Infrared proximity measurement system development and validation for classifying sow posture

Thumbnail Image
Date
2019-01-01
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ramirez, Brett
Associate Professor
Person
Hoff, Steven
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

The rapidly progressing field of precision livestock farming is becoming increasingly dependent on the utilization of camera technology. Integration of camera technology involves substantial intellectual input and computational power to acquire, process, and interpret images in real-time. Further, cameras and the necessary computational power can be cost-prohibitive and subsequently, become a constraint for application in a commercial livestock and poultry production systems. The purpose of this study is to develop an infrared proximity sensor based system to serve as a substitute a camera system to perform real-time monitoring of sow posture in farrowing stalls for a potentially lower cost and computational power. Monitoring sow posture can provide producers an indicator of farrowing and aid in evaluating sow demeanor during lactation. During the development of this system the long range infrared (IR) proximity sensors were individually calibrated, a sow posture algorithm was developed, and the IR-Sow Posture Detection System (IR-SoPoDS) system was evaluated in a commercial setting to a Kinect V2® camera for a range of sow postures. Average accuracy of the sow posture algorithm on the training data was found to be 96%. The overall accuracy of the IR-SoPoDS system across the three sow frame sizes were:87% (small), 90% (medium), and 89% (large). This IR-SoPoDS system shows a strong promise for further development for sow posture and behavior detection in the farrowing stall environment.

Comments

This presentation is published as Smith, Benjamin C., Brett C. Ramirez, and Steven J. Hoff. "Infrared proximity measurement system development and validation for classifying sow posture." ASABE Annual International Meeting. Boston, MA. July 7-10, 2019. Paper No. 1900327. DOI: 10.13031/aim.201900327. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019