February 2011

8 AM Grind

Shanna Delfs

Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/ethos

Recommended Citation
Available at: http://lib.dr.iastate.edu/ethos/vol2011/iss2/11

This Article is brought to you for free and open access by the Student Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Ethos by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Scurry to throw on some baggy sweats and a hoodie, dash out the front door and anxiously run through campus to make it to your class by eight o’clock on the dot.

Does this routine sound familiar? If so, you are not alone. Many ISU students struggle to wake up early and rush to campus for their dreaded 8 a.m. class. Why do we even have to put ourselves through this? Why do some students end up with classes from 11 a.m. to 2 p.m. while others drag behind all day in an attempt to stay awake? Why do 8 a.m. classes even exist? While it may seem that attending classes would be more realistic for some if every day began at 11 a.m., educators at the university know differently.

Barbara Mack, an associate professor within the Greenlee School of Journalism and Communication, has taught 8 a.m. classes at Iowa State for all of her twenty-four years at Iowa State. “The taxpayers don’t really understand why students don’t like 8 a.m. classes,” Mack says. “They expect that the university is going to teach Monday through Friday from 8 a.m. until 9 p.m. After all, we have to keep the heat and air conditioning running. Students have been in their high school classes at 8 a.m., so why should college be different?”

Facilities Planning and Management and the individual colleges decide which classes will be at 8 a.m. and which ones will be during “prime time.” FPM Program Coordinator Katie Baumgarn describes “prime time” classes as those held between the hours of 9 a.m. and 3 p.m. Classes are then put into an automated system, rearranging the classes based on a number of factors: times found effective in previous semesters, room availability and the number of students enrolled in the class. “Required courses are obviously used for 8 a.m. classes because we know students will have to sign up for them” explains Jane Peterson, professor within the Greenlee School of Journalism and Communication.

Dr. Robert West, associate professor of psychology, researches cognitive processes and prospective memory and has also taught 8 a.m. classes throughout his career at Iowa State. West recognizes 8 a.m. classes are usually larger and require classrooms with more desks. Those rooms are generally more available at 8 a.m.

This makes perfect sense for faculty and administration within the university, but how effective is a system like this when it comes to students’ education? Staying up till 1 a.m. studying for exams, working on essays or even taking an extra work shift on a Tuesday night doesn’t make learning a monotonous biology or philosophy lesson at 8 a.m. any easier the next day.

It’s no secret more sleep allows for better attentiveness the next morning, however, experiments conducted at Harvard Medical School and Trent University in Canada have developed another theory: sleeping after a lesson or class allows for more learning than just an exceptional night’s rest.

According to Dr. Robert Stickgold of Harvard Medical School, “During REM, the brain re-enacts the lessons from the previous day and solidifies the newly-made connections through the memory banks.”

The Conference Board is a business membership and research association that works with companies and provides them with information about improving
their performance. According to The Conference Board’s study “Your Brain at Work,” individuals have different peak times throughout the day because of differences in circadian rhythms. Circadian rhythms are “24-hour-sleep-wake cycles” that control a range of functions our bodies perform. Circadian rhythms tend to peak at different times of the day, and these peaks correlate with alertness and performance on different tasks.

For people who are most chatty and perform best in the morning, these rhythms tend to peak in the early hours of the day. Night owls feel this peak after the sun goes down and accomplish more work and learn more effectively in the evening hours.

Age is another factor to take into consideration: older adults tend to be morning people, whereas younger adults, including college kids, tend to be more active and alert at night.

“Your Brain at Work” finds younger adults are more likely to become more coherent and remember more as the day goes on, while older adults show a decline in memory and motivation for activity and learning. This is due to a shift in circadian rhythms around the age of 50.

In his research, West has found the correlation between time of day and learning can be a subjective measure. While some older adults are more attentive in the morning and younger adults in the evening, people from both groups have actually shown to be neutral, or unaffected by the time of day. “While all of this is good evidence,” West elaborates, “[circadian effects of cognition are] subjective to biological and psychological factors.”

It would be ideal for students to be able to schedule their classes where their optimal performance and memory could be best utilized. Unfortunately, this isn’t always a luxury for every student, due to the availability of classrooms on campus and the number of enrolled students.

“The important thing here is synchrony between your optimal time and when the most demands are placed on your mental capacity,” West says.

Identifying your peak time of the day to absorb information and tailoring your schedule to your optimal performance is the best solution to surviving college classes and the 8 a.m. grind.