High performance CMOS amplifier and phase-locked loop design

Thumbnail Image
Date
2002-01-01
Authors
Tang, Yonghui
Major Professor
Advisor
Randall L. Geiger
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

Low voltage, high speed and high linearity are three different aspects of the analog circuit performance that designers are trying to achieve. In this dissertation, three design projects targeting these different performance optimizations are introduced.;The first work is a design of a low voltage operational amplifier. In this work, a threshold voltage tuning technique for low voltage CMOS analog circuit design is presented. A 750mV operational amplifier using this technique was designed in a 0.5mum 5V CMOS process with Vtp ≈ -0.9V and Vtn ≈ 0.8V. The active area is 560mum x 760mum. It exhibits a 62dB DC gain and consumes 38muW of power. It works with supply voltages from 0.75V to 1V. Compared to its 5V counterpart consuming the same amount of current, it maintains nearly the same gain bandwidth product of 3.7MHz. This op amp is the FIRST strong inversion op amp that works at a supply voltage below the threshold voltage.;The second is a design of a high speed phase-locked loop for data recovery. A new non-sequential linear phase detector is introduced in this work. Most of the existing phase detectors for data recovery are based on state-machines. The performance of these structures deteriorates rapidly at higher frequencies because of the inadequate settling performance of the flip-flop used to form the state machine. The new phase detector has a speed advantage over the state-machine based designs because it is simple and easy to implement in CMOS technology. Using this phase detector, a PLL was designed in a 0.25mum CMOS process with an active area of 400mum x 290mum. Experimental results show it successfully locks to a 2.1Gbit/s pseudo-random data sequence at 2.3V. It is believed that the architecture is the fastest that has been introduced for data recovery applications.;The third work introduces the design of a highly-linear variable gain amplifier. It achieves high linearity with third harmonic distortion better than -60dB Vopp = 1V at 160MHz in a 0.25mum CMOS process. It has a precise gain step of 6.02dB that is controlled digitally. The linearity performance is achieved with a linearized open loop amplifier configuration. Similar performance could only be achieved using feedback configuration before.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2002