Understanding saturated hydraulic conductivity under seasonal changes in climate and land use

Mohamed Elhakeem
Abu Dhabi University

A. N. Thanos Papanicolaou
University of Tennessee, Knoxville

Christopher G. Wilson
University of Tennessee, Knoxville

Yi-Jia Chang
DGR Engineering, Rock Rapids, IA

Lee Burras
Iowa State University, lburras@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/agron_pubs

Part of the Agricultural Science Commons, Climate Commons, Hydrology Commons, and the Soil Science Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/agron_pubs/508. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Understanding saturated hydraulic conductivity under seasonal changes in climate and land use

Abstract
The goal of this study was to understand better the co-play of intrinsic soil properties and extrinsic factors of climate and management in the estimation of saturated hydraulic conductivity (K_{sat}) in intensively managed landscapes. For this purpose, a physically-based, modeling framework was developed using hydro-pedotransfer functions (PTFs) and watershed models integrated with Geographic Information System (GIS) modules. The integrated models were then used to develop K_{sat} maps for the Clear Creek, Iowa watershed and the state of Iowa. Four types of saturated hydraulic conductivity were considered, namely the baseline (K_b), the bare (K_{br}), the effective with no-rain (K_{e-nr}) and the effective (K_e) in order to evaluate how management and seasonality affect K_{sat} spatiotemporal variability. K_b is dictated by soil texture and bulk density, whereas K_{br}, K_{e-nr}, and K_e are driven by extrinsic factors, which vary on an event to seasonal time scale, such as vegetation cover, land use, management practices, and precipitation. Two seasons were selected to demonstrate K_{sat} dynamics in the Clear Creek watershed, IA and the state of Iowa; specifically, the months of October and April that corresponded to the before harvesting and before planting conditions, respectively.

Statistical analysis of the Clear Creek data showed that intrinsic soil properties incorporated in K_b do not reflect the degree of soil surface disturbance due to tillage and raindrop impact. Additionally, vegetation cover affected the infiltration rate. It was found that the use of K_b instead of K_e in water balance studies can lead to an overestimation of the amount of water infiltrated in agricultural watersheds by a factor of two. Therefore, we suggest herein that K_e is both the most dynamic and representative saturated hydraulic conductivity for intensively managed landscapes because it accounts for the contributions of land cover and management, local hydopedology and climate condition, which all affect the soil porosity and structure and hence, K_{sat}.

Keywords
Saturated hydraulic conductivity, Pedotransfer functions, Watershed models, Geographic Information System

Disciplines
Agricultural Science | Climate | Hydrology | Soil Science

Comments

Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Understanding saturated hydraulic conductivity under seasonal changes in climate and land use

Mohamed Elhakeema, A.N. Thanos Papanicolaoub,⁎, Christopher G. Wilsonb, Yi-Jia Changc, Lee Burrad, Benjamin Abbanb, Douglas A. Wysockie, Skye Willse

a Abu Dhabi University, Civil Engineering Department, Abu Dhabi, P.O. Box 59911, United Arab Emirates
b University of Tennessee, Hydraulics & Sedimentation Laboratory, Department of Civil & Environmental Engineering, Knoxville, TN 37996, USA
c DGR Engineering, Rock Rapids, IA 51246, USA
d Iowa State University, Department of Agronomy, Ames, IA 50011, USA
e USDA-NRCS National Soil Survey Center, Lincoln, NE 68508, USA

A R T I C L E I N F O

Handling Editor: Morgan Cristine L.S.
Keywords:
Saturated hydraulic conductivity
Pedotransfer functions
Watershed models
Geographic Information System

A B S T R A C T

The goal of this study was to understand better the co-play of intrinsic soil properties and extrinsic factors of climate and management in the estimation of saturated hydraulic conductivity (\(K_{sat}\)) in intensively managed landscapes. For this purpose, a physically-based, modeling framework was developed using hydro-pedotransfer functions (PTFs) and watershed models integrated with Geographic Information System (GIS) modules. The integrated models were then used to develop \(K_{sat}\) maps for the Clear Creek, Iowa watershed and the state of Iowa. Four types of saturated hydraulic conductivity were considered, namely the baseline (\(K_b\)), the bare (\(K_{br}\)), the effective with no-rain (\(K_{enr}\)) and the effective (\(K_e\)) in order to evaluate how management and seasonality affect \(K_{sat}\) spatiotemporal variability. \(K_b\) is dictated by soil texture and bulk density, whereas \(K_{br}\), \(K_{enr}\), and \(K_e\) are driven by extrinsic factors, which vary on an event to seasonal time scale, such as vegetation cover, land use, management practices, and precipitation. Two seasons were selected to demonstrate \(K_{sat}\) dynamics in the Clear Creek watershed, IA and the state of Iowa; specifically, the months of October and April that corresponded to the before harvesting and before planting conditions, respectively.

Statistical analysis of the Clear Creek data showed that intrinsic soil properties incorporated in \(K_b\) do not reflect the degree of soil surface disturbance due to tillage and raindrop impact. Additionally, vegetation cover affected the infiltration rate. It was found that the use of \(K_{enr}\) instead of \(K_b\) in water balance studies can lead to an overestimation of the amount of water infiltrated in agricultural watersheds by a factor of two. Therefore, we suggest herein that \(K_e\) is both the most dynamic and representative saturated hydraulic conductivity for intensively managed landscapes because it accounts for the contributions of land cover and management, local hydropedology and climate condition, which all affect the soil porosity and structure and hence, \(K_{sat}\).

1. Introduction

Saturated hydraulic conductivity (\(K_{sat}\)), or when the infiltration rate reaches steady state (e.g., Smith, 2002; McCuen, 2003), is a key, dynamic property for assessing the impacts of climate and management on the behavior of soil and water (e.g., Papanicolaou et al., 2015; Elhakeem et al., 2017). \(K_{sat}\) is often used in soil interpretations, hydropedological catena assessments across landscapes, and physically based modeling exercises to determine water budgets, water-plant relationships, soil suitability for agriculture, and leaching potential (Nearing et al., 1996; Arnold et al., 1998; Lin, 2003; Schoeneberger and Wysocki, 2005; West et al., 2008).

However, \(K_{sat}\) exhibits a nonlinear behavior in response to external forcings resulting in high spatiotemporal variability at both large and small scales. This complex response is due to the co-play of different intrinsic soil properties, such as texture and bulk density, and extrinsic factors, including land use, vegetation cover, and precipitation (Gupta et al., 1996; Webster and Oliver, 2001; Papanicolaou et al., 2008; Elhakeem and Papanicolaou, 2009; Safadoust et al., 2012). The intrinsic soil properties mostly dictate the spatial variability of \(K_{sat}\) while the added temporal variability of \(K_{sat}\) is due to the extrinsic factors (Alleto and Coquet, 2009; Elhakeem and Papanicolaou, 2012).

Capturing this spatiotemporal variability in \(K_{sat}\) is challenging as instruments, such as double ring infiltrometers, are labor-intensive and...
expensive. Several spatially distributed point measurements that are conducted for long periods are necessary to measure the spatial and temporal variability of K_{sat} (Papanicolaou et al., 2008). Semi-automation of these instruments has helped ease the load (e.g., Papanicolaou et al., 2015). Yet, performing enough detailed, continuous measurements with the semi-automated instruments remains a daunting task, even in small hillslope-scale studies (10-3-10-5 m²).

Implicit methods for estimating K_{sat} to address the spatial and temporal limitations related to in-situ measurements include the use of infiltration and watershed models coupled with geospatial tools (Mohatny, 2013). Needless to say, some field measurements are still necessary at representative sites for methods validation.

Several, semi-empirical, infiltration models (i.e., pedotransfer functions, PTFs) exist that estimate saturated hydraulic conductivity based on the correspondence between K_{sat} and intrinsic soil properties, such as texture and bulk density (Schaap, 1999; Ferrer Julia et al., 2004; Rezaei Arshad et al., 2013; Patil and Singh, 2016). K_{sat} estimates that only consider intrinsic soil properties provide a baseline saturated hydraulic conductivity, K_b, across space. Most K_{sat} estimates reported in public databases (e.g., NCSS, UNSODA, WISE, HYPRE) are baseline values (e.g., Leenhardt et al., 1994; Leij et al., 1996; Schaap and Leij, 1998; Wosten et al., 1999; Lin et al., 2014).

Watershed models adjust K_b values by considering extrinsic factors such as vegetation cover, land use, management practices, and precipitation, which vary on an event to seasonal time scale (e.g., Nearing et al., 1996; Arnold et al., 1998; Ju et al., 2010). The K_{sat} estimates that consider both the intrinsic and extrinsic factors provide an effective hydraulic conductivity, K_e (Paleologos et al., 1996; Deb and Shukla, 2012). In essence, K_e is a “corrected form” of K_b which accounts for climate seasonality and land use change. The models convert “static” K_b values into “dynamic” K_e values, thus making them more pertinent for watershed management.

The objective of this study was to understand better the co-play of intrinsic soil properties and extrinsic factors of climate and management in K_{sat} dynamics through the development of a physically based, geospatial modeling framework to estimate K_{sat} at the watershed scale and larger. The framework presented here integrates regionally representative PTFs, physically based watershed models, and Geographic Information System (GIS) modules to quantify four different K_{sat} types that reflect the influences of both the intrinsic properties and extrinsic factors. The framework estimates the following four types of saturated hydraulic conductivity: (1) the baseline hydraulic conductivity, K_b, that accounts for the intrinsic soil properties; (2) the bare saturated hydraulic conductivity, K_{bare}, that adjusts K_b for the effects of soil crusting; (3) the effective saturated hydraulic conductivity with no-rain, $K_{sat,nr}$, that adjusts K_{bare} for the effects of vegetation cover; and ultimately, (4) the effective saturated hydraulic conductivity, K_e, that adjusts $K_{sat,nr}$ for the effects of individual rainfall events, which makes it the most dynamic type among the four.

The modeling framework was established first in a representative, intensively managed watershed of the U.S. Midwest, Clear Creek, Iowa where detailed K_{sat} measurements exist (Papanicolaou et al., 2015). Then, the framework was extended to quantify K_b, K_{bare}, $K_{sat,nr}$, and K_e for the entire state of Iowa. Maps of the four K_{sat} types were developed for Clear Creek and Iowa for two time periods, October and April corresponding to the pre-harvest and pre-planting conditions, respectively. These maps demonstrate both the spatial and temporal variability of K_{sat} due to changes in soil properties, climate, and management. In addition, a statistical analysis and histograms were provided for the four types and comparisons are made to discern the effect of the extrinsic factors on K_{sat} dynamics.

2. Modeling framework development

2.1. Model selection

The first step towards developing the modeling framework was to select the appropriate PTF and watershed model based on physical reasoning and model performance (Vieux, 2004). The chosen PTF and model should adequately represent site conditions and capture the dynamics of K_{sat} induced by climate and land management.

The estimates provided by the PTFs and models were compared using seven statistical criteria to direct K_{sat} measurements in selected fields of the test watershed, Clear Creek (Papanicolaou et al., 2015). These criteria included the mode, minimum, maximum, root mean square error, Akaike Information Criterion, geometric mean error ratio, and geometric standard deviation of the error ratio.

The mode was used to examine the symmetry of the observed and estimated values around the mean. The minimum and maximum evaluated the agreement between the ranges of the observed and estimated values.

The root mean square error is a quadratic scoring criterion, which measures the average magnitude of the error in the model estimates. The Akaike Information Criterion is a goodness-of-fit measure of a regression model that tries to minimize the model complexity by imposing a penalty for increasing the number of coefficients (Akaike, 1974; Bozdogan, 1987). For both the root mean square error and the Akaike Information Criterion, lower values indicate better performance of the model. A perfect agreement between the measured and estimated values is satisfied when $RMSE = 0$ and $AIC = 2k$, where k is the number of coefficients used in the model.

The geometric mean error ratio and standard deviation of the error ratio account for the log-tailed distribution of K_{sat} (Tietje and Richter, 1992; Papanicolaou et al., 2015). Perfect agreement between the estimated and the measured values is obtained when these values equal 1.0.

To evaluate the overall performance of the PTFs and models (Table 1), relative scores on a linear scale between 0 and 1 were assigned for each of the aforementioned criterion based on the degree of agreement between the measured and estimated values, and then summed (Shahin et al., 1993). The Rosetta PTF that considers bulk density (i.e., Rosetta - BD), as well as the Water Erosion Prediction Project (WEPP) model provided the closest agreement to the measured K_{sat} in Clear Creek and were incorporated into the modeling framework for this study. Papanicolaou et al. (2015) found that the bulk density dominated the infiltration process in soils experiencing the effects of compaction due to agricultural activity as it alters the soil porous network. Additionally, the WEPP PTFs capture the effects of management through changes in roughness and cover. Brief descriptions of Rosetta and WEPP, in the context of the modeling framework are given in following section.

2.2. Description of models

Rosetta is a modeling platform that estimates water retention parameters, as well as unsaturated and saturated hydraulic conductivity (Schaap et al., 1998, 2001). These parameters are determined using PTFs with various orders of complexity that incorporate sand, silt, and clay percentages, as well as bulk density and water retention points as model inputs. Therefore, it provides values for K_s.

WEPP is a physically based, spatially distributed, watershed model that estimates surface runoff and erosion from agricultural fields under different land uses and management practices (Flanagan et al., 1995, 2007). More detailed descriptions of WEPP and its applications are provided elsewhere (Alberts et al., 1995; Ascough et al., 1994; Abaci and Papanicolaou, 2009; Dermisis et al., 2010; Papanicolaou et al., 2017a).

WEPP can simulate the four K_{sat} types for different hillslopes on an
event basis considering different landscape attributes, climate, land use, and management (Nearing et al., 1996; Flanagan et al., 2007). Although WEPP does provide \(K_{\text{sat}} \) values, the PTF of Rosetta-BD was used herein due to its incorporation of bulk density. Bulk density, as it relates to compaction from farming activities, was a controlling factor of infiltration (Risse et al., 1995; Ju et al., 2010). Rosetta-BD \(K_{\text{sat}} \) values were then passed to WEPP to calculate the bare hydraulic conductivity (\(K_{\text{br}} \)) that accounts for the formation of soil crusts, which can inhibit infiltration (Risse et al., 1995).

\(K_{\text{br}} \) accounts for this crusting as follows (Risse et al., 1995):

\[
K_{\text{br}} = K_s [C + (1 - C) e^{-C_s (1 - RR/R_{\text{max}})}]
\]

(1)

where \(C \) is the crust factor, \(C_s \) is soil stability factor, \(K_s \) is the cumulative rainfall kinetic energy since the last tillage, \(RR \) is the random roughness height, and \(R_{\text{max}} \) is the maximum random roughness height. The \(C \) is a function of the capillary potential at the crust/sub-crust interface, partial saturation of the sub-crust soil, and the wetting front depth with typical values ranging from 0.2 to 1.0 (e.g., Morin et al., 1989). Soil crusts result from broken-down aggregate fragments that infiltrate into soil pores, causing the pores to clog. Additionally, the clays and sands mix forming a cement-like crust as the soil dries reducing the permeability of soil (Papanicolaou et al., 2017b). However, different soil textures and higher soil roughness can limit the crusting effect (Rawls and Brakensiek, 1985). Like \(C_s \), the soil stability factor is a function of soil properties (e.g., texture and cation exchange capacity) with reported values between 0.0001 and 0.01 (Bosch and Onstad, 1988; Burras et al., 2005). The cumulative rainfall kinetic \(E_s \) since the last tillage is estimated from Salles et al. (2002). \(RR \) reaches a maximum (i.e., \(R_{\text{max}} \)) of about 40 mm immediately after tillage and then decreases exponentially with time (Potter, 1990).

\(K_{\text{ef}} \) is the effective hydraulic conductivity, which is determined without rainfall, builds on the bare condition by considering cover. \(K_c \) further considers how the precipitation amount from an individual rain event can alter \(K_{\text{sat}} \):

\[
K_{\text{ef}} = K_{\text{br}} (1 - C_T)
\]

(2)

\[
K_c = K_{\text{br}} (1 - C_T) + (0.0034 + 0.01179K_s) C_T P
\]

(3)

where \(P \) is the storm rainfall amount in mm and \(C_T \) is the total effective surface cover partitioning the fractions of the canopy and residue. This is the last step in the WEPP estimation of \(K_{\text{sat}} \) where both intrinsic and extrinsic factors have been considered.

2.3. Model integration with GIS

Rosetta v. 1.2 and WEPP v. 2012.8 were loosely linked with ArcGIS v. 9.3.1 (Environmental Systems Research Institute, ESRI, Redlands, CA) to develop a physically-based, modeling framework within which different pedological, climatic, and land use data were incorporated. The modeling framework provides visualizations of \(K_{\text{sat}} \) in the form of daily geospatial maps that change as the extrinsic factors change (e.g., Ju et al., 2010).

Geospatial data for both Rosetta and WEPP were obtained from open-access Internet sources and compiled using a FORTRAN v. 2008 algorithm (Chang, 2010). In this algorithm, registries of data and computational resources were developed using XML middleware to allow for automatic input of different geographically distributed data sources through web interfaces. The data were downloaded in a format that was easily implemented into a GIS platform. Layered information of soil, vegetation, random roughness, and precipitation obtained from the geospatial and remote sensing databases were combined and polished to provide the appropriate information for different models. The ArcMap extension converted the soil vector maps into raster maps of the different variables, and the data points from the raster maps were used for statistical analysis.

3. Implementation of models

3.1. Study site

Clear Creek (Fig. 1a) is representative of Iowa and to a degree most of the Midwest in terms of land use (predominantly agricultural with developing small pockets of urban areas), soil (Alfisols and Mollisols), and climate (humid-continental). With a total drainage area of 270 km2, it drains directly to the Iowa and ultimately the Mississippi Rivers.

The watershed is part of the U.S. National Science Foundation, Intensively Managed Landscapes-Critical Zone Observatory (IML-CZO; http://criticalzone.org/iml). The IML-CZO has available hydrologic, erosion, biogeochemical, management, and economic databases for educating models. Additional data from remote sensing sources were also used to look at information from the watershed scale.

The dominant soils in Clear Creek are Mollisols with Alfisols also present but to a lesser extent (United States Department of Agricultural-USDA, 2008). The most common soil associations are the Tama-Downs,
3.2. Inputs and data sources of models

Table 2 summarizes the input variables for estimating K_{sat}, S_{mat}, S_{crop}, and K_s, which include soil, land use, and precipitation data. The soils data were obtained from the Iowa Soil Properties And Interpretations Database (ISPAID; https://www.extension.iastate.edu/soils/ispaid). The database provides information regarding the taxonomic classification (e.g., order; suborder; series), hydrologic soil group, texture, bulk density, organic matter, cation exchange capacity, and soil pH. The soil information in the database was confirmed with soil cores collected in Clear Creek (Oneal, 2009).

Light Detection And Ranging (LiDAR) data were obtained through the IML-CZo (http://data.imlczo.org/) from the Agricultural Conservation Planning Framework Development Team at the USDA/ARS National Laboratory for Agriculture and the Environment (http://www.gis.iastate.edu/gisf/projects/acpf). The LiDAR data provided elevations with an error of 20 cm. Detailed land use and management information for Clear Creek was provided from the IML-CZo.

The Hydro-NExT-generation RADar (NEXRAD)-estimated precipitation depth and intensity were obtained from the Iowa Environmental Mesonet (IEM; https://mesonet.agron.iastate.edu/) of the Department of Agronomy at the Iowa State University and compared to the tipping bucket data in Clear Creek. The deviation between the radar and tipping bucket data was less than 10%.

4. Results

Dynamic maps of the four K_{sat} types were developed using the coupled Rosetta-WEPP-GIS modeling framework for Clear Creek. The results focus on two specific periods (October 2007 and April 2008) that correspond to the K_{sat} field measurements in Clear Creek used for model verification. Additionally, these periods highlight the seasonal variability of K_{sat} due to changes in climate (i.e., rainfall intensity) and land management (i.e., the effects of residue and crop cover). The maps were complemented with histograms and statistical analysis to understand the co-play among the intrinsic properties and extrinsic factors governing K_{sat} dynamics.

Table 2

<table>
<thead>
<tr>
<th>K_{sat}</th>
<th>Input variables</th>
<th>Unit</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_s</td>
<td>% Sand (Sa)</td>
<td>Percent</td>
<td>86</td>
<td>3</td>
</tr>
<tr>
<td>K_s</td>
<td>% Clay (Cl)</td>
<td>Percent</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>K_s</td>
<td>Bulk density (BD)</td>
<td>Kg/m3</td>
<td>1.53</td>
<td>1.27</td>
</tr>
<tr>
<td>K_s</td>
<td>Cation exchange capacity (CEC)</td>
<td>meq/100 g</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>K_s</td>
<td>Crust factor (CF)</td>
<td>Dimensionless</td>
<td>0.5378</td>
<td>0.4324</td>
</tr>
<tr>
<td>K_s</td>
<td>Soil stability factor (C)</td>
<td>m2/J</td>
<td>0.00786</td>
<td>0.0001</td>
</tr>
<tr>
<td>K_s</td>
<td>Random roughness (RR)</td>
<td>m</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>K_s</td>
<td>Cumulative rainfall kinetic energy (E_k) for May 2007 to October 2007</td>
<td>kJ/m2</td>
<td>13.2</td>
<td>9.8</td>
</tr>
<tr>
<td>K_s</td>
<td>Cumulative kinetic energy (E_k) for November 2007 to April 2008</td>
<td>kJ/m2</td>
<td>6.1</td>
<td>4.6</td>
</tr>
<tr>
<td>K_s</td>
<td>Precipitation (P) for 10/17/2007</td>
<td>mm</td>
<td>48.8</td>
<td>36.6</td>
</tr>
<tr>
<td>K_s</td>
<td>Precipitation (P) for 4/18/2008</td>
<td>mm</td>
<td>34.8</td>
<td>20.8</td>
</tr>
<tr>
<td>K_s</td>
<td>Total effective cover (C_{eff}) for October</td>
<td>Fraction</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K_s</td>
<td>Total effective cover (C_{eff}) for April</td>
<td>Fraction</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K_s</td>
<td>S_{mat} for October 2007</td>
<td>mm/h</td>
<td>42.8</td>
<td>1.3</td>
</tr>
<tr>
<td>K_s</td>
<td>S_{mat} for April 2008</td>
<td>mm/h</td>
<td>42.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Fig. 1. The study site: (a) The Clear Creek watershed, IA; (b) A soil map of the watershed from the Iowa County Soil Survey.
4.1. Model key input variables

The dynamics of \(K_{\text{sat}} \) are primarily related to the effects of climate and management. Specifically in the equations for \(K_a \), \(K_{\text{crop}} \), and \(K_e \), the key input variables include the total effective cover, \(C_{TE} \); the cumulative rainfall kinetic energy, \(E_a \); and total event rainfall, \(P \).

Since \(C_{TE} \) is a function of both canopy and residue cover, it reflects changes over the crop life cycle, or the growing season. The \(C_{TE} \) values were estimated using a detailed land use classification map (Fig. 2a) from the National Land Cover Database, as well as the vegetation and management practices databases of WEPP. Fig. 2b and c, respectively, show maps of the \(C_{TE} \) for Clear Creek during two periods that bracket the growing season, October 2007 (pre-harvest) and April 2008 (pre-planting). The histograms of \(C_{TE} \) for the two months adjacent to the maps in Fig. 2b and c show the median (\(m \)); the arithmetic (\(\mu_a \)), geometric (\(\mu_g \)), and harmonic (\(\mu_h \)) means; and the arithmetic (\(\sigma_a \)) and geometric (\(\sigma_g \)) standard deviations. The relatively large standard deviations are attributed to the land use diversity in Clear Creek, which includes forest, agricultural, grasslands, and residential areas. The zero values in the histograms refer to streams, ponds, and lakes in the watershed. Both maps show high \(C_{TE} \) values (0.70–0.95) in the north-central and southeastern parts of the watershed. The re-established deciduous forests and prairies in the F.W. Kent Park (maintained by the Johnson County, IA Soil & Water Conservation Board) are in the north-central part, while the residential areas of Tiffin and Coralville sit in the southeastern part of the watershed. In these areas, the \(C_{TE} \) values change very little across the growing season due to the more permanent cover.

In contrast, \(C_{TE} \) values for the corn-soybean fields vary year to year as corn has higher \(C_{TE} \) values than soybeans. Corn and soybeans had average \(C_{TE} \) values of 0.75 and 0.37, respectively. There was little change in the \(C_{TE} \) values for each crop over the growing season, though. October had slightly higher \(C_{TE} \) values than April, which indicates that canopy cover was more abundant than the residue cover.

Fig. 3 shows the representative maps and histograms of the rainfall (\(E_a \) and \(P \)) data in Clear Creek. Fig. 3a and b show maps of the rainfall
cumulative kinetic energy (E_a) since the last tillage for the summer-fall and winter-spring seasons, respectively. The cumulative kinetic energy is summed between tillage events, as the tillage resets the roughness changes caused by the raindrop impact, and hence affects the ability for the soil to form crusts. The maps show higher E_a for the summer-fall (i.e., May–October) season compared to the winter-spring (i.e., November–April) season, as May and June experience intense convective thunderstorms (Wilson et al., 2012). For both periods, the E_a values were higher in the western part of the watershed than in the eastern part, which is most likely a rainout effect as storms tend to move from west to east, losing energy as they progress.

The distribution of E_a was wider in the summer-fall compared to the winter-spring, which agree with trends found in Midwestern watersheds (Dai et al., 2016). For the November–April period, the histograms show a bimodal distribution for the event, with the higher peak associated with the rainfall in the western part of the watershed. Nonetheless, the insignificant differences were signified by small standard deviations.

Fig. 3c and d show the rainfall depths (P) for two selected days during October 2007 and April 2008, considered for illustrating the dynamic effects of P on K_{sat}. For the November–April event, the highest rainfall events in the two months and were selected to demonstrate a “maximum” effect of rainfall on K_{sat}. Overall, the October event had higher P values than the April event. In terms of rainfall distribution, the central part of the watershed received the majority of the rainfall during the event, while the April event showed
more rain over the western part of the watershed. The histograms for P, follow similarly to those of E_a.

4.2. Analysis of the K_{sat} dynamics

The maps in Fig. 4 show the K_b, K_{br}, K_{e-nr}, and K_e in Clear Creek for the two chosen periods. Fig. 4a shows the baseline saturated hydraulic conductivity (K_b) calculated from Rosetta-BD. K_b depends only on “static” soil properties, and it is identical for both periods. For the most part, K_b is higher in the northern part of the watershed compared to the southern part, with the extreme northeast part of the watershed as an exception. The texture in the northern part had lower clay percentages (average = 11%) compared to the southern part (average = 23%).

Fig. 4b shows the bare saturated hydraulic conductivity (K_{br}) maps for Clear Creek for October 2007 and April 2008 calculated with Eq. (1) that is built in WEPP. The K_{br} calculations consider soil crusting and stability, random roughness, and the cumulative rainfall kinetic energy. RR_t and E_a, in particular, are dynamic variables that account for the changes in the management practices and climate conditions, respectively throughout the year.

The RR_t for October and April both averaged 0.01 m, which corresponded to the minimal land surface disturbance effects, as October and April are several months after tillage occurred, which allowed the ground to settle.

The E_a for October 2007 was determined from the precipitation data between May and October 2007. For April 2008 the precipitation data from November 2007 to April 2008 were considered. April had overall higher K_e values than October, because K_{br} is inversely proportional to E_a. The most intense rainfall in Clear Creek occurs due to convective thunderstorms in May and June (e.g., Wilson et al., 2012). The inverse relationship between K_{br} and E_a is attributed to the amounts of runoff and erosion. As aggregates breakdown from rain splash or runoff, some of the finer soil particles settle into the soil pores, blocking them. Additionally, the clays and sands mix forming a cement-like crust reducing the permeability of soil, and hence reduce the values of K_{br} (e.g., Eigel and Moore, 1983; Sun et al., 2010; Hu et al., 2012; Sutarto et al., 2014; Papanicolaou et al., 2017b).

Fig. 4c shows the maps of K_{e-nr} in Clear Creek for October and April. K_{e-nr} considers only the effect of land cover, see Eq. (2). Both months show lower values of K_{e-nr} in the north-central and southeastern parts of CCW, which reflect the high values of total effective cover (C_{eff}) and land use in these areas (see Fig. 2). These trends coincide with the land use maps of these parts of the watershed, which are mainly comprised of the restored forests in F.W. Kent Park and residential areas of Tiffin.
and Coralville. Thus, there were no significant changes in \(K_{sat} \) values at these areas due to seasonal differences.

When comparing the \(K_{sat} \) values in the row crop areas of the watershed, corn fields had lower \(K_{sat} \) values than the soybean fields, because the corn had a higher \(C_2 \) as corn plants have higher biomass over soybean plants (Abaci and Papanicolaou, 2009; Diwu et al., 1998). However, there were no significant changes in the \(K_{sat} \) values due to seasonal differences in the same field.

Maps of \(K_s \) which have the additional term in Eq. (3) accounting for the effects of single storm events, are shown in Fig. 4d. The maps are plotted for the days of the highest rainfall events in October 2007 and April 2008 to demonstrate a “maximum” effect of a single rainfall event on \(K_s \). For the October event, \(K_s \) values were higher at the central part of the watershed, while for the April event the \(K_s \) values were higher at the western part. This is attributed to the rainfall distribution over the watershed during these two days (see Fig. 2). Because \(K_s \) is linearly proportional to rainfall depth (e.g., Hardie et al., 2013) and the October event had higher precipitation than the April event, overall the maps show higher \(K_s \) for the single storm event of October 17, 2007 compared to the event on April 18, 2008. The proportional relationship between \(K_s \) and rainfall depth is attributed to the fact that for higher precipitation it is more likely to break the protective crust layer, thereby allowing for higher infiltration rates. Elhakeem and Papanicolaou (2012) has shown that a positive correlation exists between \(K_s \) and event rainfall depth.

Fig. 5 shows the histograms and the statistical measures obtained from the \(K_{sat} \) maps. The histograms for each \(K_{sat} \) type have unique patterns that do not vary significantly between the periods. Only the magnitude of the median is shifted due to the seasonal effect. The histograms of \(K_p \) and \(K_{br} \) are bimodal. In contrast, the histogram of \(K_{sat} \) is positively skewed, whereas the histogram of \(K_s \) is almost symmetric.

The geometric mean (\(\mu_g \)) and median (\(m \)) are more representative of the various saturated hydraulic conductivity distributions due to their wide ranges. Comparisons using the median between the relative magnitudes of \(K_p \), \(K_{br} \), \(K_{sat} \), and \(K_s \) show that \(K_s \) was higher compared to the other \(K_{sat} \) types for both months. Thus, \(K_s \), is essentially a maximum potential \(K_{sat} \) value that must be corrected to account soil cover, climate, and management factors.

The histograms of \(K_s \) show a decrease of about 30% relative to \(K_s \) emphasizing the important role that cumulative rainfall kinetic energy (\(E_a \)) and management practices and their effects on aggregate breakdown play on saturated hydraulic conductivity (Khan et al., 1988; Potter, 1990).

The median of \(K_s \) was higher for April than for October, as it had a lower \(E_a \) than the October. For October, the upper limit of \(K_p \), which was about 6.0 mm/h with a 90% confidence limit, matched nearly the lower limit of \(K_s \) under the same confidence limit. Further, the distribution of \(K_{br} \) was almost the same as \(K_s \) with a reduction of about 3.0 mm/h and 2.0 mm/h in the median values for October and April, respectively.

The role of cover further reduced \(K_{sat} \) as the median of the \(K_{sat} \) values was less than that for \(K_{br} \). The added cover inhibits infiltration. When compared to \(K_{br} \), the reduction in the median values of \(K_{sat} \) was about 7 mm/h and 6.5 mm/h for the months of October and April, respectively. It is also important to note, that the shape of the distribution changed from bimodal to positively skewed. Thus the effects of cover can override the inherent soil properties which shaped both \(K_p \) and \(K_{br} \). The total effective cover \(C_{eff} \) is one of the predominant factors that affect saturated hydraulic conductivity.

The median values for \(K_s \) increased about 5 and 3 mm/h for October and April, respectively, when compared to median values of \(K_{sat} \). This increase in \(K_s \) shows the importance of single storm events in estimating the saturated hydraulic conductivity (Nearing et al., 1996; Elhakeem and Papanicolaou, 2012). Additionally, the shape of the \(K_s \) histograms show near symmetric distribution with an increase in the saturated hydraulic conductivity when compared to \(K_{sat} \).

The maps and histograms for \(K_{sat} \), \(K_{br} \), and \(K_s \) shown in Figs. 4 and 5 were normalized to \(K_p \) and these ratios are shown in Fig. 6 for October, as an example. Similar distributions and trends for these ratios were also observed for April.

Fig. 6a shows the ratio \(K_{sat}/K_p \), which ranges between 0.47 and 0.72. For most of the areas within the watershed, a 30% reduction in \(K_p \) was observed due to changes in management practices and the kinetic energy of rainfall. This was also confirmed from the histogram, which shows a median of 0.67. \(K_p \) is always smaller than \(K_{sat} \). The baseline hydraulic conductivity, \(K_{sat} \), is the upper limit of \(K_p \) that can be approached only immediately after tillage, when random roughness is at its highest (i.e., \(RR_{rms} \)). Higher levels of random roughness limit the crusting of the soil and its effects at reducing saturated hydraulic conductivity (Rawls and Brakensiek, 1985).

Fig. 6b shows the ratio \(K_{sat}/K_{br} \) which ranges between 0.0 and 0.71. For most of the areas within watershed, a 50% reduction in \(K_p \) was observed due to changes in vegetation cover through the season. This emphasizes the important role of vegetation cover in reducing the infiltration rate due to rainfall interception. It can be seen from the histogram that \(K_{sat} \) is always smaller than \(K_p \) as well, with a median of 0.14.

Lastly, Fig. 6c shows the ratio \(K_{sat}/K_{br} \), which ranges between 0.46 and 1.59. As can be seen from the histogram, \(K_{sat} \) can be either smaller or larger than \(K_{br} \), with a median of 0.75. Within the watershed, the \(K_{sat} \) values which were larger than \(K_{br} \) were less than 5%. This is attributed to the rainfall effect on the porous structure of the surface soil at these locations.

4.3. Iowa \(K_{sat} \) dynamic maps

The coupled Rosetta-WEPP-GIS modeling framework was used to quantify \(K_{sat} \) dynamics across the state of Iowa. Maps of \(K_{sat} \), \(K_{br} \), \(K_{sat} \), and \(K_{br} \) are shown in Fig. 7.

The range of \(K_{sat} \) values across the state spans three orders of magnitude, which is similar to the range of measured values from previous studies (e.g., Ferrera et al., 2004; Papanicolaou et al., 2008, 2015). The \(K_p \) values follow the distribution of bulk soil properties across the state. These bulk properties are dictated by the parent material and resulting mineral skeleton of the soil (Oschwald et al., 1965). In Iowa, ~95% of the surface soils are formed from the three types of parent material: glacial till, loess, and alluvium. Furthermore, these parent materials are representative of the major landform areas in the state (Figs. 8; Ruhe, 1969).

The Des Moines Lobe and the Iowa Surface are the two landform areas in Iowa where the surficial parent material of the soil is dominantly glacial till (Prior, 1991). The soils in these areas are primarily loams and clay loams. The remaining landform areas (e.g., the Loess Hills and Southern Iowa Drift Plain) have loess or alluvium as the dominant surficial parent material and soils predominantly have higher silt and clay contents (e.g., silt loams; silty clay loams; silty clays.

Overall, the \(K_{sat} \) values are lower than the \(K_p \) values as expected. The maximum \(K_{sat} \) values (~20 mm/h) are almost an order of magnitude lower than the \(K_p \) values (~152 mm/h). Since the soil crusting and stability factors are also functions of bulk soil properties, namely of sand and clay content (Rawls and Brakensiek, 1985), the distribution of \(K_{sat} \) in Iowa is similar to that of \(K_p \) for the same reasons mentioned above. For example, the Des Moines Lobe and the Iowaan Surface are dominantly loamy soil had higher values (greater than 0.5) than the areas dominated by the silty loess.

However, \(K_{sat} \) is also a function of \(E_a \) and \(RR_{rms} \) both of which vary temporally. These two parameters are dynamic and account for changes in management practices and climate conditions around the state over the different seasons.

The cumulative rainfall kinetic energy between May and October of 2007 (derived from mostly convective storms) was greater than that of November 2007 to April 2008, which seems reasonable considering the
high intensity rains experienced in Iowa during the summer months. April had an overall higher K_{br} than October because K_{br} is inversely proportional to E_a, and the winter-spring in Iowa are generally characterized by lower precipitation intensities compared to summer-fall with the preponderance of high-intensity, convective rain storms. Nonetheless, the distribution of K_{br} in Iowa is similar to that of K_b because soil crusting and stability factors are also functions of bulk soil properties.

For both periods, K_{e-nr} maps show lower values in the central part of the state of Iowa compared to the western and eastern parts, which reflect the differences associated with the management practices across the state and degree of soil disturbance for corn and soybean across the state (e.g., primary and secondary tillage). April also has higher K_{e-nr} values than October.

For the single storm event of October 17, 2007, the K_{s} map shows higher values in the eastern part of the state of Iowa, while for the single storm event of April 18, 2008, the K_{s} map shows higher values in the eastern and western parts of the state. It can be noted that the maximum K_{s} value (~12 mm/h) is almost half that of the K_{s} value (~20 mm/h). This is attributed to the residue and leaf cover, which provide another barrier by intercepting the rainfall and preventing the direct infiltration of water into the soil. It can be seen from Fig. 7d that K_{s} has the largest variability across the state. More importantly, the distribution of K_{s} across the state is not dominated by intrinsic soil

Fig. 5. Histograms of (a) K_b; (b) K_{br}; (c) K_{e-nr}; (d) K_{e-nr}.
properties and following the pattern of the major landform areas in the state like the cases of \(K_b\) and \(K_{br}\). Thus, individual rainfall events strongly affect the distribution of \(K_{sat}\).

\(K_{e}\) is linearly proportional to rainfall depth and the areas that received the highest rainfall during the two events (namely the eastern part of the state) had the highest \(K_e\) (Fig. 7d). Wischmeier (1966) has shown that positive correlation exists between \(K_e\) and rainfall depth. More importantly, the distribution across the state is no longer dictated by the soil properties following the trend of the major landform areas in the state. By removing the rainfall effects as in Fig. 7, one can see the connection to major landforms returns. Thus individual rainfall events strongly affect the distribution of \(K_{sat}\) across the state.

5. Conclusions

The main contribution of this work was a deeper understanding of \(K_{sat}\) dynamics over both space and time under different intrinsic properties and extrinsic factors through the use of a physically-based, modeling framework which considers different geographic, climatic, and land use data to quantify \(K_{sat}\). The modeling framework integrated selected PTFs and watershed models with GIS modules. The framework was tested in the Clear Creek, IA watershed and verified with field measurements. It was then applied to the whole state of Iowa. The maps can be used as decision-making tools for agencies and policy makers.

Rosetta and WEPP provided the best estimates for \(K_b\), \(K_{br}\), \(K_{e-nr}\), and \(K_e\). The modeling framework helped visualize the data in the form of dynamic, geospatial maps. Two periods were selected to demonstrate \(K_{sat}\) dynamics in Clear Creek and the state of Iowa; specifically, May – October 2007 and November 2007 – April 2008, which corresponded to the pre-harvest and pre-planting conditions, respectively.

Histograms capturing the data for each \(K_{sat}\) type showed a unique pattern that does not change significantly with season. The histogram shape remained almost unchanged for each type of \(K_{sat}\). The histograms of \(K_b\) and \(K_{br}\) were bimodal, while the histogram of \(K_{e-nr}\) was positively skewed and the histogram of \(K_e\) was almost symmetric. Only the median magnitudes shifted due to seasonal changes in climate, cover, and management. \(K_b\) exhibited the highest median compared to other \(K_{sat}\) types. Both periods had higher median values for \(K_b\), when compared to other \(K_{sat}\) types.

It was concluded that in intensively managed landscapes \(K_{sat}\) is a dynamic variable. The intrinsic soil properties incorporated in \(K_e\) do not reflect the degree of soil surface disturbance due to tillage and raindrop impact. Furthermore, vegetation cover must be incorporated in addition to the rainfall effect. Therefore, we suggest herein that \(K_e\) is the most representative saturated hydraulic conductivity in intensively managed landscapes because it accounts for the contributions of land cover and management, local hydropedology and climate condition, which all affect the soil porosity and structure and hence, \(K_{sat}\).

One caveat in closing, it would be advisable to repeat this study in different regions, soil landform areas, and parent materials. The
applicability of the selected PTFs and watershed models used within this modeling framework may be limited to the state of Iowa, other Midwestern states, and other areas (e.g., Chinese Loess Plateau) having similar glacial derived soils, intensive management, and climatic conditions. Where arid or semi-arid conditions are ubiquitous, different PTFs and models may be needed. This exercise could ultimately contribute to the development of ratings for many of the soil interpretations incorporated into the National Cooperative Soil Survey and update the K_{sat} data stored in public soil databases.

Acknowledgements

This study was funded by the U.S. Department of Agriculture – Natural Resources Conservation Service and the National Soil Survey.
Center in Lincoln, NE (68-7482-10-507). This research is also partially supported by the NSF Grant # EAR-1331906 for the Critical Zone Observatory for Intensively Managed Landscapes (IML-CZO), a Multi-institutional collaborative effort.

References

