

14

was created to allow for an increase in the number of antennas a device could support for

simultaneous data transmission. In addition, MIMO helps to reduce signal interference.

There are three main advantages a system using MIMO has over Single in, Single out

(SISO). First, the signal strength can be improved without a clear line of sight [8]. This is due to

MIMO being able to use transmissions that have been reflected. In this study, this is particularly

useful as it allows for unique CSI signatures from reflections off an object. Second, the amount

of bandwidth generated from multiple redundant data streams will increase the capability of

detecting events [8]. The more transmit and receive antenna pairs available, the more data

streams can be transmitted simultaneously. Third, multiple data streams also increase quality of

the signal which provides an increase in capability when detecting objects outside LOS [8]. In

this study, this aides in detecting CSI on subcarriers that are reflected off an object. This is

important since placing objects within LOS will not always be a practical option in real world

scenarios. Wireless devices that use IEEE 802.11n/ac standards typically use MIMO [7]. In this

study I utilize the 802.11n wireless networking standard.

Mathematically, a MIMO system can be expressed as: Y = Hx + n

Where y is the receiving vector, x is the transmitting vector, H is the channel matrix containing

complex values of CSI, and n is the vector representing environmental background noise [3].

Using MIMO, a CSI matrix is created by transmitting data to an access point. The access point,

in turn, constructs the CSI information and returns the information to the client where it is

extracted.

Data Transmission Quality

The underlying reason behind CSI’s use is data transmission quality. The 802.11n

standard transmits data using Orthogonal Frequency Division Multiplexing (OFDM). OFDM

provides modulated data across multiple subcarriers using multiple antennas on the transmit and

15

receiver side. The quality of data transmitted between the transmitter and receiver is affected by

many factors such as scattering, fading, and signal loss over distance. To measure the quality, I

use CSI because it can measure channel properties on each individual subcarrier across multiple

antennas [9].

The CSI matrix or channel matrix, H, contains complex numbers that describe the

amplitude and phase angles of the wireless link [9]. Using MIMO, a CSI matrix is created by

transmitting data to the receiver. The subcarriers scattering across different paths generate a

unique CSI signature described by their amplitude and phase values. CSI values are determined

for each subcarrier. The receiver, in turn, constructs the CSI matrix data and returns the

information to the transmitter where it is extracted.

16

CHAPTER 3. EXPERIMENT DESIGN

CSI Platforms

CSI is collected and used for many different sensing applications. The software platforms

commonly used to capture CSI are the Linux 802.11n CSI Tool and the Atheros CSI Tool [10].

Both tools are similar in that they capture CSI from a network interface card (NIC) and use open

source wireless drivers. There are a few major differences, however. The Linux 802.11n Tool

uses the Intel Wi-Fi 5300 NIC and iwlwifi wireless driver [11]. A limitation of the 802.11n tool

is the modified firmware used by the Intel 5300 NIC being closed source. Another caveat is the

Intel card being limited to capturing thirty subcarrier groups of CSI [11]. Note that thirty

subcarrier groups across multiple antennas provide a substantial amount of CSI. The subcarriers

captured are spread evenly across either fifty-six subcarriers for the 20Mhz channel or one

hundred fourteen subcarriers for the 40Mhz channel [11].

In comparison, the Atheros CSI Tool uses ath9k, an open source Linux kernel driver that

claims to support all Atheros 802.11n chipsets [12]. Although ath9k supports a wider range of

wireless devices, the limitation of using a NIC is still in place. There are options for USB

wireless devices and embedded wireless, however locating these can be challenging. Next, the

tool functions are open source and designed solely through software[12]. Hence, there are no

modifications to the firmware needed and users can modify the software tool to suit their needs

[12]. One major advantage of the Atheros CSI Tool is the detailed instructions for installation

and use provided on the website. Lastly, the tool can capture all 56 subcarriers for the 20Mhz

channel or 114 subcarriers for the 40Mhz channel [12].

At the time of writing this report, a third CSI platform known as the ESP32 CSI tool was

introduced. The tools previously mentioned require hardware to support a NIC card and

17

additional hardware to transmit. The ESP32 is a standalone all-in-one microcontroller found on

microcontroller boards. The ESP32 can be programmed to operate as an access point or active

wireless client and collects CSI data using onboard storage. The ESP32 tool can capture up to 64

subcarriers although due to bandwidth limitations for processing the CSI in real time it is

recommended to reduce the capture size to 32 subcarriers or less [10].

As mentioned before, the ESP32 tool was not known at the time of selecting a CSI Tool

for this project. Therefore, the choice of CSI platforms was largely personal preference between

the Linux 802.11n CSI Tool and Atheros CSI Tool. The Linux 802.11n CSI Tool was chosen for

its many available resources, stable track record, straightforward hardware selection, and quick

processing MATLAB utilities. An 802.11n CSI Tool Users Guide was developed in support of

this study to provide future researchers with detailed instructions on installation, operation, and

troubleshooting (see Appendix A).

Tool Installation

This section provides a brief overview of the 802.11n CSI Tool installation. Refer to the

“GETTING STARTED” section of the User’s Guide for more details (see Appendix A). To

install the Linux 802.11n CSI Tool, I used a small form factor PC with an empty PCI-e card slot

located on the motherboard to install the IWL 5300 WIFI module. The 802.11n CSI Tool also

requires a specific Linux kernel version and a supported Linux distribution installed. In addition,

I installed a modified firmware and custom open source wireless drivers to effectively operate

the IWL 5300 for CSI logging. Lastly, I selected a mode to run the tool and collect CSI data on

appropriate sources. A description of the different modes is given in the next section. Alongside

this study and the User’s Guide previously mentioned, I developed and created instructional

videos to allow future researchers a quick start on CSI data collection. The videos are accessible

via links provided in this study.

18

The 802.11n CSI Tool relies on a closed source custom firmware image that only works

on the IWL 5300 module. The interface on the IWL5300 is Mini PCI-e. Mini PCI-e slots can be

found on some mini-ITX motherboards, but PCI-e slots are much more common. Therefore, I

used an adapter to install the IWL 5300 into a PCI-e slot. An instructional video set was created

for future researchers to perform the installation with ease. Navigate to the Instructional Videos

folder and follow “Step 1. mini PCI-E to PCI-E Installation” for the adapter installation. Then

proceed to install the PCI-e card using “Step 2. PCI-E Computer Installation” as a guide (see

Appendix A).

The supported operating systems are Ubuntu 12.04 and Ubuntu 14.04. Installing the latest

supported version of Ubuntu provides the latest version of supported drivers and firmware. This

is recommended to increase chances of compatibility with the user’s computer hardware. The

operating system used in this project was Ubuntu 14.04.5 - x86_64 (Trusty Tahr) . Navigate to

the Instructional Videos folder and follow “Step 4. Ubuntu Baseline” to configure Ubuntu and

install the Linux kernel 4.2 (see Appendix A).

The official installation instructions can be found on the Linux 802.11n CSI Tool

Website, however the section regarding driver modifications can be challenging to follow.

Therefore, it is recommended to watch the installation video as a supplement to the website

instructions. Navigate to the Instructional Videos folder and follow “Step 5. CSI Tool

Installation.” The installation guide introduces an alternative method for determining the correct

kernel tag that allows the installer to determine the tag name precisely. It also shows a number of

useful integrity checks to verify the installation steps. After following the installation

instructions, the 802.11n CSI Tool is ready to use (see Appendix A).

https://iastate.box.com/s/6lmqx3vmtsmcheqixa0g708fslgcgpgw
http://old-releases.ubuntu.com/releases/14.04.5/ubuntu-14.04.1-desktop-amd64.iso
https://iastate.box.com/s/6lmqx3vmtsmcheqixa0g708fslgcgpgw
https://dhalperi.github.io/linux-80211n-csitool/installation.html
https://dhalperi.github.io/linux-80211n-csitool/installation.html
https://iastate.box.com/s/6lmqx3vmtsmcheqixa0g708fslgcgpgw

19

Tool Operation

The 802.11n CSI Tool has four modes of operation: Client, AP, IBSS (ad-hoc), and

Monitor. In Client mode, the captured CSI packet is transmitted from the access point to the

connected Intel 5300 NIC. The packet can be sent either directly to the client’s address or as a

broadcast. In AP mode, the captured CSI packet is transmitted by a connected client. In

independent basic service set or IBSS (ad-hoc) mode, the packet is transmitted by another station

directly connected to the client. In Monitor mode, the CSI packet is modified to have the same

fixed address for the sender and receiver. The Client mode of operation was selected for this

study to provide stability and consistency in capturing CSI (see Appendix A).

Operating the CSI Tool is divided into three steps: starting the CSI logger, connecting to

an access point, and generating CSI data. An overview of the instructions to operate the CSI

logging tool is given below. Refer to the “USING 802.11n CSI TOOL” section of the User’s

Guide for more details (see Appendix A).

Verify that the 802.11n driver is unloaded by logging into Ubuntu and opening a terminal

window. Inside the terminal window, type lspci -k | grep -i network -A 2 and press the enter key.

A list of Network Controllers recognized by Ubuntu will display in the terminal output. An

example of the expected terminal output is shown below.

Figure 2. Network Controller

Look for the Network Controller, “Intel Corporation Ultimate N Wi-Fi Link 5300.”

Verify there is no mention of “Kernel driver in use” below the Network Controller. If it appears

the default driver is loaded, then attempt to unload the default driver before loading the custom

20

driver. Unload the driver by typing sudo modprobe -r iwlwifi mac80211 and pressing the enter

key. The next step is to load the custom driver by typing sudo modprobe iwlwifi

connector_log=0x1 and pressing the enter key. This will load the correct driver with CSI logging

enabled.

The Intel 5300 custom firmware in now loaded. The next step is connecting to an access

point. There are many access points that support the 802.11n standard. Select one and follow the

manufacturer’s guide to access the configuration webpage. Verify the access point has

encryption turned off. Encryption options typically available are WPA, WPA2, and WEP. A

simple access point solution is to use the hotspot feature on a cellphone with no password.

However, this may affect performance. Navigate to the Instructional Videos folder and follow

“Step 6. CSI Tool Operation” for instructions on creating a mobile hotspot (see Appendix A). I

caution use of a mobile hotspot if using a sample rate faster than 1 packet per second. In testing,

I discovered packet drops and eventually a connection drop would occur with this configuration.

For this reason, I switched to a different access point mentioned in the next section,

“EXPERIMENTS.” Note that using a different access point does not change the configuration

setup.

Once the access point is setup, connect to the AP from the client by following the next set

of instructions. Bring up the IWL 5300 NIC by opening a terminal, typing sudo ip link set wlan0

up, and pressing the enter key. If the client system has multiple wireless cards installed, then

wlan0 may be the wrong wireless device identifier for the IWL 5300 NIC. Make sure to replace

all commands with wlan0 using the correct identifier. Next, type ifconfig and press the enter key.

Verify the wlan device is listed in the terminal output. A figure showing a similar output to what

is expected is given below.

https://iastate.box.com/s/6lmqx3vmtsmcheqixa0g708fslgcgpgw

21

Figure 3. Wlan0 Device

Now the receiver is ready to connect to the access point (AP). First, scan for access points

by typing sudo iw dev wlan0 scan | grep -i ssid_name where the “ssid_name” is the access point

service set identifier (SSID) and press the enter key. SSID is often commonly referred to as the

Wi-Fi name. I configured the access points Wi-Fi name to be “AndroidAP.” The Wi-Fi name of

the access point is displayed in the command output. If nothing is output, recheck the Wi-Fi

name spelling and verify the access point is visible. Then rescan for the access point. Another

option is to remove the | grep -i ssid_name part of the command to view all visible access points.

After verifying the access point is visible, type sudo iw dev wlan0 connect ssid_name and press

the enter key to connect. Make sure to replace the ssid_name portion of the command with the

correct SSID! Wait up to 30 seconds for the connection to complete.

To verify the connection status for the wlan0 device, type sudo iw dev wlan0 link and

press the enter key. Verify the connection by observing the correct SSID of the access point

displayed in the terminal output. For example, if the SSID is “AndroidAP” then the command

output should show something like the image in the figure below.

22

Figure 4.Wlan0 Link Status

The next step is to request an IP address from the access point. An alternate option is to

create a static IP address. Creating a static IP address is not covered but there are many tutorials

available on the web. Type sudo dhclient wlan0 and press the enter key to request an IP address.

Then type ifconfig and press the enter key to verify wlan0 has an IP address. Note the figure

below with the yellow arrow highlighting the IP address given to wlan0.

Figure 5. IP Address

Now I am ready to start the 802.11n CSI Tool and capture CSI data. To generate CSI

data, I will need two terminals open. Terminal one will be used to run the CSI data logging

application. Terminal two will be used to trigger a response from the access point. The access

point will then send packets with CSI information to be extracted by the receiver system. The

first step is to setup the CSI logging tool. Open two terminals, then in terminal one, type sudo

linux-80211n-csitool-supplementary/netlink/log_to_file csi.dat and press the enter key. The

command in terminal one is shown in the figure below. Make sure to rename the “csi.dat”

23

portion of the command to a unique name so as not to overwrite CSI files on subsequent data

collections.

Figure 6. CSI Logging Command

Leave terminal one running the CSI logging tool and in terminal two, type ifconfig and

press the enter key. Use wlan0’s IP address to determine the access point’s IP address. Look at

the IP address obtained from the access point and determine the access point’s IP address. For

example, if given an IP address of 192.168.43.110 then the access point’s IP address is likely

192.168.43.1. Notate the access point’s IP address and in terminal two, type ping xxx.xxx.xx.xxx

and press the enter key. In this case, I typed ping 192.168.43.1 and pressed the enter key to ping

the access point. Both terminals with each command in their respective terminal is shown in the

figure below.

Figure 7. Ping Access Point

In terminal 1, verified that the CSI Tool is logging CSI data. Several lines of received xxx

bytes:id: xx val: x seq: x clen: xxx should be visible. Verify the expected terminal output with the

figure below.

24

Figure 8. Capturing CSI

To stop logging CSI data, press Ctrl + C in each terminal to terminate CSI data

collection. In terminal one, type ls -l | grep -i csi.dat and press the enter key. Make sure to

replace “csi.dat” with the filename used. Verify the CSI file contains data in the terminal output

by observing the file size. The figure below points out the location of the file size from the

command output.

Figure 9. CSI Data Verification

At this point CSI data is being generated and captured (see Appendix A).

25

Experiments

Prior to performing the experiments in this study, I performed several steps. First, I

designed and built a reflector to act as the object. Second, I ran the 802.11n tool through stress

testing. This involved testing packet rates against the stability of the CSI logging tool, running

the tool for prolonged periods of time, and analyzing the data to determine if the reflector was

detected. Third, I tested the tool in several locations to select a controllable environment that

would yield the best results for capturing stable background noise (no fluctuations). A stable

baseline noise was needed to detect object shapes with a high measure of success.

Two experiments were designed for this project, each with a separate goal. Experiment

one’s goal was to capture CSI data capable of identifying the current angle of an object.

Experiment two’s goal was to capture CSI data capable of identifying the shape of an object.

Due to the subtle changes in experiment one and the increased complexity of the goal, the

analysis needed is out of scope of this paper. Experiment one was specifically performed for

future research and development of machine learning algorithms. Both experiments were

conducted over the course of several weeks in a 24’ by 26’ garage. To develop a noise baseline,

background CSI was collected prior to each data collection. All changes to the environment were

scripted and timed during each experiment. A list of the events is provided later in this section

followed by more details regarding the testing environment in the next section. Lastly, the

experiment was performed within a static environment during the same time each day to limit the

chance of background noise changes between experiments and produce comparable results.

In experiments one’s setup, there are 10 experimental settings shown in the table below.

Each setting configuration dictates the transmitter, receiver, and the center of the object remain

26

in a fixed position. The only change is the angle of the reflector. When positioning the reflector,

it should rotate around the center point of its bottom edge.

Table 1. Object Angles

Index 1 2 3 4 5 6 7 8 9 10

Angle of Object 0° +15° +30° +45° +60° +90° -15° -30° -45° -60°

A visual aide to “Index 2,” showing the object’s angle in reference to the transmitter and

receiver, is shown in the figure below. The transmitter and receiver were placed six feet apart.

The object’s center was placed three feet from the transmitter and receiver along the x-axis and

three feet along the y-axis.

Figure 10. Reflector Angle 15 Degrees

For experiment two’s setup, there are three experimental settings shown in the table

below. Each setting configuration dictates the transmitter, receiver, and the center of the object

remain in a fixed position once placed. The only change is the shape of the reflector. When

positioning the reflector, it should rotate around the center point of its bottom edge. Row two in

the table indicates the different shapes for each setting configuration. Row one indicates a

27

reference name to the object shape types that is used in the rest of the paper.

Table 2. Object Shapes

Reflector Shape 1 Shape 2 Shape 3

Shape Type Open Mirrored “L” “L”

A visual aide of the experiment setup showing the reflector as “Shape 2” is shown in the

figure below. Note that the “Open” shape type is the reflector without being folded. The

transmitter and receiver were placed six feet apart. The object’s center was placed three feet from

the transmitter and receiver along the x-axis and three feet along the y-axis. The placement

selection for experiment one and two yielded the best results for CSI capture during preliminary

testing.

Figure 11. Mirrored L Shape

Hardware

The receiver used in this study was a custom-built Shuttle XPC. The relevant internal

hardware is a customized network interface card (NIC). The customized NIC is a combination of

28

a Mini PCI-e to PCI-e Adapter with the IWL5300n module (see Appendix A). It contains three

external dipole antennas installed in fixed positions throughout each experiment.

Imagery of the receiver is shown in the figure below.

Figure 12. Shuttle XPC System

In terms of reflectors, the larger the shape of the reflector the easier it is to detect. The

object used for detection was a custom built 4’x4’ square reflector panel with a wood frame. A

solid reflective surface was installed on one side of the wood frame. A reflective surface is

defined as anything that conducts electricity. In this study, I chose aluminum sheeting because of

its good conductive rating and low cost. The reflector was separated into two 2’x4’ panels and

connected with metal hinges down the middle. This allowed the reflector to fold upon itself and

be configured for different shapes. Imagery of the reflector is shown in the figure below.

Figure 13. Reflector Panels

 Intel Wi-Fi Wireless Link

5300

29

The transmitter or access point used was a Netgear N600 router. The N600 supports the

IEEE 802.11 b/g/n standards for 2.4Ghz frequency band and the IEEE 802.11 a/n standards for

5.0Ghz frequency band. In addition, it contains two internal transmitter and receiver pairs. In this

study the N600 was set to the manufacturers default settings and then configured as an open

access point. The 2.4Ghz frequency band was solely used to ensure compatibility and stability

with the CSI logging tool. Imagery of the Netgear N600 router is shown in the figure below.

Figure 14. Netgear N600

For each experiment, data was collected at 50 samples per second to provide a higher

data sample set during analysis. This was accomplished by setting the ping interval to 20ms. The

ping command used to accomplish this task was sudo ping -D -r -v -i .02 xxx.xxx.x.x where the

“x” represents the IP address of the access point. A list of events was selected and incorporated

into each experiment to determine how well different scaled events could be detected with

minimal analysis. The events and their description are provided in the table below.

Table 3. Experiment Events

Event Event Description

Reflector Move reflector into position

Garage Door Close the garage door

Garage Door Open the garage door

Vehicle Park vehicle in garage

Walking Walk around experiment

30

As stated earlier, the experiments were conducted in the two-car garage shown in the

figure below. One vehicle was permanently removed from the garage during the experiments.

The other, a 2011 Honda CRV, was used in the “Vehicle” event during the experiments. All

components were placed carefully per the design in the previous section. The distances between

the transmitter, receiver, and reflector were recorded for each data collection. Concrete blocks

were placed to hold the reflector in its designated position and to prevent other components from

moving easily during measurement activities and events. The garage floor was marked to allow

for accurate repetitive placement of the reflector and to designate walking patterns. The vehicle

parking was aligned within a specific range by marking the adjacent wall for the driver to stop

next to when it reached the driver’s side mirror. The only components moved during the

experiment were specific to each event. Hence, the reflector was positioned during the reflector

event and the garage door was moved from closed to open and open to closed during its

respective events.

The transmitter and receiver were placed on matching stools at six feet apart. The height

measured for the center antenna on the IWL5300 was 2’1.5”. The height measured for the top of

the N600 was 2’2.5”. The placement was intended to center the components in height to the

reflector’s center to provide good signal reflections and avoid signal integrity issues. A total of

eight concrete blocks were used to hold the reflector and secure the placement of the receiver and

transmitter. The receiver was remotely controlled via secure shell (SSH). The physical

connection used was an Ethernet cable connected to the Shuttle XPC onboard NIC and routed to

a laptop. The laptop was connected to the receiver throughout the entire experiment in order to

make periodic visual integrity checks on the CSI logging tool. The heating element used was a

50K-80K BTU convection propane tower portable heater. I used the heating element to pre-heat

31

the garage to a nominal temperature prior to the experiment. In most circumstances this would

not be necessary. However, in this study, I encountered connection issues discussed in the

TROUBLESHOOTING section of Chapter 4.

Figure 15. Test Environment

32

CHAPTER 4. DATA COLLECTION

Data Sets

CSI data sets were collected for each experiment based upon the number of

configurations in each experiment. Dry runs were conducted prior to each experiment to verify

the CSI data captured contained valid data. Following the instructions in the “TOOL

OPERATION” section of Chapter 3, two terminals were used to remotely control the CSI data

collection process. Terminal one was used to start the logger and provide visual checks for CSI

data captures throughout the experiment. Terminal two was used to control the CSI capture rate

and sample size. This was accomplished by pinging the access point at a predetermined packet

interval. Each terminal output was logged to text files, and a readme file with the experiment

details was generated.

As mentioned earlier, experiment one consisted of ten data sets. One data set generated

for each designated angle in which the reflector was configured. Experiment two consisted of

three data sets. One data set for each designed shape. A master guide table was generated for

each experiment to enact each event in a specific order with specific time periods. The master

guide was used as a template to record event times for all data collections in each experiment.

The master guide for experiment 1 is shown in the table below. Data collected for

experiment 1 was recorded in 30-minute blocks. Main events were set in 15-minute increments

except for the garage door and vehicle events in the third 30-minute segment. Those events were

set in shorter increments to reduce the temperature drop in the garage once the garage door was

opened. The first 30-minute segment was used to collect background noise and place the

reflector in its unique configuration. The second 30-minute segment was used to generate a

unique CSI signature through the specific event of walking at a measured pace along a

33

designated path around the experiment. The third 30-minute segment was used to generate three

unique CSI signatures from parking a 2011 Toyota CRV in the garage. The three events to

accomplish this task were opening the garage, parking the vehicle, and closing the garage.

Lastly, walking around the experiment was performed again to note any detectable changes in its

signature after the vehicle was added to the background environment.

Table 4. Masters Guide for Experiment 1

Master Guide Exp1

Date Time Event Temp Comments

1/9/2020 19:30:00 Heat Garage record temp, warm up

1/9/2020 20:00:00 Start Data Recording record temp, photo doc, take measurements

1/9/2020 20:02:00 Garage Exit check CSI tool before exiting

1/9/2020 20:15:00 Place Reflector record temp

1/9/2020 20:17:00 Garage Exit check CSI tool before exiting

1/9/2020 20:30:00 Stop Data Recording record temp, photo doc, warm garage (optional)

1/9/2020 20:45:00 Start Data Recording record temp, photo doc, take measurements

1/9/2020 21:00:00 Garage Exit check CSI tool before exiting

1/9/2020 21:05:00 Walk Around walk around experiment (path is marked)

1/9/2020 21:10:00 Garage Exit check CSI tool before exiting

1/9/2020 21:15:00 Stop Data Recording record temp, photo doc, take measurements

1/9/2020 21:30:00 Start Data Recording check CSI tool before exiting

1/9/2020 21:32:00 Garage Door record temp before opening garage door

1/9/2020 21:35:00 Car Enters record temp after parking car

1/9/2020 21:37:00 Garage Door record temp after closing garage door

1/9/2020 21:40:00 Heat Garage turn on heater, record temp

1/9/2020 21:45:00 Walk Around walk around experiment (path is marked)

1/9/2020 21:47:00 Garage Exit check CSI tool before exiting

1/9/2020 22:00:00 Stop Data Recording record temp, photo doc, warm garage (optional)

The master guide for experiment 2 is shown in the next table below. The data was

recorded in 120-minute blocks with the total duration of CSI data collection ranging from 90 to

120 minutes. Main events were set in 30-minute increments except for the events occurring

between opening the garage door and walking around the experiment. Those events range from 5

to 15-minute increments to limit exposure to outside temperatures. The first 30-minute segment

was used to collect background noise. The second 30-minute segment was used to generate a

34

unique CSI signature created after placing the reflector. The third 30-minute segment is similar

to experiment one. I sought to generate multiple CSI signatures through the events of parking a

vehicle in the garage. Lastly, the fourth segment was used to walk around the experiment.

Table 5. Masters Guide for Experiment 2

Master Guide Exp2

Date Time Event Temp Comments

1/9/2020 19:30:00 Heat Garage

1/9/2020 20:00:00 Start Data Recording record temp, photo doc, take measurements

1/9/2020 20:02:00 Garage Exit check CSI tool before exiting

1/9/2020 20:30:00 Place Reflector record temp

1/9/2020 20:32:00 Garage Exit check CSI tool before exiting

1/9/2020 21:00:00 Garage Door record temp before opening garage door

1/9/2020 21:05:00 Car Enters record temp after parking car

1/9/2020 21:10:00 Garage Door record temp after closing garage door

1/9/2020 21:15:00 Garage Exit check CSI tool before exiting

1/9/2020 21:30:00 Walk Around walk around experiment (path is marked)

1/9/2020 21:32:00 Garage Exit check CSI tool before exiting

1/9/2020 22:00:00 Stop Data Recording validate CSI data, backup data, photo doc

A plot showing the CSI signatures of different events from experiment 2 is shown in the

figure below. This data set was collected from antenna receiver one, subcarrier nine. Details on

the specific events I was able to detect through a simplified process of principal component

analysis will be covered in the next chapter.

Figure 16. CSI Event Signatures

35

The recorded events for each data set can be accessed here: Event Logs

The data sets for each experiment and their respective support files can be access here: Data Sets

Troubleshooting

During the data collection of experiment two, a connectivity issue was discovered. The

wireless connection between the transmitter and receiver would occasionally drop. In some

cases, I was unable to re-establish the connection to the access point. To resolve the issue, I

rebooted the receiver system and the access point as well. However, this would not do because it

disrupted the data collection during the experiment. I discovered a large number of connection

drops occurred during the events associated with parking the vehicle. A temperature gauge was

placed on top of the receiver to measure the temperature of the garage. It was noted that the

temperature in the garage would drop by 10 degrees or more while the garage door was left open.

This was due to extremely cold weather. Before conducting any experiments in the garage,

several tests were performed indoors without any connection drops. Therefore, the equipment

was moved back inside and run through several more endurance tests to determine root cause.

Unfortunately, the results yielded no connection drops while testing inside. Hence, nothing out of

the ordinary was discovered. I determined the main differences between the indoor and outdoor

environments were temperature, the environment background, and the events used during the

experiment. Next, I proceeded to systemically apply tweaks to resolve the issue.

First, the garage was heated, and the temperature raised to be within range of nominal

indoor temperatures. This was done to make sure cold temperatures were not adversely affecting

the hardware. In most cases, the heating element was used prior to the experiment. However, in a

few instances, the outside temperature caused the garage temperature to drop below the

acceptable threshold. This always occurred during the events with the garage door open.

https://iastate.box.com/s/egj435iwlarh61z3az8prk6mnvg7cyht
https://iastate.box.com/s/410l8t4jb7t5o2sk2ed8mzfankehtfhc

36

Therefore, the heating element was run during the experiment in these instances. Temperatures

were recorded during every event to determine if colder temperatures were having a negative

effect on the hardware. The results showed a significant reduction in connection loss with most

drops occurring when the temperature was lower than 50 degrees Fahrenheit. However, there

were still occasional connection drops. This led me to believe that more than one factor was

causing connection loss.

Second, the sample rate was reduced from 100 samples per second to 50 samples per

second to relieve strain on the receiver. During testing, it was discovered that drops were less

likely to occur with a slower sample rate. In addition, the CSI logging tool combined with

logging the terminal output and the operating system’s background processes caused a strain on

the receiver’s resources. By reducing the samples per second, I noticed an increase in system

performance and connection stability.

Lastly, after completing experiment two, during which connection drops were still

occurring, the recording time was reduced to 30-minute blocks for experiment 1. Note that

experiment two was run before experiment one. Experiment one was conducted with the new

event timing schedule, the nominal temperature adjustment, and the reduced sample rate. The

results yielded no more connection drops. This led me to believe there was a culmination of

issues that led to the connection drop. When each of the three solutions were attempted

individually, connection drops would occur. It was only after combining the three adjustments

that the issue was fully resolved.

37

CHAPTER 5. DATA ANALYSIS

Pre-Analysis Setup

To analyze CSI data, MATLAB or Octave must be installed. In this study, MATLAB

was used exclusively for analysis. To setup the MATLAB environment, follow the instructions

given in the ANALYZING CSI DATA section of the User’s Guide (see Appendix A). After

loading the “.dat” CSI log file into MATLAB, locate the loaded data in MATLAB’s workspace.

By choosing the variable name “csi_trace” it should look similar to the figure below.

Figure 17. CSI in MATLAB Workspace

To view the first entry, type csi_entry = csi_trace{1} in the MATLAB “Command

Window” and press the enter key. The structure of the CSI entry expected is shown in the figure

below. A breakdown on each variable can be found in the INSPECTING CSI section of the

User’s Guide (see Appendix A).

Figure 18. First CSI Entry

38

The information used for analysis is gathered from the “csi” variable in the “csi_entry”

structure. The “csi” variable contains the raw CSI data. The CSI data is represented in a 3-D

matrix of the MIMO channel for the connection in the format, “TX x RX x SF.” The first

dimension, “TX,” represents the number of transmit antennas. The second dimension, “RX,”

represents the number of receiving antennas per transmitter. Lastly, the third dimension, “SF,”

represents the number of subcarrier frequencies collected per receiver. At this stage, the CSI

values are based on Intel’s internal reference level [13]. To normalize the CSI, I used the

“get_scaled_csi” function. Next, I created a MATLAB script to parse the data and graph the

subcarrier frequencies of each transmitter and receiver pair. To incorporate time, I loaded a

timing file based on the timestamped logs of the CSI logging tool’s terminal output. A

commented version of MATLAB script labeled, “CSI_Plotter,” is provided to help automate

plotting the SNR in MATLAB (see Appendix B).

Analysis

In this section, I focus solely on experiment 2. Note that I collected CSI data from two

transmitters and the MATLAB code used for the analysis was based on that assumption. Before

starting with PCA, I assessed the data and removed any outliers. This was where I saw spikes in

the data that did not correspond to any event or a section that did not detect any events. Next, I

assessed the data using Principal Component Analysis (PCA) and determined which set of

subcarrier frequencies provided the most valuable information. In this study, I incorporated PCA

through feature elimination. The feature elimination process involved an inspection of the

subcarrier frequencies to determine which features are prevalent in the majority of subcarriers. I

narrowed down the features to three significant events. The three events chosen were reflector

placement, garage door opening, and garage door closing. The garage door events were selected

39

because they were the easiest events to detect. However, since the goal was to determine if I

could detect a shape change in the reflector, the focus was on the reflector event.

Using MATLAB, I ran the CSI_Plotter script to plot the subcarrier frequencies in the

format SNR [dB] over Time (seconds) across all the subcarriers. Next, I analyzed each subcarrier

frequency individually and began feature extraction. This was accomplished by grading three

key factors among each subcarrier: observable events, jitter, and event change. The observable

events were the events I scripted for the experiment along with their approximate times. It should

be noted that the event times were not exact but within two minutes of the actual event. This was

due to time needed for various tasks associated with each event. Depending on the event, the

tasks may have included entering the testing area, recording the environment temperature,

verifying the CSI logging tool performance, walking to different locations, and positioning the

reflector. The jitter was the variation of SNR associated with the data collection values when no

events were occurring. Lastly, the event change refers to the level of change in the SNR between

events. Again, I specifically focused on the reflector placement event since the goals are directly

associated with it. A subcarrier frequency plot of experiment 2 showing the key factors I look for

is shown below. It should be noted that the majority of scripted events were detectable.

Figure 19. Plot of Key Factor Analysis

40

Using the analysis criteria above, I analyzed the plots of each transmitter/receiver pair

and narrowed the select group of subcarriers for deeper analysis. The analysis results are shown

in the table below.

Table 6. Key Factor Analysis Results

Transmitter Receiver Observable Events Jitter Event Change

1 A 4 Large Small

1 B 4 Medium Medium

1 C 4 Low Medium

2 A 4 Low Medium

2 B 4 Low Large

2 C 4 Low Medium

I completed feature elimination by selecting the subcarrier frequency group (SFG) with

the best results. First, I determined the number of observable events for each subcarrier

frequency. Second, I determined the level of jitter by “Low” being less than two decibels (dB),

“Medium” being between two and four dB, and “High” being greater than four dB. I determined

the level of event change by “Small” being less than one dB, “Medium” being between one and

four dB, and “Large” being greater than four dB. The threshold values were determined through

experimentation, looking at large amounts of data, and assessing the best performance. All

experiments were both complex and unique so I would encourage anyone to re-evaluate these

metrics for their test. From the table above, I found T2RB to be the optimal choice. The main

difference being that the other transmitter receiver pairs had smaller event changes.

To detect shape change in the reflector, I analyzed the TR2B groups SNR plot and

determined the margin by which the reflector placement was detectable. I calculated this in two

steps. The first step was to calculate the difference in the average SNR across the TR2B

subcarrier frequencies surrounding each event. Specifically, I calculated the average SNR across

the subcarrier frequencies during the portion of time no reflector was present and after placing

41

the reflector . Then I calculated the difference between those values. The final step was to

perform the first step’s calculations for each reflector shape and compare the reflector’s change

in shape by the difference in SNR. Hence, by detecting a change in shape, I calculated the events

SNR values and classified the reflector’s shape.

Results

The shape detection results for TR2B’s subcarrier frequencies are shown in the figure

below. I found a clear indication of shape change in the reflector through the SNR

representation. In this study, by following the process of subcarrier frequency group selection,

the results were repeatable with minimal change in SNR variance.

Recall that TR1A displayed undesirable jitter and a smaller reflector event change. To

witness the impact of selecting the least desirable SFG, see the TR1A SNR plot. Notice the

difference in SNR change between reflector shapes one and three to be approximately 0.21dB. In

a static environment, this may be acceptable, but for real world applications, it is preferable to

have a larger margin of variance. The larger margin provides a clear indication of a change in the

shape of an object and robustness in noisier environments.

4
2

Figure 20. TR2B and TR1A Shape Detection Comparison

There are many studies that could provide methods of data smoothing and complex machine learning algorithms. These

methods could contribute to future research of this study; however, they were beyond the scope of this paper. The focus of my analysis

in this study was to provide a detailed guide for future research into a complex subject of detecting shapes with CSI. Through shape

detection analysis, I have contributed to CSI related research.

0

0.5

1

1.5

2

2.5

3

3.5

M
ea

n
 S

N
R

 (
d

B
)

Reflector Shapes

TR2B Reflector Shape Detection

Shape 1 Shape 2 Shape 3

0

0.5

1

1.5

2

2.5

3

3.5

M
ea

n
 S

N
R

 (
d

B
)

Reflector Shapes

TR1A Reflector Shape Detection

Shape 1 Shape 2 Shape 3

