Extended families of critical and stationary droplets for nonequilibrium phase transitions in spatially discrete bistable systems

Thumbnail Image
Date
2020-02-28
Authors
Wang, Chi-Jen
Liu, Da-Jiang
Evans, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyMathematics
Abstract

Bistable nonequilibrium systems are realized in catalytic reaction-diffusion processes, biological transport and regulation, spatial epidemics, etc. Behavior in spatially continuous formulations, described at the mean-field level by reaction-diffusion type equations (RDEs), often mimics that of classic equilibrium van der Waals type systems. When accounting for noise, similarities include a discontinuous phase transition at some value, peq, of a control parameter, p, with metastability and hysteresis around peq. For each p, there is a unique critical droplet of the more stable phase embedded in the less stable or metastable phase which is stationary (neither shrinking nor growing), and with size diverging as p→peq. Spatially discrete analogs of these mean-field formulations, described by lattice differential equations (LDEs), are more appropriate for some applications, but have received less attention. It is recognized that LDEs can exhibit richer behavior than RDEs, specifically propagation failure for planar interphases separating distinct phases. We show that this feature, together with an orientation dependence of planar interface propagation also deriving from spatial discreteness, results in the occurrence of entire families of stationary droplets. The extent of these families increases approaching the transition and can be infinite if propagation failure is realized. In addition, there can exist a regime of generic two-phase coexistence where arbitrarily large droplets of either phase always shrink. Such rich behavior is qualitatively distinct from that for classic nucleation in equilibrium and spatially continuous nonequilibrium systems.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections