An evolution in grid structures: a study for conceptual grid structure design

Valorie Michelle Brinson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Art and Design Commons, and the Mass Communication Commons

Recommended Citation
https://lib.dr.iastate.edu/rtd/14805

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
An evolution in grid structures: a study for conceptual grid structure design

by

Valorie Michelle Brinson

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF FINE ARTS

Major: Graphic Design

Program of Study Committee:
Roger E. Baer, Major Professor
Sunghyun R. Kang
Mitchell J. Squire

Iowa State University
Ames, Iowa
2007

Copyright © Valorie Michelle Brinson, 2007. All rights reserved.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2. HISTORICAL REVIEW OF GRID STRUCTURES</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 3. METHODOLOGY</td>
<td>61</td>
</tr>
<tr>
<td>CHAPTER 4. APPLICATION</td>
<td>92</td>
</tr>
<tr>
<td>CHAPTER 5. CONCLUSION</td>
<td>105</td>
</tr>
<tr>
<td>APPENDIX A. ADOPTION SERVICES OF GEORGIA EXISTING</td>
<td>108</td>
</tr>
<tr>
<td>PHOTOLISTING BOOKS</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B. ADOPTION SERVICES OF GEORGIA EXISTING</td>
<td>114</td>
</tr>
<tr>
<td>WEBSITE</td>
<td></td>
</tr>
<tr>
<td>APPENDIX C. ADOPTION SERVICES OF GEORGIA PHOTO</td>
<td>118</td>
</tr>
<tr>
<td>LISTING BOOK CASE STUDY</td>
<td></td>
</tr>
<tr>
<td>APPENDIX D. ADOPTION SERVICES OF GEORGIA WEBSITE</td>
<td>121</td>
</tr>
<tr>
<td>CASE STUDY</td>
<td></td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>126</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>130</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Bathers at Asnières, 1884 (Seurat: A Biography. © 1990 Harry N. Abrams Inc.)</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Analysis of the compositional dominants in Bathers at Asnières (A Foundation Course In Drawing. ©2003 Watson-Guptill Publications)</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Analysis Composition from Bathers at Asnières (A Foundation Course In Drawing. © 2003 Watson-Guptill Publications)</td>
<td>3</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>The Parthenon (Harmonic Proportion and Form in Nature, Art and Architecture. © 2003 Dover Publications, Inc.)</td>
<td>12</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Greek-cross plan with extended nave superimposed on a man’s body (The Story of Architecture. © 1997 Phaidon Press Limited)</td>
<td>14</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Moveable type (Offset Lithographic Technology. © 2000 Goodheart-Willcox Company)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Vellum Layout Page from Johannes Gutenberg’s Bible (The Grid: A Modular System for the design and Production of Newspapers, Magazines, and Books. © 1978 Van Nostrand Reinhold Company)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Drawing Study of Butterfly Proportions (Harmonic Proportion and Form in Nature, Art and Architecture. © 2003 Dover Publications, Inc.)</td>
<td>20</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Golden Section Spiral Construction (Geometry of Design, Princeton Architectural Press. © 2001 Princeton Architectural Press)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>Albrecht Dürer’s Drawing of the Vitruvian Man (Geometry of Design, Princeton Architectural Press. © 2001 Princeton Architectural Press)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 12.</td>
<td>Parts of the Grid</td>
<td>33</td>
</tr>
</tbody>
</table>
Figure 13. Column Grid Structure
(Making and Breaking The Grid. © 2002 Rockport Publishers)
35

Figure 14. Hierarchical Grid Structure
(Making and Breaking The Grid. © 2002 Rockport Publishers)
35

Figure 15. Manuscript Grid Structure
(Making and Breaking The Grid. © 2002 Rockport Publishers)
36

Figure 16. Modular Grid Structure
(Making and Breaking The Grid. © 2002 Rockport Publishers)
37

Figure 17. Tonhalle Concert Poster
40

Figure 18. The New Swiss Film, 1962
(Making and Breaking The Grid. © 2002 Rockport Publishers)
41

Figure 19. Hypnotism Book Cover
(By Its Cover. © 2005 Princeton Architectural Press)
44

Figure 20. There’s A Future for You in a Health Career Poster
(The Anatomy of Design. © 2007 Rockport Publishers)
45

Figure 21. Annual Report, Irwin-Sweeney-Miller Foundation
(A Designer’s Art. © 1985 Yale University Press)
47

Figure 22. Annual Report, IBM Corporation
(A Designer’s Art. © 1985 Yale University Press)
48

Figure 23. Cranbrook Ceramics, 1987
(Radical Graphics/Graphic Radicals. © 1999 Chronicle Books)
53

Figure 24. Cranbrook Graduate Program, See/Read/Image/Text Poster
(Making and Breaking The Grid. © 2002 Rockport Publishers)
54

Figure 25. Interview Magazine Page, 1994
(Radical Graphics/Graphic Radicals. © 1999 Chronicle Books)
56

Figure 26. Fuse 11 & 15 Posters, 1995-96
(Radical Graphics/Graphic Radicals. © 1999 Chronicle Books)
57

Figure 27. Ray Gun Cover
(Radical Graphics/Graphic Radicals. © 1999 Chronicle Books)
59
Figure 28. Carson/Venezia Poster
(Making and Breaking The Grid. © 2002 Rockport Publishers)

Figure 29. Example of Traditional Grid Structure Use
(Graphis Poster Annual 2005. © 2004 Graphis Inc)

Figure 30. Example of Non-Traditional Grid Structure Use
(Graphis Poster Annual 2005. © 2004 Graphis Inc)

Figure 31. Example of No Grid Structure
(Graphis Poster Annual 2005. © 2004 Graphis Inc)

Figure 32. Diagram of Traditional and Non-Traditional Grid Structure Use

Figure 33. Diagram of Grid Structure Use with the Inclusion of No Grid Structure

Figure 34. Step One: Discover Project Concept

Figure 35. Step Two: Brainstorm Descriptive Concept Attributes

Figure 36. Sunniberg Bridge
(The Art of Structural Design: A Swiss Legacy. © 2003 Princeton University Art Museum)

Figure 37. Photocopy Filter of the Sunniberg Bridge

Figure 38. Grid Structure Rough Sketches

Figure 39. Grid Structure Refinement

Figure 40. Rendered Grid Structure

Figure 41. Mirrored Grid Structure

Figure 42. HIV/AIDS Poster

Figure 43. Food and Hunger Poster

Figure 44. Global Governance Poster

Figure 45. Education Poster

Figure 46. HIV/AIDS Poster with Grid Structure
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>Food and Hunger Poster with Grid Structure</td>
<td>88</td>
</tr>
<tr>
<td>48</td>
<td>Global Governance Poster with Grid Structure</td>
<td>89</td>
</tr>
<tr>
<td>49</td>
<td>Education Poster with Grid Structure</td>
<td>90</td>
</tr>
<tr>
<td>50</td>
<td>Connected Poster Series with Grid Structure</td>
<td>91</td>
</tr>
<tr>
<td>51</td>
<td>2001 Adoption Services Photolisting Book Cover</td>
<td>96</td>
</tr>
<tr>
<td>52</td>
<td>2006 Adoption Services Photolisting Book Cover</td>
<td>97</td>
</tr>
<tr>
<td>53</td>
<td>Existing Adoption Services Website Homepage</td>
<td>98</td>
</tr>
<tr>
<td>54</td>
<td>Existing Adoption Services Photolisting Webpage</td>
<td>98</td>
</tr>
<tr>
<td>55</td>
<td>Concept Development for Adoption Services</td>
<td>99</td>
</tr>
<tr>
<td>56</td>
<td>Starting Sketch for Conceptual Grid Structure</td>
<td>100</td>
</tr>
<tr>
<td>57</td>
<td>Conceptual Grid Development for Adoption Services</td>
<td>100</td>
</tr>
<tr>
<td>58</td>
<td>Conceptual Grid Development for Adoption Services</td>
<td>101</td>
</tr>
<tr>
<td>59</td>
<td>Grid Structure Implemented for Adoption Services Case Study</td>
<td>102</td>
</tr>
<tr>
<td>60</td>
<td>Photolisting Cover Spread</td>
<td>102</td>
</tr>
<tr>
<td>61</td>
<td>Case Study Website Homepage</td>
<td>103</td>
</tr>
<tr>
<td>A-1</td>
<td>2001 Informational Spread</td>
<td>108</td>
</tr>
<tr>
<td>A-2</td>
<td>2001 Unrelated Children Page</td>
<td>109</td>
</tr>
<tr>
<td>A-3</td>
<td>2001 Sibling Group Page</td>
<td>110</td>
</tr>
<tr>
<td>A-4</td>
<td>2006 Informational Page</td>
<td>111</td>
</tr>
<tr>
<td>A-5</td>
<td>2006 Unrelated Children Page</td>
<td>112</td>
</tr>
<tr>
<td>A-6</td>
<td>2006 Sibling Group Page</td>
<td>113</td>
</tr>
<tr>
<td>B-1</td>
<td>Meet the Children Webpage</td>
<td>114</td>
</tr>
<tr>
<td>B-2</td>
<td>Photolisting Webpage</td>
<td>114</td>
</tr>
</tbody>
</table>
Figure B-3. Full Photolisting Webpage

Figure B-4. Photolisting Profile Webpage

Figure B-5. Request Information Webpage

Figure C-1. Informational Spread

Figure C-2. Unrelated Children Spread

Figure C-3. Sibling Group Spread

Figure D-1. Meet the Children Webpage

Figure D-2. Photolisting Webpage

Figure D-3. Girls Webpage

Figure D-4. Read More Information Webpage

Figure D-5. Request Form Webpage
Grid structures are intended to aid graphic designers by providing a foundation for consistent communication; however, the usage of grid structures is rapidly descending. Numerous designers have expressed concern regarding habitual layouts produced by traditional grid design, and many have discarded the grid altogether. Because the grid is an organizational device, which allows for easy collaboration and faster communication, it is important that it not be abandoned. Not only does this thesis examine the evolution of grid design, it also discusses its potential future. By establishing a methodological approach to create conceptually dynamic grid structures, non-traditional alternative grid solutions are created. Pushing the boundaries of grid structures allows the designer to regain interest through the design of the conceptual grid. Experimentation was conducted on a series of posters for ActionAid to demonstrate the methodological process and support the study of conceptual grid structures.
CHAPTER 1. INTRODUCTION

This thesis will examine the evolution of grid structures and offer an alternative conceptual approach to grid structure development. Interest for this thesis stems from various entities including concept development, manipulation of existing forms, and an appreciation of structure. Experience designing with both traditional and non-traditional grid structures has peaked several questions about grid structures. Why do some designers choose not to use grid structures? How can grid structures become more meaningful to designers? How can grid structures play a more intricate part of the graphic design process? Can a grid structure have a stronger relationship with a design project? Is there a way in which grid structures can be introduced in an academic setting that will peak interest, and encourage future grid usage?

While researching a secondary interest in Art and Design I began to take a closer look at one of the French painter Georges Seurat’s paintings, “Bathers, Asnières (figure 1). I then stumbled upon an analysis of the compositional dominants (figure 2) in the painting. I was intrigued by not only the painting, but by the compositional structure (figure 3) that remained from the painting’s analysis. Already having concerns about grid structures, I found the compositional analysis to be a refreshing structure developed with awareness and that could be a support structure for various design projects. The preceding events have led my research to exploration of the possibility of conceptual grid structure design. Graphic design continues to evolve and become more dynamic, thus the process for grid structure creation should also evolve. This thesis will discuss and develop a methodological approach for alternative grid structure design using conceptual imagery as a foundation for grid structure design. The use
of conceptual imagery as a structural foundation will support and connect the surface design
to the underlying grid structure. “All innovation and most design is the result of
connections—the link between experience and action, between deductive logic and inductive
insight, between the analysis of a problem and the verification of its solution.”¹ This thesis
will examine the future of grid design in graphic design. It will discuss the history of the grid,
survey contemporary use of the grid, and evaluate the strengths and weaknesses for the
continuation of its usage. Researching past grid structure design will reveal the strengths and
weakness of grid usage, allowing this thesis to build upon the effective attributes of the grid’s
evolution. The conclusion of this thesis will serve as a guide for the application of grid
structure design in practice and instructional use in academia. This thesis aims to popularize
the use of grid structures by offering a conceptual alternative to traditional and non-
traditional grid structures.

Figure 1: Bathers at Asnières, 1884

Figure 2: Analysis of the Compositional Dominants in Bathers at Asnières

Figure 3: Analysis Composition from Bathers at Asnières
A common thread appearing within graphic design or commonly referred to throughout this thesis as surface design, and grid structure design is the term design itself.

Design is the process of developing a plan; this requires the collaboration of problem solving and creativity. “Design is the means by which we order our surroundings, re-shaping natural materials to suit our needs and purposes. It arises at the interface between humankind and raw environment and expresses human intentions, desires, and hopes.”

Graphic design is the arrangement of text and/or images to communicate a predetermined message to a targeted audience. Surface design is used in the context of representing the completed arrangement of graphic materials such as: text and/or images. It is the final designed product that is viewed by the targeted audience. Grid structure design provides a foundation for the layout of graphic materials on any given medium. Grid structures serve as a blueprint for the design of surface materials. Grid design has evolved to include a flexibility that proposes more than horizontal and vertical lines. There should exist an equality of importance between the surface design of a project and its’ underlying grid structure. “One of the principal purposes of the designer’s grid is to provide a framework for the development of creative concepts, and no modular system should exclude the possibility of intuitive thought and innovation.”

In order to sustain and possibly increase grid structure usage, it is imperative that emphasis is projected onto conceptual grid structure design. Just as the surface of a project is designed, the grid structure also has to be designed. For this increase in grid structure usage to occur in massive quantities much consideration needs to be given to the next evolutionary stage of grid structure design. The survival of grid structures will rely on the creation of stronger

interest in grid structure development. Establishing a relationship between the formation of the grid structures and the project concept has the potential to reassure the beginning of the next evolutionary phase of grid structure design. The implementation of this new methodology in grid structure development will require patience on behalf graphic designers for them to experience the full appreciation of the complexity and possibilities offered by the conceptual grid structure to take root. An increase in the underlying meaning of grid structure development will resurrect a much-needed value in the grid as is already present in the surface design. Surface design will have a supportive and conceptual structure that provides consistency, and thus it will increase interest in the grid structures giving the grid structures the methods to survive and continue to evolve. “The important thing to remember is that while a grid can help to generate a sense of unity and continuity in a design, it is within itself creative. In the hands of unskilled designers, grids can become straightjackets that inhibit creative concepts.”

There is a misconception that thinking structurally will cause a decrease in creativity of the designer. The conceptual grid structure will not only add a deeper level of meaning to the surface design, it will generate new creativity and project specific design. It is vital to the graphic design profession to provide a system that will aid in distinguishing graphic designers from desktop publishers.

Each year brings advances in technology, and computers are now playing a major role in the communication of words and images with speed and precision. Certain areas of design, especially those in the publishing industry, are rapidly introducing new systems. Designs for pages no longer be produced as rough layouts and translated by artworkers, since both these operations can

now be combined as a single activity. These new systems are, however, reliant on good design structure, and as desktop publishing is available to anyone, most systems have templates of grid designs for the inexperienced operator.\footnote{Alan Swann, \textit{How To Understand and Use Grid} (Cincinnati, OH: North Light Books, 1989), 134.}

Graphic designers have the ability to add a deeper conceptual meaning to a design. This ability will set graphic designers apart from desktop publishers where computers accommodate the random placement of elements on the printed page. Technological advancements allow access to templates that assist users in the creation of design projects. The graphic design profession is at a revolutionary era in grid structure design, and it is history that informs us that grid structures evolve during times of political and social disturbances, as well as during technological advances. The shift of technology in today’s society is reminiscent to that of the Industrial Revolution of Victorian England. Graphic design continues to reach new heights, while grid structure design has remained static during this pivotal point in what should be its new evolutionary phase.

Another objective of this thesis is to present a logical and alternative methodology to create grid structures. Having a logical and conceptual approach to grid structure design will allow meaning to be embedded structurally within a design project. A logical seven-step approach to grid structure design will provide a consistent design process in practice, and allows for ease of instruction in academia. This thesis will demonstrate the seven-step methodology to argue for the ease of application of conceptual structures to design projects.

This thesis is constructed of five chapters: Introduction, Historical Review of the Grid, Methodology, Application, and Conclusion. As mentioned, the first chapter begins
stating the purpose of the study, and discusses the meanings of graphic “design” and grid “design.” Research objectives are then described before chapter one is concluded with the thesis organization. The first portion of the second chapter, or Literature Review, is a Historical Review of Grid Structures and discusses: History of the Grid, Purpose of the Grid, and Parts of the Grid. History of the Grid breaks down the beginning of grid structure design from its usage by the Romans and Greeks, to structure applied in Architecture and in Art, and then concludes with a discussion of the Industrial effect on the Western grid. Purpose of the Grid is divided into three categories: Proportion, the Golden Section, and Order. Parts of the Grid offers an overview of: Margins, Modules, Flowlines, Columns, and Spatial Zones. The latter section of chapter two presents the disadvantages and advantages of grid usage, as well as the types of grid structures. In the disadvantages of grid usage stifling of creativity, the restriction of dynamic design, and limitations of originality are all addressed. In the next section, which references the advantages of grid usage, communication and consistency, are discussed. In the types of grid structures portion of the Historical Review of The Grid addresses traditional and non-traditional grid structures. Within traditional grid structures are methods for grid reproduction, and types of traditional grids including: column, hierarchical, manuscript, modular and combination. The traditional grid structures section concludes with a discussion of graphic designers Josef Muller-Brockman, Milton Glaser and Paul Rand for their use of the traditional grid structures. The historical review of the grid concludes with non-traditional grid structures, which are divided into: methods for reproduction, deconstructive grids, and spontaneous grids. The section terminates after three graphic designers are discussed for their non-traditional grid use, Katherine McCoy, Neville Brody and David Carson. Chapter three of this thesis is the methodology. The methodology is
discussed in seven parts with the first being concept development or discovering the projects’ meaning. The next compartment breakdowns the brainstorming of descriptive concept attributes; followed by section three: capturing the objects that are representational of the attributes. Section four of the methodology is a visual analysis of the object captured. Grid structure roughs are sketched in section five, followed by section six: grid structure refinement. Chapter three, methodology, is concluded with section seven, the application of type and image. In chapter four the projects’ applications are discussed. Section one of chapter four addresses the application of this thesis in design practice. The final section of chapter four addresses the instructional application of this thesis. The final chapter of this thesis, chapter five, is the conclusion in which the projects limitations as well as recommendations for further study are addressed.
CHAPTER 2. HISTORICAL REVIEW OF THE GRID

History of the Grid

Grid structures enable the positioning of content within project specified parameters. The skeletal understructure of grid structures helps to bring a feeling of cohesiveness to a visual design. Its organizational qualities save time while aiding in the building of the sense of community.\(^6\) A cohesive community is important in graphic design, because it lets the viewer be able to recognize the existence of a relationship between visual pieces. Because of its organizational qualities, grid structures have been used to assist in the design process of various industries. Grid structures have been used to divide an object into sub-divisions for the purpose of arranging data according to the structures guidelines. “A grid is the geometric division of a space into precisely measured columns, spaces and margins.”\(^7\) It is unrealistic to determine which designer invented grid structures because of its continual evolution; however, we can identify key eras of its development. Traces of grid structures can be found even before Greeks and Romans. “By the time civilization had spread across the Aegean Sea and reached culmination in the acropolis at Athens, clear rules of aesthetic proportion had been laid down.”\(^8\) Humans have an internal desire for a sense of proportion, which in itself is a logical organizational approach to order. “From earliest history man’s close kinship with

\(^6\) Gregg Berryman, *Notes on Graphic Design and Visual Communication* (Menlo Park, California: Crisp Learning, 1990), 38.
nature has guided him toward a sense of proportion in the shaping of his world.”9 The scribes from the Middle Ages were in a way graphic design leaders, because they set parameters for columns, margins and spacing. This continuation and gradual strengthening of limitations that were introduced to ease the burdens of mass duplication were carried over into the printing industry. Systematic printing ushered in consistency and boundaries through the addition of grid structures. Although scribes and the printing industry can be noted for enforcing a basic grid structure, the moment when man began to communicate order was visible. “From the time when civilized man first found the need to record information as a series of tabular or narrative symbols, written material has always required a basic grid of some sort; regularly shaped blocks of stone or clay tablets were simply easier to stack. Handwriting, when it evolved on rectangular sheets of papyrus or vellum, was in straight lines and demanded a minimum requirement of margins on all four sides.”10 Portioning systems used in architecture and art have influenced components found in western grid structures. “Artists have traditionally used compositional divisions that were created as far back as the earliest years of western civilization. The Roman architect Vitruvius devised a system of dividing an area mathematically which has been used to give visual balance to the subject matter of many paintings.”11 The grid used by western graphic designers has become more flexible since its initial use. Grid structures can be loose and organic, or rigorous and mechanical. The grid structure used in western design began its evolution during the Industrial Revolution. “The grid’s development over the past 150 years coincides with

dramatic technological and social response of philosophers, artists, and designers to those changes.” The focus of this thesis is on the western grid usage in graphic design. An acknowledgement of the history of grid structures will help in determining the future of grid design. This thesis will discuss traces of grid structures and proportioning systems through: Roman and Greek existence, architecture, art and grid structure use in the western design industry.

Documentation has shown Romans and Greeks implemented the use of grid proportioning systems. The Greek scholar and architect Marcus Vitruvius Pollio conducted some of the earliest documented explorations into human proportion and architecture. Vitruvius suggested that temples reflect the flawlessly proportioned human body. He advised that a well-proportioned man’s outstretched arms were equal to his height, and Vitruvius also noted that the human body can be enclosed to create a square according to its height and length, and the hands and feet create a circle with the naval as the center. Romans and Greeks understood the importance of proportioning systems throughout various disciplines. “The Greek artists as well as those of the Middle Ages were men of learning and many acquirements—their painters were also accomplished architects, sculptors and goldsmiths, understanding the principles of chemistry as well, and before entering the schools of art were required to have an accurate knowledge of geometry.”

Grid structures have a metaphorical relationship existing with architecture. The importance of a properly constructed foundation is perhaps most appreciated in the world of

architecture. “Like an architectural structure, the grid represents the bricks and mortar, and the decorative features are the graphic elements.”

Architects have relied on structural plans to alter basic ideas for human desires into well-constructed masterpieces. Classically trained architects used grid structures to plot perspective and scale their plans.

The Parthenon, considered one of the world’s greatest cultural monuments, is considered one of the finest achievements in Greek architecture. Figure 4 illustrates the perfect proportions of its architecture.

Figure 4: The Parthenon

Theoretical study has used Euclidean geometry as a basis for harmony, which relies on mathematics. Geometric shapes such as: the square, cube, circle and sphere rely on numbers to make their proportions accurate. A crucial architectural statement of the Renaissance was stated by Leon Battista Alberti, and defined the beauty of a building as a rational combination of the proportions of all the parts. It concluded that nothing could be taken away without destroying the harmony of the whole. Architecture has relied on existing proportioning systems as a guide for drawing plans, which go on to become impressive structures.

The humanists resurrected the adage of the ancient Greek philosopher, Pythagoras, that ‘man is the measure of all things.’ Alberti, in laying down the conditions for the creation of a perfect church by combining ideal forms, believed that this would mean making a material image of the Godhead. And this ideal form had a human face. Vitruvius, in Book III of De architectura, had suggested that a building should reflect the proportions of the human figure, and Leonardo da Vinci developed this idea in his famous drawing relating human proportions to the ideal shapes – the square and the circle; Francesco di Giorgio’s diagram related them explicitly to the architecture of the time – a centralized Greek-cross plan with extended nave superimposed on a man’s body.

Figure 5 illustrates the di Giorgio’s diagrammatic Greek-cross plan superimposed with the body frame of a man. Architects have long recognized the perfect dimension offered by the human form, but more importantly architects respect and appreciate proportion.

Evidence of grid structure use is visible in an historical observation of the art world. Renaissance artists used grid structures as a method of scaling their sketches and diagrams to accurately fit the proportions of colossal murals. “Grids have been used for transferring drawings to canvas, walls and ceilings for centuries. Traces of such grids may be seen on frescoes and other large paintings throughout the museums and cathedrals of Europe.”\(^\text{18}\)

Artists appreciated the accuracy obtainable by grid structure use, and relied on its use to create masterpieces that became valued for their splendor and continue to be admired today.

A rapid expansion of grid structure usage, order and organization, occurred out of public demand. “To understand how grids have evolved and to appreciate their purpose you must look back to the days when printing was in its infancy. Before the pioneer of printing, Gutenberg, introduced moveable type, manuscripts were lovingly and painstakingly produced. Yet in those days, the conscious awareness of layout and design was clear for all to see.”

One phase of the printing industry’s developmental influence on grid structure development created molds out of wood or metal, moveable type (Figure 6), allowed the printer to prepare lines of text at a time for printing. “The Invention and the development of printing with moveable type in the mid-15th century, enhanced the need for a regular system of control over the thousands of letters cast in metal or carved out of wood, which comprised each page of what was arguably, the most momentous technical advance for mankind since the invention of the wheel.”

The Industrial Revolution in Europe as well as political and social concerns in society, led to the fueling of mass production. The economy and the higher quantity demanded by society projected grid use to decrease the printers workload, thus increasing productivity. Structure, the use of a template for production, allowed duplication to occur at an increased rate. Evidence of grid usage is visible in the layout pages of the Bible (figure 7) printed by Johannes Gutenberg, the inventor of the printing press, which used moveable type. “If a designer looks carefully at some of the vellum sheets of Gutenberg’s original forty-two-line Bible completed in 1455, he will find traces of the grid on which he based the layout of his pages. These lines guided the positioning of the double columns of forty-two lines,
controlled the margins, and located the folios and headings.”

Embracing the machine age led to portion specific design that relied on linear elements. Publications required at the minimum an outer margin, which helped in determining the print-area to specify what information would be transferred onto the printed piece. As time progressed, an acceptance and appreciation of grid structures developed, and its many publication uses began to inspire one another to support and use grid structures. Some early English newspapers used grid structures based on classical books with block text intended to be read from the beginning to the end.

Figure 7: Vellum Layout Page from Johannes Gutenberg’s Bible
Grid popularity continued to increase, and was used by designers such as El Lizzitsky whose politically driven design was expressed through the use of dynamic geometry. Teachings at the Bauhaus, and at Basel school of design helped to enforce a new order, the use of grid structures in design. Corporations began to employ the International Style once they learned to appreciate the consistency that grid structures offered their publications. The use of grid structures, which developed in Europe, continues to play a role no matter how considerable, in the graphic design industry. The corporate industry realized that the importance of grid use was to create unity among their publications. The industry’s understanding of grid usage and importance led to an expansion of related grid structures in the design industry. Although its humble beginnings started its evolutionary course out of necessity during the age of mass production, grid structures quickly became one of the strong foundations, literally, of graphic design.

Purpose of the Grid

The purpose of the grid structure is to provide the designer with a proportioning and ordering system. Grid structures should be reflected upon as an underlying skeletal structure or framework for a surface design. As a foundation is used to shift and distribute the mass of a structure onto the ground, the grid structure is a tool used to provide an organizational distribution of graphic elements of information onto the surface to be designed. Various studies have been conducted on desired proportions and proportioning systems.

Grid structures introduce proportion, which affects the aesthetic assessment and communication of design. The human mind is capable of recognizing, and is understood to prefer, a proportional relationship that exists among two or more measures as an underlying
element of unification. “Proportion is a principle in Nature which is a purely mathematical one and to be rightly interpreted by man through the means of geometry; therefore geometry is not only the gateway to science but it is also a noble portal opening wide into the realms of art.”23 Human aesthetics are not the only incidence for the occurrence of proportion for the reason that growth and proportion patterns can be found in animals and plants (Figure 8). Spiral growth patterns can be found in other forms of nature such as: the Atlantic Sundial shell, the Moon Snail shell, sunflowers, and pinecones.

“For centuries philosophers, mathematicians, scientists and artists have considered the idea of ideal proportion, trying to identify in nature a numerical standard which when translated into human endeavors would assure perfection of form, harmonious balance and beauty. Independently and frequently, such searches have led to the discovery of a particular proportional relationship known as the Golden Section, Golden Mean, Golden Proportion or Divine Proportion.”

The golden section is derived from the Divine Proportion and is a ratio that divides a line segment into two segments. Humans are attracted to the natural environment and other living things because of a subconscious inclination for the golden section. The irrational rectangle of the golden section has been particularly significant in all design. “Basing your proportion on this construction you are able to use the measures of the originating square to link golden section developments to other proportions based on the same square or its subdivisions.”

The golden section spiral (Figure 9) can be made from the golden section by using the length of the square’s sides as a radius of a circle. An additional explanation as to the cognitive preference for the golden section proportion is that the human face and body share similar mathematical proportional relationships found in all living things. Renaissance artist such as Albrecht Dürer and Leonardo da Vinci have documented studies of proportioning systems of the human form. The similarities in the two studies of human proportions can be seen in Dürer’s vitruvian man (figure 10) and da Vinci’s vitruvian man (figure 11).

Figure 9: Golden Section Spiral Construction

Figure 10: Albrecht Dürer’s Drawing of the Vitruvian Man
The planes of a rectangle can have various dissimilar possible relationships of length; however the square with its equality amongst planes is the simplest. “Squares stacked together into a grid, as in a chessboard, have often been used to lay out the overall designs of environmental spaces such as gardens, but rectangles may be given more complex and interesting proportions.”

Modular systems have been formulated with the use of human form and its proportion for division by the architect Le Corbusier who later used the external spiral of a shell and its faultless geometric relationships.

The factors that distinguish a designer’s grid from ordinary makeup sheets are the grid’s regard for proportion and its compatibility with the solution to the design problem. There are two ways that the designer can bring mechanical

form into harmony with those aesthetic considerations that help to determine the quality of a design. One way is through the use of his own natural and intuitive sense of proportion, and the other is through the application of certain systematic principles of proportion developed by mathematicians, artist designers, and architects throughout the course of design history.27

Grid structures aid the designer while establishing order as an organizational device. The importance of order is vital for designers because it helps to provide logical development criteria to the design process and to the designed pieces. The logical approach to establish order in design is through the use of grid structures.

Disadvantages of Grid Usage

Restrictions offered by grid structures have become obsolete amongst designers who feel that dynamic experimental design is their desired effect. The use of grid structures requires that the graphic designer think in a constructive mode, and while the designer is thinking in this manner the flow of creativity becomes stifled. Because of the time required to develop uniquely effective grid structures, the development of unique grid structures is a challenge and this has helped to elongate the stagnant era in evolution of grid structures. Surely the inability to create unique grid structures resulting in dynamic design is a taunting that cannot be ignored. Could it be that the grid structure is facilitating its own abandonment? If everything, meaning grid structure design, has been done before, maybe the grid structure has to be abandoned to achieve unique design layouts. The addition of grid structures to the

graphic design process creates additional ideation, which consumes valuable time in the workplace. It would seem that the only thing a methodological approach to grid creation would have to offer would be confusion. Graphic designers have been trained in different ways with some even being self-taught; this alone reinforces the idea that one logical approach to design may not be suitable for all designers. The idea that a universal methodology can be developed and work in every situation for every person seems preposterous. Glaser himself did not believe that one principle, such as simplicity or reductiveness could be practical for every problem. Is it feasible to consider the future of grid structures, considering early graphic designers, who can be credited with grid use, began to disregard it altogether? “Many highly qualified contemporary graphic artists—even in Switzerland and Germany where grid systems originated—are producing outstanding design without the use of formal grids.”28 A portion of the nuisance with grid structures is the attention given to its creation. The constant bombardment of development stifling restrictions force the graphic designer to look elsewhere for original design creations.

The required time utilized to design grid structures delays the layout of elements and possibly the creative thought process. “Innovative asymmetric use of the grid, as practiced between the wars at the Bauhaus and advocated by Jan Tschichold, came as a breath of fresh air, but was in practice, so difficult and time consuming and expensive in terms of print production, that is was only practiced by an elite minority.”29

Technological advances in relation to the graphic design industry carried with them restrictions that began to remove liberties from the designer. The focus of design shifted to

comply with the limitations of technology, thus restricting their design possibilities. In the centuries following the invention of the letterpress and other printing technique restrictions forced by grid structures have remained firm in existence. Some designers feel that the use of grid structures places a restriction on the possibility of dynamic design during its implementation stage in which boundaries are set for the designer to follow. If the development of grid structures dominates the creative process there is great danger that the resulting design solution will be rigid.30 The randomness that occurs when the grid structure is discarded encourages the vibrant graphic arrangements free of dull alignments and restrictions.

Graphic designers are sought out for their abilities to create designs that demand the attention of viewers in its vicinity. In today's fast paced society, the power to be creatively different, yet stimulating to an over-stimulated society, is a challenge within itself. The purpose of hiring a graphic designer is to create a new design. There is no point in creating something that someone else is doing already. There is strong competition from video games, web sites and television programs such as MTV. These interactive medias and eye-catching design make it virtually impossible to get someone to take the time to look at a two-dimensional piece of paper. There is nothing easy about graphic design anymore. Designs must be impressive, which is why it takes courage for designers to strive for something innovative. That is why design is so important; it has the potential to persuade the masses.31 The arrangement of horizontal and vertical lines can only produce a limited number of grid structures. There is not much to be said of a design that cannot stand on the basis of its

originality. Mimicry cannot breed originality. Therefore, to be inventive the designer abandons grid structures for freedom and the hopes of producing an ingenious design.

Advantages of Grid Usage

Grid structures create order in circumstances where chaos may exist. The grid structure is intended to enforce communication and to provide consistency among layouts. Accurate use of grid structures reinforces communication. According to Gestalt data, humans possess an underlying preference for organized visual and verbal information. Grid structure systems make it possible for designers to present viewers with organized information. “Grid systems allow the designer to satisfy viewer groups with respect to equilibrium, similarity, and continuation. They help the designer to avoid visual ambiguity.”32 The effective use of grid structures is reliant upon graphic designers who are willing to allow their passion for the design of communicable information to be assisted creatively by grid structure design. Suggestions that grid structure usage creates lackluster designs are fallacy. Graphic designers should be reminded that grid structure design requires creativity in order to maximize the communication potential. Logical grid structure design with the inclusion of stimulating visual elements will produce an effective solution. “It is never enough that the outcome of the exercise be creative an original. It must also solve the problem in a valid and useful way. The appropriateness of the solution is verified by checking it in terms of the original guidelines, information given, research done, and the designer’s accumulated knowledge and experience. Whenever possible this phase of assessment is extended to include the response that the

32 Gregg Berryman, Notes on Graphic Design and Visual Communication (Menlo Park, California: Crisp Learning, 1990), 38.
finished work generates.” 33 The rational thought process required during the creation of grid structures has no bearing on the ability of the design to be exciting. Grid structures provide designers with logical positions for the placement of visual elements. The designer should never consider the grid structure to be a straight-jacket, but should instead view grid structures as an aid to readability, recognition and understanding. If the designers see that the grid structure is not working because either text or art refuse to fit, then the material should not be forced to fit within and the grid should be redesigned. 34 Graphic designers should be willing to probe in various directions as led by their research to find an effective design solution. There can be no promise made that grid structure design will not have its share of constraints, however the efficient solution is well-worth the required exploration. “When it is used with skill and sensitivity it can lead to the production of handsome and effective pages and it can give the overall design a sense of cohesion and continuity that has a distinctive underlying effect.” 35 Considering the goal of the graphic designer is to communicate information to the audience, then the grid structure, when used with skill, permits effective communication and offers consistency; designers should recognize the significance of grid structures and apply grid structures to their design processes.

The purpose of a graphic designer is to be the facilitator for information, which has a primary purpose, to be communicated. The graphic designer is accountable for the integrity of the intended message and its ability to be deciphered, thus the designer should not allow their personal design preferences to be projected above the message of the design. “The

purpose of the graphic design is to communicate the message. Period. ‘The message’ is the message intended by whoever wrote the text, or the original creator of the illustrated item.”\(^{36}\)

To effectively communicate, designers have to establish a hierarchy within the graphic design that can be interpreted by the audience. To be efficient on screen or in printed work, the design communicates best when it has a system of logical organization and grid structures provide just that key element to aide in communication. At times graphic designers are perplexed with exceedingly complex information, and under such circumstances the grid structure provides the designer with the potential to provide the audience with an arrangement of simplified information. The abandonment of the use of grid structures by graphic designers is ludicrous; when the grid structure is not working then the designer should recognize this and re-design the grid. Information should never be forced into a grid structure that is not size appropriate for the amount of information to be relayed. Upon close examination of the required elements to be included into a graphic design the designer should then access the quantity and determine the grid structure requirements and this alludes to the design’s surface area required for the placement of elements such as text and art. During the design process the graphic designer should be mindful not to overwhelm the viewer with surplus information and grid structures help designers to effectively utilize the provided space. When thorough research is conducted and applied to grid structure design, which occurs prior to the final designing stages, designers can gain insight into how to better communicate information effectively. “Designers can not communicate effectively above or

below the perceptual limits of a viewing audience.” An understanding of the project goals and the application of those criteria to grid structure design allow better communication to occur. The rationality offered by grid structures allows viewers to remain comfortable, as they comprehend the communicated message.

Grid structures allow designers to quickly reference the placement of consistently arranged materials in sequential design pieces. “The grid helps the consumer to find material in the expected place every time, either when leisurely turning over the pages of a glossy magazine, or when rapidly scanning a professional journal for relevant information. This primary purpose holds true even with projects, which tend by their very nature towards disintegration. Thus it forces the designer to think constructively, and in a structured manner.” Consistent placement of key design elements among design documents aides in the unification of designs that are a part of a sequential series. In a grouping of design commissions or in the construction of ongoing publications such as newsletters, newspapers or magazines, the grid structure can be used as a styling device. Grid structures allow for a variety of arrangements among page elements that are repositioned, yet maintain an underlying alignment. Using grid structures not only provides order and consistency to design projects, it allows multiple designers to work uniformly on the same design project. Repetition is said to be one of the simplest methods in graphic design, thus employing grid structures in design is a straightforward way to enforce fundamental design principles. The consistencies offered by grid structures allow readers to benefit by being able to find material

in an expected place every time. Therefore the value of grid structures goes beyond the graphic designer to permit consistent communication with the audience.

Types of Grid Structures

Grid structures offer an array of complex arrangements and combinations, depending on the project’s needs. This thesis will identify grid structures according to two categories, traditional grid structures and non-traditional grid structures. Traditional grid structures in this thesis will include but are not limited to column, modular, manuscript, hierarchical and combination. Non-traditional grid structures will include deconstructive and spontaneous grid structures.

The evolution in grid structures has included the identification of grid structure components. A review of key elements of grid structures will enhance understanding about the argument surrounding grid structure use. This thesis will briefly discuss key portions of grid structures. “The grid is a mechanism, and like all mechanisms is most easily understood when broken into its component parts, each of which can then be concentrated on and mastered separately.”39 Fundamental grid components identified in figure 12 include, but are not limited to: margins, modules, flowlines, columns and spatial zones.

The outer boundary of a document is identified as the margin. Margins are used to provide designers with a perimeter around the design’s surface area, and are typically intended to remain free of content.

A module is an individual interchangeable unit of measure, which is a component of a larger system on the grid structure. Modules are used to frame elements in an equal area of

dimensional space. Within figure 12 a singular module unit that is a component of a fifteen-module grid structure is illustrated.

Flowlines allow the graphic designer to align objects that are located in varying locations on the document. A horizontal flowline is identified on the three-column grid structure. Flowlines can be positioned at differing locations and angles on the grid structure.

A single column is also identified as a part of the page’s three-column grid. Commonly appearing in columns are rows of text. The arrangement of information in columns has is similar in appearance to that of the ancient Greece and Rome public building columns many of which were used to display information thus explaining the connection.

Spatial zones may span across multiple columns and include numerous modules. The spatial zone can be thought of as accompanying more than one grid structure element for placement of information. Spatial zones allow information requiring more space to remain in proper proportion with the remainder of the grid structure.

Grid structures may possibly include markers. Grid markers ensure the accurate alignment of information such as page identifiers, or other information that may appear on numerous pages.
Traditional Grid Structures

Traditional grid structures refer to the grid structures typically used in design practice today. The traditional grid structures used these days, which have evolved far from their humble beginnings of necessity during the industrial revolution, are characteristically geometric and rigid. The fundamentals of the traditional grid structure originate from teachings at the Bauhaus and of the International Style of design whose modern rationalist approach included minimalist geometric expressionism. Such teachings expressed the need
for grid structures, which improved efficiency and clarified communications. “Grid use began to dominate European and American design during and after the 1960s. It was an especially effective way to orchestrate communications programs for large organizations, events, or corporations.” Since that time, traditional grid structures have expanded to include multiple layout arrangements in order to accommodate various design requirements.

Column grid structures (figure 13) allow information to be organized into vertical columns. Flexibility of this arrangement compliments continuous or discontinuous text. Columns can be reserved for text and images, or for running text and large images.

Hierarchical grid structures (figure 14) can help designers arrange elements according to their degree of importance. “This type of grid structure, whether used to build books, posters, or Web pages, is almost an organic approach to the way information and elements are ordered that still holds all of the parts together architecturally in typographic space.”

The manuscript grid structure (figure 15) is said to be structurally, one of the simplest grid structure designs. This grid structure’s purpose is to accommodate continuous text appearing in a long essay or book. Visual interest can be applied to manuscript layouts by increasing or decreasing the page margins.

A modular grid structure (figure 16) has a similar layout to the column grid; however the modular grid structure includes horizontal lines. The modular grid structure is divided into modules, or matrices of cells. This type of grid structure is useful for complex projects, although, even projects with simple information can benefit from such order and clarity.

Figure 13: Column Grid Structure

Figure 14: Hierarchical Grid Structure
Figure 20: Manuscript Grid Structure
Figure 21: Modular Grid Structure

Grid structures can be produced by ruling two or more sets of straight lines parallel to each other at equal intervals. Most grid structures are symmetrical, however traditional grid structures may consist of asymmetrical grid structures. In theory construction of the grid structure is reasonably straightforward. After the page size is specified margins are applied so that the print area can be determined. Then, columns and modules can be incorporated into the grid structure. Traditional grid structures are typically manifested both off-screen and on-screen. Some graphic designers still prefer the printed grid structure. “The grid is precisely
drawn to size with technical pens and photographed. It is then printed on stiff card in a light blue ink that will not be picked up by the process camera. There may be several cards for a single publication, containing specific layouts for pages with different functions, or all the various column widths may be combined on a single card."42 Design elements such as text and imagery can then be applied to translucent material such as acetate and overlaid on the grid structure to plan layouts. Additionally, the printed grid structure can be used to paste-up the page’s design elements. On-screen, the grid structure is likely to be created as the master grid, or referred to as a template. Some programs permit grid structure templates to include style-sheets, which can determine how text, illustrations or other graphic elements will be positioned.

Josef Müller-Brockman

Josef Müller-Brockmann, a Switzerland born graphic designer, was among a list of acclaimed designers who employed formalization of grid structures for their own use and for use as a teaching aid. Müller-Brockmann received training from the Zurich School of Arts and Crafts, the University of Zurich, and the Federal Institute of Technology. He went on to head the department of Graphic Design at the Zurich School of Arts and Crafts. In 1961 Müller-Brockmann published an account of his principles in *The Graphic Arts and his Design Problems*. Müller-Brockmann was well known for the clarity and graphic form of his designs, and maintained that the grid structures are an aid to designers, not a guarantee. Müller-Brockmann felt grid structures allowed for a number of possible uses and each

designer could look for a solution that is appropriate to their personal style. But that one must learn how to use grid structures; because it is an art that requires practice.⁴³

“Josef Müller-Brockmann, is known as one of the founders of the Swiss or International Style. His Tonhalle concert posters during the 1940s and 1950s were pivotal in setting a standard for grid system visual organization.”⁴⁴ Müller-Brockmann’s Beethoven Tonhalle concert poster, (figure 17) used conceptual geometric rhythms related to the concentric circle arcs present in Beethoven’s music as the grid structure design for the poster. Müller-Brockmann’s poster design for The New Swiss Film (figure 18) further exemplifies his desire for structural organization. Müller-Brockmann believed that grid structure systems refined objectivity over subjectivity and added validation to the creative and production processes.

Figure 22: Tonhalle Concert Poster
Figure 23: The New Swiss Film Poster
Milton Glaser

Milton Glaser, an American designer born in New York, was educated at New York City's High School of Music and Art, graduated from the Cooper Union in 1951 and later through a Fulbright Scholarship, attended the Academy of Fine Arts in Bologna, Italy. Glaser founded, and was the president of the ‘Push Pin’ studio in New York, and later was co-founder of ‘New York Magazine.’ During his career he has designed and illustrated over 300 posters and had a hand in designing print graphics, environmental designs, and interior designs. “Milton Glaser’s work was based around illustration. It was very expressive. And he could make that type of design function perfectly within society. People were excited about it and had fun with it and enjoyed it. And it was functioning at many levels. His posters were put up in art museums. It was art, and it was also graphic design.”

Milton Glaser had numerous solo exhibitions and his work is included in the permanent collections of several international art museums.

Although Glaser was extremely active in the design community he was also involved in the design education arena, working at the School of Visual Arts in New York. He had an interest in the simplified expression of complex ideas. “Glaser understood that design is essentially a vernacular language, and he delighted in discovering obscure typographic forms.”

“Glaser is one of many contemporary designers and illustrators who have to some degree built their visual personalities on the adaptation of cultural icons and artifacts, not

merely reviving but reinventing the past. Glaser’s book cover design Hypnotism (figure 19) created during the late 1960s demonstrates his interest in organized and simplistic form. In Hypnotism areas of alignment are visible among textual information as well as circular forms. In Glaser’s 1970s poster design (figure 20) for the American Hospital Association he offset three duplications of an image to allude to the viewers’ future. In both posters Glaser used an organized approach to design and handled typography simplistically.

Figure 19: Hypnotism Book Cover
Figure 20: There’s a Future for You in a Health Career Poster
Paul Rand

Born Peretz Rosenbaum in Brooklyn, New York, Paul Rand influenced generations of graphic designers through his writings and his contribution in design education. He became an influential figure in American graphic design. Rand received his design education in New York at the Pratt Institute, Parson’s School of Design, and from the Art Student’s League. “Like some of the European Modernists before him, Rand introduced principles of modern art into advertising, bringing the rarefied avant-garde to ordinary citizens.”

Rand feels that to design is much more than simply to assemble, to order, or even to edit; it is to add value and meaning, to illuminate, to simplify, to clarify, to modify, to dignify, to dramatize, to persuade, and perhaps even to amuse. Rand feels that design is the outcome of feeling and awareness, of ideas that originate in the mind of the designer and culminate, one hopes, in the mind of the spectator. From his studies of European avant-garde movements including cubism, constructivism and de stijl, Rand developed a distinctive graphic language in which his work is characterized by its rational approach yet inclusion of wit and simplicity and is developed under stipulations of need and purpose. “It is true that while aesthetic judgments are largely intuitive, it is the abstract (or formal) aspects of a work that takes precedence over other considerations. Yet when form (the abstract) not only predominates but is allowed to overshadow the content of a work, information goes astray, and the conflict between form and content remains unresolved.” Rand felt that each design problem and experience was different, therefore no formula for good design existed. Paul Rand’s 1971 annual report for

the Irwin-Sweeney-Miller Foundation (figure 21) utilizes the modular grid structure. In an annual report (figure 22) that Rand created for the IBM Corporation in 1977, he uses a six-column grid structure. Both of the works by Rand that are in this thesis shown are free of excessive ornamentation, a characteristic visible in much of Rand’s work.

Figure 21: Annual Report, Irwin-Sweeney-Miller Foundation
Non-Traditional Grid Structures

Non-traditional grid structures consist of grid structures that are not a part of conventional grid structure design study and practice. This thesis will cover deconstructive grid structures and spontaneous grid structures. The use of non-traditional grid structures has been practiced by contemporary designers such Katherine McCoy, Neville Brody and David Carson. “Just as the use of grids in modern design practice grew from developments in technology, aesthetic thought, and industrialization, the use of alternate, intuitive methods of composition—prevalent in current design practice—grew from the same influences.”

ease of use offered by non-traditional grid structures has projected its use to become conventional in design practice.

Deconstructive grid structures are exactly what the name suggests, a distorted version of the traditional grid structures. French philosopher Jacques Derrida introduced deconstructionist ideas to the United States through his writings including “Of Grammatology, Writing and Difference, and Dissemination”. Derrida’s philosophical technique suggested that “whole” items were to be broken down and critical reflection directed upon its components. “Derrida described deconstruction as a mode of questioning through and about the technologies, formal devices, social institutions and central metaphors of representation.”

Deconstruction began to penetrate graphic design when experimentation with predetermined traditional grid structures began to occur during the 1980s. Computer technologies allowed grid structures to be shifted and broken apart. This created overlapping areas within the composition. This visual deconstruction provoked readers to participate in the construction of the message and refers to complex visual relationships over simplicity. Deconstruction primarily occurred on the west coast of the United States and was later encouraged in schools like the California Institute of the Arts and the Cranbrook Academy of Art.

Spontaneous grid structures could be considered self-explanatory. Spontaneous grid structures are dependent upon the graphic designer’s intuition for the arrangement of elements. “This approach is fast and loose: the designer works with the material much like a painter does, making quick decisions as the material is put together and visual relationships

are first seen. As the different qualities of the elements begin to interact, the designer can determine which qualities are affected by those initial decisions and make adjustments to enhance or negate the qualities in whatever way is most appropriate for the communication.”

Sometimes spontaneous grid structures develop according to an image that provides an underlying structure for the design’s elements to be arranged accordingly to visually enhance the internal structure. “Verbal or conceptual cues within the content can also be used to break a grid structure. The natural rhythm of spoken language, for example, is often used as a guide for changing weight, size, color, or alignment among lines of type; louder or “faster” words may be set in larger or bolder type or in italics, corresponding to stresses and lulls in actual speech.”

Because many non-traditional grid structures rely largely upon the designer’s intuition, designers utilize various methods to arrange and manipulate the placement of elements. “Neville Brody believed that most type in the early 1980s was “boring and overlaid with traditions that repelled change,” and he sought to force excitement into it by combining unrelated fonts, arranging the letters or words in unusual configurations, or manipulating them on the photocopier into illegible shapes and proportions.” Other designers looked for innovative ways to arrange by looking at the understructures and absolute formal qualities of the materials they were working with for stimulation.

Katherine McCoy

Katherine McCoy has been one of the most momentous designers in America. Born in Decatur Illinois, McCoy studied industrial design at Michigan State University, and then later went on to work at Unimark International, Chrysler Corporation and Omnigraphics. Later, with her husband Michael, she became co chair of the design department at Cranbrook Academy of Art. “McCoy’s work started with grid-based structures and began to shift elements out of the primary structure, as in her recruiting posters; other approaches involved introducing extra space between words or lines of type within running text to focus attention on the grammar.”56 The beginnings of McCoy’s structural exploration are visible in Cranbrook Ceramics, 1987 (figure 23), which she designed to announce the ceramic department’s new chair appointment, Graham Marks. McCoy began to use overlapping imagery and text in the poster. One of McCoy’s most notable designs is her Cranbrook Graduate Program, See/Read/Image/Text poster (figure 24) created in 1989 that was a graphic design graduate program recruitment poster for the department. “Visually, word pairs stretch the length of the poster anchored to the center, their dialectic reinforced by color and layout. Layered between the word pairs are collaged image-fragments of student work, echoing the bilateral symmetry with two-dimensional design projects on the left and three-dimensional projects on the right.”57

McCoy went on to become a senior lecturer at Illinois Institute of Technology's Institute of Design in Chicago and a distinguished visiting professor at the Royal College of Art in London. McCoy continues as a distinguished professor of design where she assists with the development of curriculum and programming for the graphic design and animation department at the Kansas City Art Institute.
Figure 23: Cranbrook Ceramics poster
Neville Brody

Born in Southgate, London, Neville Brody studied graphic design at the London College of Printing. Brody worked as a designer for various record label artist designing record covers and later as an art director for The Face. “Bit by bit, over the course of several issues, he deconstructed magazine elements such as the banner, section logos, and standing headlines and then just slowly, issue by issue, rebuilt them into abstract marks.”58 Brody’s approach to graphic design pushes the boundaries of visual communications and forces the audience to determine the underlying meaning.

Brody’s experimental design is visible throughout designs from his firm Research Studios, where designers focus on probing their structures and the exploration of new media and gestures. The condition, which determines if Research Studios accepts a project, as if designing it will lead to innovative territories in creativity. The Interview magazine page (figure 25) 1994, designed by Brody shows his typographic layering and geometric experimentation. Fuse 11 and 15 (figure 26), posters created by Brody to promote his typeface, demonstrates his expressive and experimental design.

Figure 25: Interview Magazine Page
David Carson

Born in Corpus Christi, Texas and raised in New York City, David Carson began to experiment with graphic design. Carson who has a Bachelor of Arts degree in Sociology, worked as a teacher in Torrey Pines High School in San Diego, California. Carson became interested the academic explorations of graphic design taking place at Cranbrook Academy of Art and California Institute of the Arts. Carson’s work for Beach Culture and later Ray Gun significantly impacted the graphic design world. Those who were fans and those who were not fond of Carson’s work both recognized his innovation. “Carson’s spin on typographic anarchy was different than his predecessors. He not only infused his pages with
wit and irony, but also accepted that a magazine page is ephemera.59 Magazine designs for Ray Gun (figure 27) attracted new admirers to Carson’s imaginative explorations. Carson’s communications consist largely of extensive layering and combinations of typographic elements causing the reader to decipher the message. “Carson began planning his designs with the idea that there were better ways to communicate with the magazines’ young audiences than to follow the clean, grid-heavy, cookie-cutter look adopted by many publications in the late 1980s and early 1990s.”60 By the final issue, Carson had taken this premise to the extreme by obliterating most headlines. Letterforms were overlapped, overprinted, smashed and otherwise covered by black, mortised, random bands abstracted to the point of incomprehensibility. Carson was designing for the code-busters to make sense of it all.61 Carson’s poster design (figure 28) employs the same theoretical approach and defies rational design. Carson currently owns two studios one in New York and an additional one in Charleston, South Carolina.

Figure 28: Carson/Venezia Poster
CHAPTER 3. METHODOLOGY

This study explores the logical integration of conceptual meaning into the grid structure. To establish a perception regarding grid structure usage, the author conducted an informal survey and a medium for the project was selected. The medium for the study performed by the author is a series of social awareness posters for ActionAid International USA, which is a member of ActionAid International. The mission of ActionAid International USA is to advocate for change on behalf of the underprivileged worldwide. To a large extent the work of ActionAid International USA (AAI USA) is to aim for global change and focuses on four themes, including global governance and international finance, food and hunger, HIV/AIDS, and education.

As the prototype of the methodological study will result in a series of poster designs, the informal survey included fifty-five poster designs appearing in the 2005 Graphis Poster Annual. Posters are printed layouts typically measuring 24 by 36 inches designed to rapidly convey information. Graphis is an international periodical of visual communication that reviews and spotlights exceptional work in photography, advertising, and design. The Graphis Poster Annual is dedicated solely to poster design, with the 2005 annual having featured more than 300 posters that were selected from thousands of entries worldwide.

The informal survey evaluated posters in the 2005 Graphis Poster Annual based on two categories: traditional grid structure use and non-traditional grid structure use. The survey defined the traditional grid structure (figure 29) category as posters that incorporated columns, hierarchical, manuscript or modular grid structures. Defined by its lack of grid
structure, with deconstructive or spontaneous structures having two or more areas of
alignment or proportion is the non-traditional grid structure (figure 30). The latter category,
non-traditional grid structure is further divided into two sub-categories: no grid structure
used, and non-traditional grid structures including deconstructive or spontaneous structures
having two or more areas of alignment or proportion. An example of no grid structure
implemented can be seen in figure 31. Of the fifty-five posters evaluated, 11% used
traditional grid structures compared to 89% that implemented non-traditional grid structure
use (Figure 32). Results from a closer evaluation of non-traditional grid structures (Figure
33) demonstrated that, in fact, 64% of the total posters inspected did not use grid structure
and 25% of the examined posters used non-traditional grid structures.
Figure 29: Example of Traditional Grid Structure Use
Figure 30: Non-Traditional Grid Structure Use
Figure 31: Example of No Grid Structure
The methodological conceptual approach to grid structure design will be discussed and demonstrated in this section of the thesis. "The making of things, from the simplest to the most complex of crafts, involves method."62 Once a project is selected, and content is gathered for the project, the designer can begin to conceptually brainstorm grid structure ideas. After the meaning is determined, descriptors are assembled to represent such meaning,

and a descriptor analysis of this deeper relationship is performed, culminating in the analysis being applied as a grid structure. “The pattern of a grid will be guided by the function of the content and the design concept.”\(^{63}\) The study of designing conceptual grid structures, illustrated within this methodology, is performed following seven logical steps, as follows:

1. Discover project concept
2. Brainstorm descriptive concept attributes
3. Capture descriptor attributes
4. Descriptor analysis
5. Sketch grid structure roughs
6. Refine and render grid structure
7. Application of elements to the structure

Discover the Project Concept

The first step in the methodological conceptual approach to grid structure design, discovering the project concept, consists of gaining a clearer understanding of the company’s goals and those of the project, which both factor into the development of the project’s concept. “There has never been a time when the graphic designer could disassociate himself or his creative concepts from the reproductive process, and as we move into the new era of computer technology this linkage is even more significant.”\(^{64}\) Determining the project’s concept is best understood by breaking it down into four steps, as illustrated in Figure 34.

The organization, ActionAid International USA, is identified, followed by a list of the organization’s goals, as follows: create change on behalf of the poor and disenfranchised worldwide, and to act as a bridge between institutions in the USA and individuals, and those living in and fighting poverty on five continents. Designing projects for organizations may vary; therefore, it is essential to identify goals specific to each project. For the ActionAid International USA study, the project’s goal was to design a series of posters to create public awareness of AAI USA’s central themes, which include: HIV/AIDS, food and hunger, global governance and international finance, and education. By having a written description of the organization, its goals, and the project’s goals laid out, I can now determine that the project’s concept is to connect issues facing the impoverished with those who are capable of implementing change.
Figure 34: Step One: Discover Project Concept

<table>
<thead>
<tr>
<th>Company/Title Organization</th>
<th>Goals of the Company</th>
<th>Project Goals</th>
<th>Project Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActionAid International USA</td>
<td>- Mission is to create change on behalf of the poor and disenfranchised worldwide</td>
<td>- Design a series of posters to inform the public of AAU's main themes: education, HIV/AIDS, Food & Hunger, Global Governance and International Finance</td>
<td>To connect issues facing the impoverished with those who are capable of implementing change</td>
</tr>
</tbody>
</table>
Brainstorm Descriptive Concept Attributes

Characteristics of the project’s concept are brainstormed as concept descriptors and are illustrated in step two (Figure 35), the brainstorming of descriptive concept attributes. “A concept of an object is both visual (spatial, sensual, pictorial) and linguistic (conventional, determined by social agreement). The concept of a thing is built up from conventional views and attributes, learned from education, art and the mass media.”65 Objects that can symbolically connect issues facing the impoverished with those who are capable of implementing change are identified as a: chain, bridge, passage, channel, and telephone receiver. “The designer works with formal concepts to fulfill specific purposes— they involve mental modeling, which envisages problems and thinks through solutions.”66 A brief explanation of the descriptor’s relationship to the project’s concept is also identified in this phase of the methodology. The chain is recognized as a series of interlinked objects, and the bridge is a structure that provides a connection for two objects regardless of underlying obstacles. A passage permits the process of a journey to be accomplished according to a predetermined route. Finally, a channel allows navigation to be transmitted according to its frequency, while a telephone receiver connects an individual with the voice of another.

<table>
<thead>
<tr>
<th>Step two: Brainstorm concept attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>chain</td>
</tr>
<tr>
<td>a series of links (interlinking)</td>
</tr>
<tr>
<td>telephone receiver</td>
</tr>
<tr>
<td>connects an individual with the voice of another person</td>
</tr>
<tr>
<td>channel</td>
</tr>
<tr>
<td>allows navigation to occur at a specific frequency</td>
</tr>
<tr>
<td>bridge</td>
</tr>
<tr>
<td>a structure that provides a connection between 2 items</td>
</tr>
<tr>
<td>passage</td>
</tr>
<tr>
<td>permits a process or journey according to a predetermined route</td>
</tr>
</tbody>
</table>

Figure 35: Step Two: Brainstorm Concept Attribute
Capture Attributes

The completion of step two, brainstorming descriptive concept attributes, exposes an array of possible attributes to capture. Determining descriptive concept attributes allows the designer to envision the possibilities that such attributes can offer structurally. “The form of an object is dictated, to a great extent, by its purpose – in many cases, by a number of purposes, both practical and psychological.” Selecting which attribute to capture remains up to the designer’s discretion who then visualizes the possibilities and connections that each attribute has to offer. The chosen attribute can be captured in a variety of ways that offer flexibility to the designer, when time and resources are scarce. The most hands-on methods of attribute-capturing include rendering a line drawing of the attribute or photographing it. Secondary methods of capturing an attribute involve research to find existing imagery of the attribute, whether they are line drawings or photographs. Occasionally, designers may encounter attributes that are out of budget and range to capture; yet the use of secondary methods will permit the continued use of the selected attributes. For the poster series, the bridge was chosen as the attribute to capture because of the structural components it offers, which support the construction’s ability to connect two areas. Due to the variety of aesthetic forms presented by bridges, and its metaphoric link to the project’s concept, the bridge, as a grid structure, was the logical choice for AAI USA. Bridges support the transportation of vehicles from one land area to another, just as the bridge, as a grid structure, will support the transfer of information from one individual to another. The captured attribute, the Sunniberg

Bridge (Figure 36) designed by Christian Menn, was found in *The Art of Structural Design: A Swiss Legacy* and scanned into a computer for further grid structure development.

Figure 36: Sunniberg Bridge

Analysis of Dominants

During a composition’s analysis of dominants, the designer looks for and draws upon particular dominating elements. “This includes lines of compositional force, areas of similar or contrasting tones or colors, decorative motifs, and so on. This is intended to show the way in which the composition holds together as well as the compositional structure at the
Simplifying the captured attribute grants the designer access to the structural foundation of the attribute’s composition. “An image can be simplified for emphasis in a number of ways. One way is to turn it into a pure black-and-white drawing. You can do this either by selecting and stereotyping a limited number of leading contours from the subject, usually by geometrizing them into lengths of straight line and standard curve; or by imitating the effect of solarized photographs by copying areas of shadow in a single tone.” Capturing an object’s positive or negative forms, such as a silhouette, suggests the represented attribute without obvious and unnecessary detail. The reduction of details or abstraction allows the designer to focus on the quintessence of the attribute.

To analyze the dominants of the Sunniberg Bridge, (Figure 37), was processed by an Adobe Photoshop photocopy filter. This optional step demonstrated (Figure 38) how a simplified image could be efficiently generated.

Sketch Grid Structure Roughs

A number of grid structure rough sketches are created and taken through a series of modifications. A series of modifications are strongly recommended in order to generate the greatest number of grid structure possibilities. Once a visual analysis is established, the grid structure’s developmental sketches can become more complex, or simplified, depending on the project’s requirements. There is no predetermined quantity of grid structure roughs required for this phase of the developmental process; however, as the designer sketches, the continued production of possibilities will encourage an appropriate level of grid structure
discovery. “Design starts with forms and then modifies materials into shapes that embody them. A truly creative designer combines forms to arrive at new realizable images.”70 The use of the captured attribute as a structural framework allows the designer to remain open to the dynamic grid structure configurations beyond the traditional grid structure formats. “There is no reason that all grids should have straight lines and be laid out in rectangles. Square formats and grids are now seen reasonably often. But circles, curves and even helical spirals are possible.”71 Grid structure roughs for AAI USA (Figure 39) illustrate a variety of structures that can be developed from the captured attribute. It is recommended that grid structure sketches be drawn on tracing paper to allow for an easier transition into the grid structure refinement phase.

71 André Jute, \textit{Grids: The Structure of Graphic Design} (Switzerland: RotoVision, 1996), 120.
Figure 38: Grid Structure Rough Sketches
Grid Refinement and Rendering

The grid refinement process includes further manipulation of grid structure sketches prepared in phase five. “Design involves altering the forms of existing materials to make them suitable for what we want them to do.”72 Modifying the grid structure sketches allows designers to relate its design to the project’s goals. “The degree of dominance should be related to the circumstances. A roadside poster must have spontaneous impact upon a motorist speeding by. An advertisement in a railway carriage can be conversational, even entertaining. A painting on the same subject, to be hung at head office, should invite contemplation and offer a dialogue with the observer.”73 Figure 40 demonstrates how the grid structure refinement evolves from the original grid structure sketches (Figure 39). The refinement of the grid structure permits the designer to remove linear elements within the structure in order to simplify, or target areas, of the grid structure. Once the designer is satisfied with the series of explorations conducted during phases five and six, they can then select a final grid structure design to be scanned into the computer and rendered before elements are applied. The final grid structure for the AAI USA study is shown in its rendered format (Figure 40) and mirrored for complexity (Figure 41).

Figure 39: Grid Structure Refinement
Figure 40: Rendered Grid Structure

Figure 41: Rendered Grid Structure Mirrored
Application of Elements to the Structure

The rendered grid structure assists the designer with placing elements, such as text and images, on the structure. The division of space created by the grid structure can be used as a starting point for the composition. “Diagonals can be very important. They can be used to determine page layout, the placing of windows in a façade, or the extent of projection of eaves.”74 The application of elements to the grid structure for the AAI USA study are illustrated in Figure 42 through figure 45 with the grid structure, while depicted without the grid structure in Figures 46 through 52. The HIV/AIDS poster, figure 42, utilized the road and cable lines of the bridge’s structure to direct the viewers’ attention towards the term aids. Additional meaning was incorporated by the use of two red curvilinear forms that mimic red ribbons worn for HIV/AIDS awareness worldwide. In figure 43, the Food and Hunger poster, a white background was chosen to enforce the void feeling existing in those suffering from hunger. The weight of the letter “H” in hunger that exists solely because of the underlying grid structure is similar to chopsticks used customarily in Asian cuisine. The Global Governance poster, figure 44, is representational of the scales of justice. In the Global Governance poster ActionAid’s existing identity is shown bearing much weight represented by a considerable quantity of text present on the opposite side of the scale. The Education poster, figure 45, the last of the series enforces a sense of projection, occurring because of the grid structure, by creating a vibration of “billion” through repetition and size contrast. Each of the four posters in the AAI USA study was able to find meaning representational of its

theme while remaining connected to the unifying conceptual grid structure. Figure 50 illustrates the four AAI USA poster designs connected to demonstrate how the conceptual structure unifies each poster within the study.
Close to half of them are women

37.2 million people are living with HIV/AIDS

60% of all new HIV infections are among people aged 15-24

Figure 42: HIV/AIDS Poster
Figure 43: Food and Hunger Poster
Figure 44: Global Governance Poster
Figure 45: Education Poster

About 115 million children cannot read or write.

With education, individuals in developing countries are more likely to get the jobs they desperately need in order to support their families. They are also more likely to take an active part in their communities so that they may become harbingers of change.
Figure 46: HIV/AIDS Poster with Grid Structure
Figure 47: Food and Hunger Poster with Grid Structure
Figure 48: Global Governance Poster with Grid Structure
Figure 49: Education Poster with Grid Structure
Figure 50: Connected Poster Series with Grid Structure
CHAPTER 4. APPLICATION

Conceivably the true measure of the conceptual grid structure relies on its application in graphic design academia and practice. “The characteristics that make a piece work well are difficult to define. Each piece is different and created with different intent. The intent of a work is the central idea or problem with which the artist is working. This idea forms the intangible focus of the work, that which underlines its form.”75 The ability of the study to transcend into the design arena as an instructional device and become an active component of graphic design practice would be an appropriate method to define the strength of the continual use of conceptual grid structures.

Instructional application

In an academic setting instructors and professors alike will be able to use the conceptual grid design method as an introductory technique into the development of grid structures. The conceptual grid structure offers a unique perspective for students to discover how to design a project in its entirety. By educating students on the beginnings of design prior to the surface design of a piece, the methodological grid structure approach will educate students on graphic design techniques that can be transferred across the graphic design spectrum. Allen Hurlburt believes that one of the major virtues of the grid system is the discipline it imposes on the untrained designer, and as a teacher of publication design, he found that it was only when the student divided and analyzed the space they were working

with were they able to achieve a cohesive design solution.76 Conceptual grid structure design will provide students with the opportunity to gain a better understanding of their project’s concept, the ability to analyze an object, and to exercise sketching and refinement skills all while developing a grid structure.

Application in design practice

The use of conceptual grid structures in design practice will permit designers to customize grid structures for each client and project thus creating a range of unique project specific possibilities. “Because each grid is custom-made to fit the parameters of a specific project and because its design is governed by the particular working style of an individual designer, grids will take on almost unlimited variation in form.”77 Development of an appreciation for the level of skill and technique employed in the creation of conceptual grid structures will provide additional depth to the graphic design profession. A case study of the application of conceptual grid structures in design practice was conducted on publications for the Adoption Services of Georgia. The study followed the conceptual methodological grid structure procedure to redesign graphic design pieces for Adoption Services including: a photolisting book and website.

The 2001 adoption photolisting book cover (figure 51) expresses sorrow through its use of a cool color palette and many of the children appear pained in their photograph, which is highlighted by the use of a duotone tint applied to the image. Additional designs in the

2001 photolisting book (Appendix A) utilizes a busy and distracting background for texture. Some of the children profiled in the photolisting book share a page with a child of no relation; this can be confusing to the reader. Several of the layouts feature bold, large quotes, which are overpowering and profiles are text-heavy for readers who may want to learn factual information such as the child’s age quickly. The profile pages should not include an area to define terms such as “Special Needs.” The profile pages should only include information related to the child or sibling group to avoid unnecessary labeling of the children. Overall the 2001 Adoption Services photolisting book has no visual stimulation to capture and maintain the users interest.

The 2006 Adoption Services photolisting book cover (figure 52) improved from the 2001 photolisting book’s cool color palette with its use of warmer tones and use of positive expressive photographs; however the use of full color photography would add a sense of vibrancy to the children. The layout of information disrupts the flow of reading and creates confusion while profile pages of unrelated children force the reader to hesitate in order to correctly identify each child. The sibling group pages offer no separation of textual information among siblings thus making it difficult to locate information on each child. The previously discussed photolisting book pages may be found in Appendix A.

The existing Adoption Services website is not consistent among each level of the website. The viewer could easily assume that they are viewing a different website when navigating through the existing website which may discourages future use of the website. The site also has inconsistent navigation that may create viewer frustration. Navigation is
inconsistent among the Adoption Services homepage (figure 53) and the photolisting main webpage (figure 54). The existing website designs for Adoption Services are located in Appendix B. The Adoption Services website case study utilized the rendered conceptual grid structure from the Adoption Services photolisting case study. In the website homepage (figure 61) of the case study, the author incorporated a navigational hierarchy that remained present throughout the additional webpage designs found in Appendix D.
Adoption: It’s a Love Thing

Adopt Georgia
Spring 2001

Figure 51: 2001 Adoption Services Photolisting Book Cover
Figure 52: 2006 Adoption Services Photolisting Book Cover
Figure 53: Adoption Services Current Website Homepage

Figure 54: Adoption Services Current Website Photolisting Webpage
The mission of Adoption Services is to find caring homes for the numerous children who are in permanent state custody and are available for adoption. The mission of Adoption Services was used (figure 55) to determine the project concept. The inclusions of the various conceptual grid structures created from (figure 56), (figure 57) and (figure 58) were used to embed an additional layer of meaning into the designed publications (figure 60 and figure 61) while utilizing a unanimous concept. Figure 60 and figure 61 both use the conceptual grid structure (figure 59) to direct the placement of text and imagery.

Figure 55: Concept development for Adoption Services
Figure 56: Starting Sketch for Conceptual Grid Structure

Figure 57: Conceptual grid development for Adoption Services
Figure 58: Conceptual grid development for Adoption Services
Figure 59: Grid Structure Implemented for Adoption Services Case Study

Figure 60: Case Study Photolisting Cover Spread
The Southwest Regional Coordinator of Adoption Services of Georgia noted the case study as using color and layout to enhance the meaning and mission of the Adoption Services publications. The case study utilized the conceptual grid structure designed from a house to dictate the placement of elements in the publications. A clearer meaning was established by the arrangement of items such as children’s names to ensure the reader could identify the correct child. Spacing presented by the conceptual grid structure help to prevent cluttering of information that was present in the previous design publications. Additional individuals
commended the ability of the publications to entice readers into acquiring about Adoption. These individuals also informally reviewed the case study publications in comparison with existing materials for Adoption Services of Georgia. The case study, which employed the conceptual grid structure, was proven effective in enhancing the mission of Adoption Services.
CHAPTER 5. CONCLUSION

This thesis evaluated the historical use of structure and the evolution of grid structure design. It examined traditional and non-traditional grid structures to assist in determining an effective solution for the continuation of grid structure use. “Ostensibly, the best grids are based on a general evaluation of content and reflect the particular character and presentational requirements of that content.”78 The methodological process to develop conceptual grid structures evaluated within this thesis has the ability to encourage designers to implement unique and dynamic conceptual grid structure design in their work. The effectiveness of this thesis is its ability to create multiple grid structures that are project specific and are conceptually linked to the design subject. Distinctive factors of this methodological conceptual grid structure process are: the requirement of research in developing the project concept lends to further project understanding, depth is generated from the supplementary level of structural meaning, and the variety of range to create simplistic or complex grid structures.

Boundaries of this thesis that have affected the outcome of the study include the subjectivity in examination of traditional and non-traditional grid structure use during the informal survey, and the determination that posters designed for ActionAid USA are dynamic and effective. Parameters affecting the future use of conceptual grid structures

include the willingness of the designer to submit to the level of effort required and the ability of the designer to work with conceptual grid structures within the project time constraints.

This conceptual approach to grid structure design will not only produce visually effective design, but will include a conceptually related grid structure. The conceptual grid structure design approach is not effortless, but graphic design should not be as such. The willingness of the graphic designer to take on the challenge of creating the conceptual grid structure will distinguish graphic designers from the meager desktop publishing template. “The extent to which your grids will contribute to your design work depends very much on the amount of research you are willing to undertake into the purposes for which the design is intended and the market at which it is directed.”79 The existence of the grid structure is important in establishing the graphic design profession as more than a subjective aesthetic art void of structural meaning. The merger of structure from traditional grid structures and dynamic compositions from non-traditional grid structures into the use of logical conceptual grid structures offers dynamic solutions and the continuation and evolution of grid structure use. This thesis determined that it is possible to produce non-traditional dynamic design using structured logic and recognizes the importance of the existence of structure in graphic design. Structural foundations provide graphic elements and type with purpose beyond subjective designer emotions.

Further evaluation to determine the successes and failures of this thesis would include a quantitative analysis of the effectiveness of the conceptual grid structure. The investigation would include conceptual grid structures utilized in this thesis as an instructional aid in

graphic design academia. Such an analysis would objectively measure the level of understanding about the methodological approach subsequent to an instructional lecture and demonstration of the conceptual grid structure methodology.
Figure A-1: 2001 Informational Spread
My Brother and Friend

Christine, age 13, is the oldest sister and somewhat protective of little brother Justin, age 11. When he doesn't feel like talking, his big sister is glad to talk for the two of them. Talking and participating in the conversations are very different. Justin participates by listening and often nodding his agreement. Christine describes her brother as serious.

Christine likes school where science is her favorite and best subject. Her brother, she says, is a math whiz. Christine thinks she might like to be a surgeon when she grows up. "Trauma Watch and ER are my favorite shows." She also likes reading; Nancy Drew Mysteries are the books she reads most often.

The children are serious and studious but they like to have fun too. The always "serious" Justin likes to play video games and loves to swim. Both Christine and Justin enjoy playing softball, soccer and flag football. Their closeness extends to sports as well. They were on the same soccer team, "Our team won the championship last year," Christine explains.

Both children are enthusiastic when asked if they are good friends. Christine says she considers her little brother her best friend. So close are the children that if they could go anywhere and do anything, they would travel to Hawaii, together.

Before Hawaii or another soccer season, Christine and her brother need a permanent family. To learn more call Martha Cook at Marion County DFC, 706-672-4314.

Dancing for a Cause

Kayla, age 12, is a social, outgoing girl who enjoys school, dancing and going to church. All three activities give Kayla the chance to do what she really loves, spend time with her friends.

Kayla is in the sixth grade where she does best in math and is best fond of social studies. Kayla is part of a dance team in her church. She says the group typically does "hip hop" routines, mainly to contemporary Christian music. "Shackles" is one of her favorite songs. The dance team is one of several youth ministries in which she is involved.

An outgoing pre-teen, Kayla enjoys talking on the phone and shopping with her friends from school and church. When she's at home she is usually "on the phone, talking to my friends." Asked how her friends might describe her, Kayla thinks they would say "she's nice" or "she's good in school."

In addition to her many interests, Kayla enjoys baseball or softball and basketball. She says she doesn't play with boys too much anymore but really likes playing video games with her friends. Kayla is not sure what she wants to do when she's older. She says she definitely wants to go to college although she doesn't know what she wants to study.

Time and talent gives Kayla many options as she decides what she wants to do when she's older. Today Kayla is waiting for an adoptive family to help her make the best use of her options. To learn more about making Kayla a part of your family call Gretchen Cleveland at Carroll County DFC, 770-836-2086.

Figure A-2: 2001 Unrelated Children Page
Large in Number and in Talent is one way to describe these brothers and sisters. All five have talent and dreams. Just as important, each child possesses a strong desire to learn and do more. They have bright hopes for the future. Brandon, age 14, wants to play football. Tanika, age 13, wants to teach music or language arts. Palimae, age 11, wants to be a counselor. Dorrell, age 10, wants to be a football player like his big brother. Leshia, age nine, is not exactly sure what she wants to do when she’s older, maybe sing.

Leshia knows for certain that she wants to learn to play the trumpet. She doesn’t really know the game at all today but one day wants to play football as well as she plays tennis. Like her big sister, Leshia is described as a very good singer. Tanika is in the school choir and likes all types of music. Gospel is the music she most enjoys singing and listening to. “His eyes are on the sparrow” is Tanika’s favorite song.

Little brother Dorrell smiles and nods his enthusiastic agreement as the girls talk about music and being good singers. Musical talent runs in the family. Palimae plays the trumpet.

All of the children are good students. When asked what he wants to do for a living, Palimae answers, “school is my work right now.” Dorrell answers and adds, “My job is going to school.” All five children have been, are close to or are actually on the school honor roll. Brandon, Palimae and Dorrell like math. Tanika says language arts is her favorite subject. Leshia likes to write stories about her teachers and the books she’s read.

Figure A-3: 2001 Sibling Group Page
Continued - Glossary of Terms

Assistive Technology
An item, piece of equipment or device, such as a communication board, communication system, specially designed lift or wheelchair, that is needed to improve a child’s functioning.

At Risk
A term used with children who have, or could have, problems with their development.

Attachment Disorder
"An attachment disorder is a condition in which individuals have difficulty forming loving, lasting intimate relationships. Attachment disorders vary in severity. The process of developing healthy attachments can be disrupted by abuse, neglect, abandonment, multiple changes in caregivers, foster care, adoption, painful illness, prenatal exposure to alcohol/drugs, maternal depression, inconsistent day care."
(Web site for The Attachment Center at Evergreen at www.attachmentcenter.org)

Attention Deficit Hyperactivity Disorder (ADHD)
All children may be overly active at times, their attention span may be short, and they may act without thinking. However, if a child seems more active than others the same age; if a child is notoriously forgetful, disorganized, and always losing things; if the teacher complains that your child can’t stay seated or quiet, blurts out answers instead of waiting to be called on, pays more attention to the traffic in the hall than to her, behaves aggressively or struggles academically, then you may want to have the child evaluated for ADHD.

Other biological and psychological problems can contribute to symptoms similar to those exhibited by children with ADHD such as anxiety, depression and certain types of learning disabilities. Because diagnosis is complicated, it is important to have a comprehensive evaluation to establish a diagnosis, rule out other causes and determine if there are any co-occurring conditions.

A comprehensive evaluation includes a clinical assessment of the child’s academic, social and emotional functioning and developmental disabilities. Other tests may be included such as intelligence testing, measures of attention span and parent and teacher rating scales.

Most experts recommend a treatment approach with a mix of medical, educational, behavioral and psychological interventions. Interventions might include educational modifications and accommodations, behavior modification, parent training, counseling and medication. Between 70-80% of children with ADHD respond positively to appropriate medication. These medications increase attention, and decrease impulsivity, hyperactivity and aggression. (Adapted from the CHADD web site at http://www.chadd.org/faq.htm)
Fredericka

Fredricka, born 07/97, is an affectionate and happy child. She enjoys playing with dolls and video games, riding her bike and watching cartoons. Fredricka is very friendly and loves people. She is quite talkative and enjoys attention and praise from others. Although Fredricka enjoys new experiences, she is very fearful of all animals. Her early life experiences consisted of a great deal of instability. As a result, she occasionally exhibits defiant behavior both in the classroom and at home. In order to address this issue, Fredricka is enrolled in special education classes for those with emotional and behavioral issues. The structured setting of the classroom combined with medication have greatly benefited her. Fredricka’s teachers describe her as an upbeat and enthusiastic student. Her ideal family is experienced in parenting children with behavior issues and will assist her in understanding and healing from the issues of her past. Fredricka will require therapy on an ongoing basis. If necessary, the selected family must be willing to participate in therapy with her. A loving, committed and patient family is needed, one who will provide Fredricka with a stable home filled with structure, understanding and individualized attention. She should be the youngest child in the family. Continued contact with siblings being planned for separately is necessary.

Candace

Candace, born 07/93, is a sweet and affectionate child. She enjoys playing with her Barbie dolls, listening to music and reading. Candace also loves to sing along with her karaoke machine. She is full of life and energy! Enrolled in special education classes for those with mild intellectual delays, her favorite subject is math. Candace’s teachers describe her as a student who loves learning. They admire her determination to do well in school, despite her limitations. Candace has a short attention span and struggles to remain on task. In order to maintain her focus, she requires constant redirection and supervision. Emotionally, Candace is much younger than her chronological age. Although medication and therapy are helping, she deserves a loving and permanent home. A committed and patient family is needed, one who will provide Candace with understanding and stability while nurturing her positive growth. Continued contact with siblings being planned for separately is necessary.
Curtis, and his brother, Joshua, were born 01/92 and 09/93. Curtis is a very loving and outgoing child. He is energetic and enjoys playing basketball, football and kickball. Curtis also enjoys drawing, skating and riding his bike. Religion is very important to him. Although Curtis currently attends a Hindu temple, he is open to other religions. He has a very healthy appetite and enjoys a variety of foods. Curtis’ favorite foods include curried rice, fish, pizza and chicken. Enrolled in special education classes for those with emotional and behavioral issues, he enjoys social studies and excels in math. Although Curtis does well academically, he requires assistance with his school work. At times, he exhibits disruptive behavior in the classroom. Due to the structured setting of the classroom along with medication and therapy, Curtis’ behaviors have significantly improved. His teachers consider him a role model for the other students to follow. Curtis hopes to become a veterinarian. It is likely that he will require special education services on an on-going basis. Joshua is a sweet and soft-spoken child. He enjoys playing football, basketball and watching television. Joshua also enjoys playing with his miniature toy cars and action figures. He is very responsible and enjoys helping with chores. Joshua occasionally displays trying behaviors. Special education classes and medication assist him in understanding and managing his behavior. Joshua excels in science and social studies. He hopes to become a movie director. Joshua will require assistance to ensure that his academic needs are met. These children have experienced a great deal of instability, both in their birth home and in foster care. A loving, committed and patient family is needed, one who will provide Curtis and Joshua with a stable home filled with structure, understanding and individualized attention. These brothers are very bonded and must be adopted together. Their ideal family is experienced in parenting children with behavior issues.
APPENDIX B. ADOPTION SERVICES OF GEORGIA EXISTING WEBSITE

Figure B-1: Meet the Children Webpage

Figure B-2: Photolisting Webpage
Full Photolisting of Children

Click on the name or the picture to obtain more information about the child. For those children with a bright blue background behind their picture, a video of the child can be seen after clicking on the picture (requires a Real Player 7.0 or above).

<table>
<thead>
<tr>
<th>Photograph</th>
<th>Name</th>
<th>ID Number</th>
<th>Age</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kayla</td>
<td>2557A, 2558A</td>
<td>16, 15</td>
<td>Placed, On Hold</td>
</tr>
<tr>
<td></td>
<td>Robert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jamichael</td>
<td>2749A</td>
<td>10</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damion</td>
<td>2775A</td>
<td>14</td>
<td>On Hold</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crystal</td>
<td>2780A, 2781A</td>
<td>16, 14</td>
<td>Withdrawn, On Hold</td>
</tr>
<tr>
<td></td>
<td>Preston</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starnesia</td>
<td>2783A</td>
<td>15</td>
<td>On Hold</td>
</tr>
</tbody>
</table>

You have selected 156 records. Please select any other page number from the 26 page(s) listed above to see the other records. There is a maximum of 6 children listed per page.

The free Real Player software may be downloaded by clicking the icon below and following the instructions on the Real Networks site. You may receive a message saying that your machine is not capable of viewing the video if you do not have the correct version of Real Player.

Please fill out the My Turn Now Information Request Form if you are interested in one or more of these children. You may also call 1-800-603-1322 or send an email to My Turn Now.

Figure B-3: Full Photolisting Webpage
Figure B-4: Photolisting Profile Webpage

For those children with a bright blue background behind their picture, a video of the child can be seen after clicking on the picture (requires * Real Player 7.0 or above).

Kayla and her brother Robert were born 5/90 and 7/91. Kayla is a sweet child who makes friends easily. She enjoys being with her friends and watching television. Kayla is very proud of how well she does in school. Due to her early life experiences she has been diagnosed as having depression and anxiety. Robert, who prefers to be called Dillon, is a great communicator. He enjoys watching television and helping his foster mother with chores around the house. Dillon attends special classes for those with emotional and/or behavioral problems. He is on medication for Attention Deficit Hyperactivity Disorder and needs help dealing with his anger. These children would do best with a family who can give them a great deal of one-on-one attention.

For more information about Attention Deficit Hyperactivity Disorder, depression, anxiety, or to talk with a parent of a child whose challenges are much like Kayla and Robert’s, please call Parent to Parent of Georgia at 1-800-229-2038.

The free Real Player software may be downloaded by clicking the icon below and following the instructions on the Real Networks site. You may receive a message saying that your machine is not capable of viewing the video if you do not have the correct version of Real Player.

Please fill out the My Turn Now Information Request Form if you are interested in one or more of these children. You may also call 1-800-603-1322 or send an email to My Turn Now.

[Back to search page] [Back to home page] [Back to My Turn Now Home Page]
Figure B-5: Request Information Form Webpage
Figure C-1: Informational Spread

About My Turn Now

Approximately 250 Georgia children with special needs are available at any given time to be adopted. Unfortunately, most of these children are raised in temporary foster homes, where on the average of every eighteen months they are moved to a new home and given a new set of parents. These moves entail entering a new physical environment and forming new relationships, as well as severing existing ties.

The toll on the individual lives of the children who are raised this way is great. In addition to being subject to constant changes and many disruptions, these children also are being deprived of the opportunity to invest in the formation of stable and lasting relationships which are essential to emotional security and healthy, productive development. Besides the emotional trauma caused the child, the cost to the same taxpayer of raising a child in foster care is about $8000 per year. Furthermore, the fact that the adult prisons and mental hospitals are filled with people who, as children, did not have stable, nurturing homes indicates that, both to the individual and to society, the long term cost for unadopted children can be staggering.

Since its inception in 1989, My Turn Now has been changing this distressing scenario. In a public-private partnership with the Georgia Department of Human Resources, My Turn Now has published and updated bi-monthly a listing book containing photographs and descriptions of Georgia children with special needs who are eligible for adoption. Currently over 1,400 of these books are in circulation nationwide, the majority of them disseminated throughout Georgia. In addition to the photo listing books, My Turn Now promotes special needs adoption through posters of waiting children, talks to community organizations, special displays, and church bulletins inserts and flyers. Volunteers respond to inquiries, guide prospective parents through the adoptive process, provide links with others in similar situations and other information and referral to other community resources.

Glossary of Terms

A

Adaptive Behavior
References to a child’s ability to be personally responsible and socially appropriate when needed.

Assistive Technology
An item, piece of equipment or device, such as a communication board, communication system, specially designed lift or wheelchair, that is needed to improve a child’s functioning.

At Risk
A term used with children who have, or could have, problems with their development.

Attachment Disorder
A condition in which individuals have difficulty forming loving, lasting relationships. Attachment disorders vary in severity.

B

Borderline Personality
A highly unstable personality style characterized by intense personal relationship problems. Individuals often suffer from depression, anxiety and the fear of being abandoned.

Cognitive Development
The way a child learns to remember, reason, understand, and make the best judgements.

Deafness
The inability to hear and understand conversational speech through the ear alone; hearing loss is greater than 75-80 decibel.

F

Fetal Alcohol Syndrome
A pattern of mental and physical birth anomalies that can include mental retardation, growth deficiencies, central nervous system dysfunction and characteristics of the head and face.
Christopher

Christopher, born 06/06, is a Caucasian child and described as “all boy.” He loves the outdoors, where he climbs on all the trees. Christopher also enjoys playing video games and also listening to music. Although he likes to play all sports, he does excel in baseball. Enrolled in regular education classes, Christopher’s teachers describe him as a “hardworking and good student.” He makes A’s and B’s in school. Christopher’s favorite subjects are social studies and science. His early life experiences were filled with great instability and uncertainty.

Christopher is still sorting through the issues of his past. At times, he is overwhelmed by his emotions and exhibits trying behaviors. Therapy is helping Christopher make sense of his past and hopes to gain a better understanding and control of his emotions. Like all children, he deserves love and stability. Christopher needs a loving and patient family, one who will remain committed to him, even through trying times. His ideal family will encourage him as he continues therapy and will nurture his positive growth.

Latasha

Latasha, born 12/06, is a friendly and very outgoing young African-American teenager. Like most kids her age, she also enjoys talking on the phone, shopping and listening to music. Latasha also likes to read and watch movies. She is a very bright child who grasps new concepts quickly. She is enrolled in regular education classes.

Latasha’s teachers believe that she has great potential to succeed in school. However, she lacks the motivation to complete her homework assignments. Latasha will require individualized attention to ensure that her academic needs are met. Her young life has since been one of instability and loss. As a result, Latasha will occasionally exhibit trying and difficult to understand behaviors.

Therapy and medication assist her in understanding her emotions and improving her behavior. A loving and very committed family is needed, one who will provide Latasha with a stable home filled with patience, understanding, structure and guidance.

GA-3035A, 3037 A/A8

Figure C-2: Unrelated Children Spread
Sibling Group

Peterson and Crystal

Peterson, and his sister, Crystal, were born 8/90 and 1/91. Peterson and Crystal have experienced significant losses in their young lives. They are currently placed in separate foster homes. These children desperately want to be reunited in a loving adoptive home filled with patience and acceptance. Crystal and Preston’s ideal family “would live on a farm or ranch with plenty of animals to love.”

Peterson

Preston is a fun-loving child with a beautiful smile. He is normally outgoing, but he can be shy and at times. Preston loves the outdoors and playing sports such as football and baseball. He is enrolled in regular education classes, he is doing very well academically. However, Preston will require assistance with his homework. He has been diagnosed with Attention Deficit Hyperactivity Disorder. Therapy is helping him.

Crystal

Crystal is a very friendly and intelligent child. She enjoys basketball, reading and listening to music. Crystal is a quite passionate about animals. She dreams of becoming a veterinarian. Crystal attends regular education classes where she excels academically as a straight “A” student. She is a typical young girl going through the teen years.

GA-0089A, 3027 A09
Meet the Children

As you consider how much it means to you to adopt a child, imagine what the prospect of having a family means to the child. Some of the children in state custody were given up by their parents voluntarily. Most, however, were removed from their homes by the state due to abuse, neglect or abandonment in their life.

They've since lived in foster homes, forced to make new ties and then break them again when the time comes to move on. Despite the toll this takes on each child, you'll still see loving, hopeful faces when you select an option listed below.

Wednesday's Child

To spread awareness, a new child or sibling group is featured every Wednesday on Fox 5 during the 6:00 PM news and then again on Sunday during the 10 PM news.

Photolisting

View a photo and description of children currently in need of a permanent caring home.

Figure D-1: Meet the Children Webpage
Photalisting

The options below allow you to select a subset (based on age, gender, or sibling status) of the children available for adoption. You may select a subset or the full listing of children. Once you have the list, you may click on a child’s name to obtain more information about the child. For those children with a television symbol by their picture, a video of the child can be seen by clicking on the television symbol (requires * Real Player 7.0 or above).
Figure D-3: Girls Webpage
Figure D-4: Read More Information Webpage
Figure D-5: Information Request Form Webpage
BIBLIOGRAPHY

ACKNOWLEDGEMENTS

This thesis has definitely had moments when I wondered what have I got myself into, and for those periods I am forever grateful to the many people who have supported me in various ways. The numerous cards and calls from family and friends during the good times and the rough patches along the way will never be forgotten.

To the Art and Design staff who have always been courteous and informative; and the Faculty who have opened my eyes to a new world of graphic design. Many thanks to my major professor, Roger Baer for not laughing hysterically when I initially presented bridges to him, and to my incredible committee members for always having time to listen, give insight, and for asking the right questions to keep my mind churning. I appreciate all of you.

To my sister for reading many papers thrown her way and taking time off to fly out to assist me during the tough times, and to my brother for his technical support and constructive competition. A very gracious thank you to my parents for giving me roots and providing me with wings for the journey.

With much love,

Valorie M. Brinson