Nov 18th, 12:00 AM

An Update on New Potato Leafhopper-Tolerant Alfalfa Products and Their Management Guidelines

Stephen A. Lefko
Iowa State University

Larry P. Pedigo
Iowa State University

Marlin E. Rice
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/icm

Part of the Agriculture Commons, and the Entomology Commons

https://lib.dr.iastate.edu/icm/1998/proceedings/5

This Event is brought to you for free and open access by the Conferences and Symposia at Iowa State University Digital Repository. It has been accepted for inclusion in Proceedings of the Integrated Crop Management Conference by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
AN UPDATE ON NEW POTATO LEAFHOPPER-TOLERANT ALFALFA PRODUCTS AND THEIR MANAGEMENT GUIDELINES

Stephen A. Lefko
Larry P. Pedigo
Marlin E. Rice
Iowa State University, Department of Entomology

Alfalfa is host to an abundance of insect pests that vary in seriousness. One of these, the potato leafhopper, is considered the primary insect pest of alfalfa in Iowa (Figure 1). This insect feeds by sucking plant fluids through its straw-like mouthparts. Feeding can cause serious injury to alfalfa if pest numbers are high, and it is usually too late to treat by the time symptoms become visible. Leafhopper feeding deprives the plant of nutrients and creates wounds where disease can enter. However, the most important effect results from a small amount of saliva that is left in the plant wound. Leafhopper saliva causes plant cells to harden, which restricts the flow of nutrients throughout the plant and causes yield loss.

The two types of leafhopper injury are leaf-yellowing (hopperburn), and stunting of stems. Yellow leaves are starved of nutrients and can reduce the forage value of an alfalfa crop. Stunting is the shortening of stems and is estimated by measuring the average distance between nodes on several stems. While hopperburn is the most visible symptom, stunting best explains yield loss from the leafhopper. Stunting occurs over the duration of a cutting and begins before leaf yellowing is apparent. Therefore, scouting for economic leafhopper densities before symptoms of hopperburn appear is imperative in optimizing alfalfa production.

Two years have passed since the release of potato leafhopper-tolerant alfalfa varieties. In this time, producers have given mixed reviews on the yield advantage and consequently, the efficacy of the resistance mechanism that demands a premium price. Moreover, practical production questions have stifled researchers and left extension educators unable to answer producer's questions. Three years of research have identified a biological explanation for this confusion. It is linked to the mechanism of resistance, which was poorly understood when this new alfalfa was released. The objective of this research is to determine how potato leafhopper resistance changes pest management so growers can optimize these production systems. Studies on the yield advantage, mechanism(s) of resistance, and the changes in pest management, have provided some explanations and will be described in this article.

Deciphering the Mechanism of Resistance

There are several types of plant resistance to insects and it is important to understand their differences. The three types of resistance are nonpreference, antibiosis, and tolerance, and each of these describes the interaction of the insect and plant. A nonpreference mechanism deters insects so they move to another source of food. Hairs on stems, tough leaves or stems, or chemical signals, can force insects to find another host and reduce their potential to cause yield loss. Two separate studies were conducted to investigate the role of nonpreference. A lab study caged leafhoppers on stems of tolerant and susceptible alfalfa. Figure 2 shows a cage setup where one stem was susceptible (left) and the other was resistant (right). Results showed that hopperburn increased on the susceptible alfalfa stems when more tolerant stems were replaced in the cage. This was evidence that a nonpreference mechanism can function among individual stems. Another study compared the number of leafhoppers in field plots of several different
resistant alfalfa varieties to the number found in a susceptible variety. The number of adult and nympha
tage leafhoppers was similar between plots, which meant nonpreference did not function among small
plots. Combining these results, it seems leafhoppers may feed selectively on less resistant stems in a
field, but nonpreference is not a good explanation for the mechanism on a field scale.

The next mechanism is antibiosis. An antibiotic mechanism
would reduce the number of leafhoppers in the field by killing
them or slowing population growth. Glandular hairs and
tough stems have been linked to leafhopper resistance. A lab
study was conducted to determine if these hairs reduced
leafhopper feeding, which could be a source of antibiosis.
Results showed that leafhoppers could feed as much on
resistant stems as they could on susceptible alfalfa. Another
field study examined leafhopper population growth on field­
grown resistant alfalfa. Different numbers of leafhoppers
were caged on small field-plots of resistant and susceptible
alfalfa, and the number of nymphs produced in each cage were
counted weeks later (Figure 3). This trial was run on seven
different resistant alfalfas and one susceptible alfalfa. There was no evidence that resistant alfalfa
slowed leafhopper population growth compared to the susceptible variety. These two studies showed
that potato leafhoppers can feed on resistant alfalfa and antibiosis does not function in a field setting.
Antibiosis seems an unlikely explanation for the mechanism of resistance as it functions under
production conditions.

Tolerance is the last type of plant resistance. It is unique because it doesn’t deter or kill the insect. A
tolerant plant will support a normal size pest population and out-yield a normal plant when the pest
population is large. Yield estimates were also taken from the same cage study described above. Yield
loss was related to the number of leafhoppers in each cage. Results showed that yield loss caused by the
leafhopper was much less on resistant alfalfa compared to susceptible alfalfa. However, this yield
benefit was not apparent until after the first cutting of the seeding year. These results support the
presence of a tolerance mechanism. This type of tolerance likely results from an inter-play of all three
mechanisms. However, this description emphasizes the impact tolerant alfalfa will have on pest
management in production systems, namely raising the economic threshold.

Tolerance and its Effect on the Economic Threshold

A useful procedure for making economically sound pest­
management decisions in alfalfa is pest scouting and using an
economic-threshold (ET). Iowa State University Extension
recommends scouting leafhoppers by sweeping the alfalfa canopy
using a muslin net. Adult leafhoppers can be counted after 10
sweeps and compared to an economic threshold. An application of
insecticide is warranted if the number of leafhoppers recovered per
10 sweeps exceeds the economic threshold.

Results from these studies showed the potato leafhopper’s effect on
yield is distinct enough between tolerant and susceptible alfalfa to
warrant calculating separate economic thresholds. However, this
difference is not apparent until after the first cutting of the seeding
year. Therefore, the recommendation is to use the same threshold for tolerant and susceptible alfalfa during the initial growth of the seeding year. Figure 4 is a schematic of a two-step decision process for determining the optimal economic threshold. Earlier results showed the important factors to consider are the type (tolerant / susceptible) and the age of the stand.

![Diagram of decision process]

Figure 4. Two-tiered decision process for determining the correct economic threshold.

The economic threshold (8) is similar for seedling alfalfa regardless of its type. Tolerance builds in these new varieties during this interval and the economic threshold increases to 86 for all subsequent cuttings. The establishment of a strong root system is probably why leafhoppers cause less loss in susceptible alfalfa after the first year, and also is why the threshold goes up to 35.

Conclusion

Potato leafhopper-resistant alfalfa varieties show significant yield advantages compared to susceptible alfalfa after the initial growth of the seeding year, and under moderate to high leafhopper population densities. Additionally, tolerance best describes the interaction of the potato leafhopper and a stand of alfalfa. It is imperative that producers understand a field of leafhopper-tolerant alfalfa will not be void of leafhoppers, and that economic loss is still possible, but can be avoided by scouting and using the correct economic threshold. Leafhopper-tolerant varieties, and future improvements, will undoubtedly increase the quantity and quality of alfalfa produced in areas where potato leafhopper is a recurring pest.

Acknowledgements

Pioneer Hi-Bred, Forage Genetics, and America’s Alfalfa (ABI) provided either funding, alfalfa seed, alfalfa plants, or loan of equipment for this research. We greatly appreciate their assistance.