Fungicide-Insecticide Study on Soybean

Nathan R. Bestor
*Iowa State University*, bestor@iastate.edu

Rebecca Ritson
*Iowa State University*

Daren S. Mueller
*Iowa State University*, dsmuelle@iastate.edu

Alison E. Robertson
*Iowa State University*, alisonr@iastate.edu

Matthew E. O'Neal
*Iowa State University*, oneal@iastate.edu

*See next page for additional authors*

Follow this and additional works at: [http://lib.dr.iastate.edu/farms_reports](http://lib.dr.iastate.edu/farms_reports)

Part of the *Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons*

**Recommended Citation**

Bestor, Nathan R.; Ritson, Rebecca; Mueller, Daren S.; Robertson, Alison E.; O'Neal, Matthew E.; and Pedersen, Palle, "Fungicide-Insecticide Study on Soybean" (2009). *Iowa State Research Farm Progress Reports*. 615.

[http://lib.dr.iastate.edu/farms_reports/615](http://lib.dr.iastate.edu/farms_reports/615)

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Fungicide-Insecticide Study on Soybean

Abstract
This study was designed to optimize insecticide and fungicide use on soybean by comparing different products applied at different timings. To explain yield responses, foliar disease severity and aphid populations were assessed throughout the season.

Keywords
Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences

Authors
Nathan R. Bestor, Rebecca Ritson, Daren S. Mueller, Alison E. Robertson, Matthew E. O'Neal, and Palle Pedersen

This southeast research and demonstration farm is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/farms_reports/615
Fungicide-Insecticide Study on Soybean

Nathan Bestor, research associate
Rebecca Ritson, graduate assistant
Daren Mueller, extension specialist
Alison Robertson, assistant professor
Matt O’Neal, assistant professor
Palle Pedersen, assistant professor
Department of Agronomy

Introduction
This study was designed to optimize insecticide and fungicide use on soybean by comparing different products applied at different timings. To explain yield responses, foliar disease severity and aphid populations were assessed throughout the season.

Materials and Methods
Plots were established on July 7, 2008. Plot size was four 30 in. rows by 35 ft long. The field was set up in a randomized block design with six replications.

Fungicides and insecticides were sprayed either alone or in combination at growth stage R1 or growth stage R3. Two controls were included, one was a non-treated control and the other was an IPM-based control that used the 250 aphid threshold to trigger an insecticide application (Table 1). The R1 sprays were on July 7 and the R3 sprays were on August 5, 2008.

Data were collected for foliar disease three times during the summer. The upper and lower canopies were assessed for percent coverage of foliar disease caused by fungal pathogens. Because of low disease pressure, only the last assessment (September 5) was included in Table 1. Aphids were assessed on selected treatments regularly throughout the summer and are reported as Cumulative Aphid Days (CAD). Before harvest, stems from selected treatments were rated for anthracnose stem blight. Finally, grain yield (adjusted to 13% moisture), moisture, protein, and oil were recorded.

Results and Discussion
Aphid populations reached threshold late in the season and IPM plots were sprayed September 5, 2008.

Preliminary results indicate that insect and disease pressure was greater in plots receiving R1 sprays compared with R3 sprays. In nearly every case an R1 treatment had more disease or aphid pressure than an R3 treatment (Table 1). This suggests that insect and disease pressure did not start until well after the R1 application, so these products were not able to manage the pests.

Yields reflect these results by showing similar differences between R1 and R3 sprays.

This project will continue for the next three growing seasons. We will continue to look at the interaction between insecticides and fungicides to optimize the use of these products on soybean.

Acknowledgements
Thanks to Kevin Van Dee, Southeast Farm superintendent, and his staff for their assistance and cooperation in this study. This work was funded, in part, by soybean checkoff funds from the Iowa Soybean Association.
Table 1. Fungicides and insecticides applied at growth stages R1 and R3 and resultant disease and insect pressure and yield response.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Application timing</th>
<th>Brown spot in lower canopy (%)</th>
<th>Cercospora leaf blight in upper canopy (%)</th>
<th>Anthracnose stem blight (%)</th>
<th>Cumulative Aphid Days (CAD)*</th>
<th>Protein (%)</th>
<th>Oil (%)</th>
<th>Moisture (%)</th>
<th>Yield (bu/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratego Pro</td>
<td>R1</td>
<td>5.3</td>
<td>16.6</td>
<td>3.5</td>
<td>563.7833</td>
<td>35.1</td>
<td>18.0</td>
<td>12.3</td>
<td>65.1</td>
</tr>
<tr>
<td>Stratego Pro</td>
<td>R3</td>
<td>3.2</td>
<td>5.2</td>
<td>1.9</td>
<td>465.7833</td>
<td>34.2</td>
<td>18.4</td>
<td>12.7</td>
<td>68.4</td>
</tr>
<tr>
<td>Punch</td>
<td>R1</td>
<td>5.6</td>
<td>4.2</td>
<td>.</td>
<td>.</td>
<td>35.1</td>
<td>18.0</td>
<td>12.5</td>
<td>67.9</td>
</tr>
<tr>
<td>Punch</td>
<td>R3</td>
<td>7.9</td>
<td>9.1</td>
<td>.</td>
<td>.</td>
<td>35.2</td>
<td>18.1</td>
<td>12.4</td>
<td>68.7</td>
</tr>
<tr>
<td>Headline</td>
<td>R1</td>
<td>6.7</td>
<td>8.3</td>
<td>.</td>
<td>.</td>
<td>35.0</td>
<td>18.1</td>
<td>12.5</td>
<td>66.9</td>
</tr>
<tr>
<td>Headline</td>
<td>R3</td>
<td>3.6</td>
<td>11.8</td>
<td>.</td>
<td>.</td>
<td>34.5</td>
<td>18.2</td>
<td>12.4</td>
<td>71.2</td>
</tr>
<tr>
<td>Leverage</td>
<td>R1</td>
<td>9.3</td>
<td>11.1</td>
<td>3.9</td>
<td>582.8833</td>
<td>35.4</td>
<td>17.9</td>
<td>12.7</td>
<td>66.4</td>
</tr>
<tr>
<td>Leverage</td>
<td>R3</td>
<td>5.4</td>
<td>9.1</td>
<td>4.5</td>
<td>149.7833</td>
<td>35.3</td>
<td>18.0</td>
<td>12.1</td>
<td>69.0</td>
</tr>
<tr>
<td>Asana</td>
<td>R1</td>
<td>5.8</td>
<td>17.4</td>
<td>.</td>
<td>.</td>
<td>35.2</td>
<td>18.1</td>
<td>12.3</td>
<td>65.6</td>
</tr>
<tr>
<td>Asana</td>
<td>R3</td>
<td>6.5</td>
<td>3.5</td>
<td>.</td>
<td>.</td>
<td>34.8</td>
<td>18.1</td>
<td>12.5</td>
<td>70.4</td>
</tr>
<tr>
<td>Stratego Pro + Leverage</td>
<td>R1</td>
<td>5.2</td>
<td>20.0</td>
<td>1.5</td>
<td>385.0167</td>
<td>34.9</td>
<td>18.0</td>
<td>12.4</td>
<td>70.0</td>
</tr>
<tr>
<td>Stratego Pro. + Leverage</td>
<td>R3</td>
<td>4.7</td>
<td>10.5</td>
<td>0.4</td>
<td>144.4167</td>
<td>34.4</td>
<td>18.4</td>
<td>12.9</td>
<td>74.4</td>
</tr>
<tr>
<td>Punch + Asana</td>
<td>R1</td>
<td>5.9</td>
<td>12.4</td>
<td>.</td>
<td>.</td>
<td>35.2</td>
<td>18.1</td>
<td>12.5</td>
<td>66.7</td>
</tr>
<tr>
<td>Punch + Asana</td>
<td>R3</td>
<td>9.3</td>
<td>13.5</td>
<td>.</td>
<td>.</td>
<td>34.6</td>
<td>18.3</td>
<td>12.3</td>
<td>72.8</td>
</tr>
<tr>
<td>Control</td>
<td>--</td>
<td>7.9</td>
<td>2.3</td>
<td>6.4</td>
<td>694.5833</td>
<td>35.4</td>
<td>17.9</td>
<td>12.4</td>
<td>66.3</td>
</tr>
<tr>
<td>IPM*</td>
<td>--</td>
<td>9.5</td>
<td>15.7</td>
<td>.</td>
<td>539.5833</td>
<td>35.6</td>
<td>17.9</td>
<td>12.1</td>
<td>65.7</td>
</tr>
</tbody>
</table>

*Threshold of 250 aphids/plant; Asana was assigned as the IPM insecticide.