Mitigation of acute H2S and NH3 emissions from swine manure during agitation using pelletized biochar

Thumbnail Image
Date
2021-01-01
Authors
Koziel, Jacek
Lee, Myeongseong
O'Brien, Samuel
Li, Peiyang
Brown, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Koziel, Jacek
Professor Emeritus
Person
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionMechanical EngineeringCivil, Construction and Environmental EngineeringChemical and Biological EngineeringAgricultural and Biosystems EngineeringMechanical EngineeringChemical and Biological EngineeringBioeconomy Institute (BEI)
Abstract

The risk of inhalation exposure to elevated concentrations of hydrogen sulfide (H2S) and ammonia (NH3) during the agitation of stored swine manure is high. Once or twice a year, farmers agitate manure before pump-out and application to fields. Agitation of the swine manure causes the short-term releases of highly toxic levels of H2S and NH3. In our previous pilot-scale studies, the biochar powder had shown significant mitigation of H2S and NH3 emissions when surficially applied to manure immediately before agitation. However, fine biochar powder application poses hazards by itself and may not be practical to apply on a farm scale, especially when livestock and workers are present. We hypothesized that applying pelletized biochar to manure surface is just as effective as applying powder to protect farmers and animals from excessive exposure to H2S and NH3. This work reports on the lab-scale proof-of-the-concept trials with biochar pellets on the lab-scale. The objective was to compare the biochar pellets and biochar powder on their effectiveness of mitigation on H2S and NH3 gases during 3-hour long swine manure agitation. Three scenarios were compared in (n=3) trials (i) control, (ii) 12.5 mm thick surficial application to manure surface of biochar powder, and (iii) an equivalent (by mass) dose of pelletized biochar applied to manure surface. The biochar powder was bound with 35% (wt) water into ~5 × 10 mm (dia × length) pellets. Biochar powder was significantly (p<0.05) more effective than the biochar pellets. Still, pellets reduced total H2S and NH3 emissions by ~72% and ~68%, respectively (p=0.001), compared with ~99% by powder (p=0.001). The maximum H2S & NH3 concentrations were reduced from 48.1±4.8 ppm & 1,810±850 ppm to 20.8±2.95 ppm & 775±182 ppm by pellets, and to 22.1±16.9 ppm & 40.3±57 ppm by powder, respectively. These reductions are equivalent to reducing the maximum concentrations of H2S and NH3 during the 3-h manure agitation by 57% and 57% (pellets) and 54% and 98% (powder), respectively. Treated manure properties hinted at improved nitrogen retention, yet not significant due to high variability. We recommend scaling-up and trials on the farm-scales using biochar pellets to assess the feasibility of application to large manure surfaces and techno-economic evaluation.

Comments

This conference presentation is published as Chen, Baitong, Jacek A. Koziel, Myeongseong Lee, Samuel C. O’Brien, Peiyang Li, and Robert C. Brown. "Mitigation of acute H2S and NH3 emissions from swine manure during agitation using pelletized biochar." ASABE Paper No. 2100087. ASABE Annual International Meeting, July 12-16, 2021. DOI: 10.13031/aim.202100087. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021