Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model

Zhengchao Tian
Huazhong Agricultural University

Dilia Kool
Iowa State University

Tusheng Ren
China Agricultural University

Robert Horton
Iowa State University, rhorton@iastate.edu

Joshua L. Heitman
North Carolina State University at Raleigh

Follow this and additional works at: https://lib.dr.iastate.edu/agron_pubs

Part of the Agriculture Commons, Hydrology Commons, Soil Science Commons, and the Statistical Models Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/agron_pubs/570. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model

Abstract
The Mualem-van Genuchten model has been widely used for estimating unsaturated soil hydraulic conductivity (K_u) from measured saturated hydraulic conductivity (K_s) and fitted water retention curve (WRC) parameters. Soil bulk density (ρ_b) variations affect the accuracy of K_u estimates. In this study, we extend the Mualem-van Genuchten model to account for the ρ_b effect with ρ_b-related WRC and K_s models. We apply two functions (A and B) that relate the van Genuchten WRC model to ρ_b and two models (1 and 2) that estimate K_s with various ρ_b. By combining the ρ_b-related WRC functions and K_s models, we develop four integrated approaches (i.e., A1, A2, B1, and B2) for estimating K_u at various ρ_b. K_u measurements made on five soils with various textures and ρ_b are used to evaluate the accuracy of the four approaches. The results show that all approaches produce reasonable K_u estimates, with average root mean square errors (RMSEs) less than 0.35 (expressed in dimensionless unit because logarithmic K_u values are used). Approach A2, with an average RMSE of 0.25, agrees better with K_u measurements than does Approach A1 that has an average RMSE of 0.28. This is because Model 2 accounts for the WRC shape effect near saturation. Approaches A1 and A2 give more accurate K_u estimates than do Approaches B1 and B2 which both have average RMSEs of 0.35, because Function A performs better in estimating WRCs than does Function B. The proposed approaches could be incorporated into simulation models for improved prediction of water, solute, and gas transport in soils.

Keywords
soil hydraulic conductivity, water retention curve, Mualem-van Genuchten model, bulk density

Disciplines
Agriculture | Hydrology | Soil Science | Statistical Models

Comments
This is a manuscript of an article published as Tian, Z., Kool, D., Ren, T., Horton, R., Heitman, J.L., Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model, Journal of Hydrology (2019), doi: 10.1016/j.jhydrol.2019.03.027.

Creative Commons License
Creative
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/agron_pubs/570
Accepted Manuscript

Research papers

Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model

Zhengchao Tian, Dilia Kool, Tusheng Ren, Robert Horton, Joshua L. Heitman

PII: S0022-1694(19)30267-7
DOI: https://doi.org/10.1016/j.jhydrol.2019.03.027
Reference: HYDROL 23561

To appear in: *Journal of Hydrology*

Received Date: 9 November 2018
Revised Date: 11 March 2019
Accepted Date: 12 March 2019

Please cite this article as: Tian, Z., Kool, D., Ren, T., Horton, R., Heitman, J.L., Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model, *Journal of Hydrology* (2019), doi: https://doi.org/10.1016/j.jhydrol.2019.03.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model

Zhengchao Tiana,b, Dilia Koolc, Tusheng Rend, Robert Hortonc, and Joshua L. Heitmanb*

a College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

b Department of Crop & Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA

c Department of Agronomy, Iowa State University, Ames, IA 50011, USA

d Department of Soil & Water Sciences, China Agricultural University, Beijing 100193, China

* Corresponding author. (jlheitman@ncsu.edu)
Highlights:

- Soil bulk density variations significantly affect hydraulic conductivity (K_u).
- Parameters in the Mualem-van Genuchten soil K_u model are related to bulk density.
- Four approaches are developed to estimate K_u of soils over a range of bulk densities.
Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model

Abstract

The Mualem-van Genuchten model has been widely used for estimating unsaturated soil hydraulic conductivity (K_u) from measured saturated hydraulic conductivity (K_s) and fitted water retention curve (WRC) parameters. Soil bulk density (ρ_b) variations affect the accuracy of K_u estimates. In this study, we extend the Mualem-van Genuchten model to account for the ρ_b effect with ρ_b-related WRC and K_s models. We apply two functions (A and B) that relate the van Genuchten WRC model to ρ_b and two models (1 and 2) that estimate K_s with various ρ_b. By combining the ρ_b-related WRC functions and K_s models, we develop four integrated approaches (i.e., A1, A2, B1, and B2) for estimating K_u at various ρ_b. K_u measurements made on five soils with various textures and ρ_b are used to evaluate the accuracy of the four approaches. The results show that all approaches produce reasonable K_u estimates, with average root mean square errors (RMSEs) less than 0.35 (expressed in dimensionless unit because logarithmic K_u values are used). Approach A2, with an average RMSE of 0.25, agrees better with K_u measurements than does Approach A1 that has an average RMSE of 0.28. This is because Model 2 accounts for the WRC shape effect near saturation. Approaches A1 and A2 give more accurate K_u estimates than do Approaches B1 and B2 which both have average RMSEs of 0.35, because Function A performs better in estimating WRCs than does Function B. The proposed approaches could be incorporated into simulation models for improved prediction of water, solute, and gas transport in soils.

Keywords: soil hydraulic conductivity, water retention curve, Mualem-van Genuchten model, bulk density.
1. Introduction

Variable soil bulk density (ρ_b, Mg m$^{-3}$) due to human disturbances and environmental effects is an important factor causing temporal and spatial variations in soil hydraulic properties (Sillon et al., 2003; Osunbitan et al., 2005; Zhang et al., 2017; Tian et al., 2018a). A decrease in ρ_b caused by tillage can enhance soil infiltration capacity (Kribaa et al., 2001). After tillage, ρ_b tends to increase with time under the influences of gravity, rainfall and water flow into the soil (Tian et al., 2018b), which results in a substantial decrease in the saturated soil hydraulic conductivity, K_s (Osunbitan et al., 2005). The unsaturated soil hydraulic conductivity (K_u) response to ρ_b variation induced by traffic compaction or tillage was shown to exhibit complex behaviors in space and time (Strudley et al., 2008; Alletto and Coquet, 2009). Swelling and shrinkage of clay minerals alter ρ_b along with the pore system; this has been shown to have significant effects on soil water retention characteristics (Gregory et al., 2010; Salager et al., 2010). Irrigation, root growth, drying and wetting cycles, and freezing and thawing processes were also observed to alter ρ_b and soil hydraulic properties (Benson and Othman, 1993; Kodešová et al., 2006; Strudley et al., 2008; Bodner et al., 2013; Zhang et al., 2017).

Obtaining accurate measurements of soil hydraulic properties, especially K_u, is generally difficult, costly, and time-consuming. Wind (1966) introduced an approach for measuring K_u by using evaporation experiments in the laboratory. Schindler (1980) developed a simplified evaporation method for determining K_u. In the field, Ankeny et al. (1990) introduced a simple method to determine K_u through infiltration experiments. In addition, in-situ K_u dynamics can be estimated by combined use of heat pulse and water potential sensors (Tian et al., 2018a). More commonly, K_u is estimated using soil water retention parameters and K_s measurement, based on relative hydraulic conductivity models (Burdine, 1953; Mualem, 1976; van Genuchten, 1980;
Taking into account the effects of ρ_b in the K_u estimation models is increasingly important for improved simulation of water, solute, and gas transport in soils (Vereecken et al., 2016).

To account for the effect of ρ_b in hydraulic conductivity estimation models, the K_s value and soil water retention parameters should be related to ρ_b. Several approaches have been developed to relate K_s to ρ_b or the total soil porosity (Mualem and Assouline, 1989; Or et al., 2000; Flint and Selker, 2003; Assouline, 2006a; Guarracino, 2007; Assouline and Or, 2008). The K_s values under different ρ_b conditions can be estimated with ρ_b-related models based on the Kozeny-Carman equation (Or et al., 2000). Mualem and Assouline (1989) estimated soil K_s with various ρ_b by using a water retention curve (WRC) function and a K_s measurement at a reference ρ_b. This method performed well when combined with the Brooks and Corey (1964) and Assouline et al. (1998) WRC models (Assouline, 2006a). Methods for modeling the relationship between ρ_b and soil water retention parameters have also been reported (Ahuja et al., 1998; Assouline, 2006b). Assouline (2006b) introduced approaches that correlate the Brooks and Corey (1964) and Assouline et al. (1998) model parameters to ρ_b. The studies of Assouline (2006a, 2006b) have made it possible to estimate K_u for soils at different ρ_b values through a joint use of the ρ_b-related K_s estimates and water retention parameters.

In terms of soil water flow simulation, the Mualem-van Genuchten (1980) hydraulic conductivity estimation model has been widely used (Jansson, 1998; Šimůnek et al., 2005). There is a need to relate the Mualem-van Genuchten (1980) model parameters to ρ_b for an improved understanding of water transport in dynamic soil systems. Tian et al. (2018c) related the parameters used in the van Genuchten (1980) WRC model to ρ_b using a series of ρ_b-related empirical functions. Two approaches for estimating WRCs of soils at various ρ_b values were
developed by Tian et al. (2018c). The Mualem and Assouline (1989) method has the potential to be combined with the van Genuchten (1980) WRC function for estimating K_s of soils at various ρ_b, but it has not been evaluated with measured K_s values. The Tian et al. (2018c) approaches and the Mualem and Assouline (1989) method are promising for application to the Mualem-van Genuchten (1980) hydraulic conductivity estimation model for taking into account the effect of ρ_b.

The objectives of this study are to: (1) relate the Mualem-van Genuchten (1980) soil hydraulic conductivity estimation model parameters to ρ_b; (2) introduce four approaches to estimate K_u for soil over a range of ρ_b values; and (3) evaluate and compare the performance of the four approaches for estimating K_u using measured values.

2. Materials and Methods

2.1 Model development

The Mualem-van Genuchten model has been widely used for describing soil hydraulic properties (van Genuchten, 1980). In this model, the soil WRC is expressed by

\[
S = \begin{cases}
\frac{\theta - \theta_r}{\theta_s - \theta_r} \left[\frac{1}{1 + (\alpha |\psi|)^n} \right]^m, & \psi \leq 0 \\
1, & \psi > 0
\end{cases}
\]

(1)

where S is the effective degree of saturation, θ is the volumetric soil water content (m3 m$^{-3}$) at soil water matric potential ψ (kPa), θ_r and θ_s are the residual and saturated water contents (m3 m$^{-3}$), respectively, and α (kPa$^{-1}$), n, and m are empirical shape parameters, in which m is commonly expressed as $m = 1 - 1/n$ to derive a closed-form solution for the Mualem (1976) relative hydraulic conductivity model.

The Mualem-van Genuchten (1980) hydraulic conductivity function is given as follows,
\[K(S) = \begin{cases} K'S^L \left[1 - (1 - S^{n/(n-1)})^{1-1/n} \right]^2 & \psi \leq 0 \\ K' & \psi > 0 \end{cases} \] (2)

where \(K \) is the hydraulic conductivity (mm h\(^{-1}\)), \(K' \) is a matching point at saturation (mm h\(^{-1}\)), and \(L \) is an empirical pore-connectivity parameter. A measured \(K_s \) is commonly used for \(K' \), while \(L \) is fixed at 0.5 (Mualem, 1976). The \(K_u-\theta \) or \(K_u-\psi \) relationship is obtained by combining Eqs. (1) and (2).

Variation in \(\rho_b \) can have a significant effect on the estimation of \(K_u \) (Assouline, 2006a). Thus, it is necessary to relate the Mualem-van Genuchten (1980) model to \(\rho_b \) for improved prediction of water movement in soil systems with spatially- and/or temporally-variable \(\rho_b \). Tian et al. (2018c) extended the four parameters in Eq. (1) to account for the \(\rho_b \) dependence with the following equations,

\[\theta_s = \left(\frac{\rho_s - \rho_b}{\rho_s - \rho_{bo}} \right) \theta_{s0} \] (3)

\[\theta_r = \frac{\rho_b}{\rho_{bo}} \theta_{r0} \] (4)

\[\alpha = \alpha_0 \left(\frac{\rho_b}{\rho_{bo}} \right)^{-3.97} \] (5)

where the subscript 0 refers to parameters under a reference \(\rho_b \) condition, and \(\rho_s \) is the soil particle density (Mg m\(^{-3}\)). A linear relationship between parameter \(n \) and \(\rho_b \) has been reported by several studies (Assouline et al., 1997; Fu & Shao, 2007; Jiang et al., 2017),

\[n = a \rho_b + b \] (6A)

where \(a \) and \(b \) are empirical parameters that vary with soil type. To obtain \(a \) and \(b \), at least two \(n \) values at two reference bulk densities are needed. Tian et al. (2018c) observed a relatively moderate relationship (compared to the linear relationship) between \(n \) and \(\rho_b \) as follows,
\[n = 1 + (n_0 - 1) \left(\frac{\rho_b}{\rho_{b0}} \right)^{-0.97+1.28f_{\text{silt}}/f_{\text{clay}}} \]

(6B)

where \(f_{\text{silt}}/f_{\text{clay}} \) is the ratio between the soil silt content and clay content that are determined according to the USDA soil textural classification, and \(n_0 \) is the fitted \(n \) value at the reference \(\rho_{b0} \) condition. Unlike Eq. (6A), Eq. (6B) estimates \(n \) values at various \(\rho_b \) using only one reference \(n_0 \) value, and thus it has the advantage of simplicity.

By substituting Eqs. (3) - (6) into Eq. (1), the van Genuchten (1980) WRC model is extended to take into account the effects of \(\rho_b \). To simplify the expression of the model function, we set the value of \(\rho_{b0} \) to be 1.0 Mg m\(^{-3}\), then the \(\rho_b \)-related Eq. (1) is normalized as follows,

\[
S = \begin{cases}
\frac{\theta - \rho_b \theta_{r0}}{(\rho_s - \rho_b \theta_{r0})} & \text{if } \Psi < 0 \\
\frac{1}{1 + (\rho_b^{-3.97} a_0 |\Psi|)^n} & \text{if } \Psi > 0
\end{cases}
\]

(7)

where \(n \) is expressed as Eq. (6A) or Eq. (6B) with \(\rho_{b0} = 1.0 \text{ Mg m}^{-3} \). Note, \(\rho_b \), \(\rho_{b0} \), and \(\rho_s \) in Eq. (7) are assumed to be unitless parameters to make units match.

The \(K_s \) also varies with \(\rho_b \) (Jabro, 1992). After comparing eight different models that related \(K_s \) to \(\rho_b \), Assouline (2006b) concluded that the following Kozeny–Carman equation-based model had the best agreement with \(K_s \) measurements.

\[
K_s = K_{s0} \left(\frac{\eta}{\eta_0} \right)^{3} \left(\frac{\rho_b}{\rho_{b0}} \right)^{\delta-7}
\]

(8)

where \(\eta = 1 - \rho_b/\rho_s \) is the soil total porosity, and \(\delta \) is an empirical parameter. Assouline (2006b) observed that \(\delta = 4 \) gave the best overall agreement with the \(K_s \) measurements for soils used in his study. \(K_{s0} \) and \(\eta_0 \) are parameters under the reference \(\rho_{b0} \) condition. By setting \(\rho_{b0} \) to 1.0 Mg m\(^{-3}\), Eq. (8) is normalized as
\[K_s = K_{s0} \left(\frac{\rho_s - \rho_b}{\rho_s - 1} \right)^3 \rho_b^{-3} \]

(9)

In addition, Mualem and Assouline (1989) developed a semi-theoretical model to estimate \(K_s \) under various \(\rho_b \) conditions using soil WRC model functions,

\[K_s = K_{s0} \left(\frac{\theta_s - \theta_r}{\theta_s - \theta_{r0}} \right)^{L+2} \left(\int_0^1 \frac{1}{|\psi|^{-1} dS(\psi)} \right)^2 \]

(10)

where \(S(\psi) \) represents a WRC model function (e.g., the Brooks and Corey (1964) model) and \(S_0 \) is the effective degree of saturation at the reference \(\rho_{b0} \). The empirical pore-connectivity parameter \(L = 0.5 \), also used in Eq. (2), is adopted in Eq. (10). Assouline (2006a) combined Eq. (10) with the Brooks and Corey (1964) and the Assouline et al. (1998) WRC functions for estimating soil \(K_s \) of at various \(\rho_b \) values. In the present study, the van Genuchten (1980) WRC function is applied to this model. By substituting Eqs. (1), (3), and (4) into Eq. (10), performing integration (details about the integral calculation are shown in the Appendix), and setting \(\rho_{b0} \) to 1.0 Mg m\(^{-3}\), we derive a new \(K_s \) model as follows,

\[K_s = K_{s0} \left(\frac{\rho_s - \rho_b}{\rho_s - \rho_{b0}} \theta_{s0} - \theta_{r0} \theta_{r0} \right)^{2.5} \rho_b^{-3.97+2} \]

(11)

2.2 Approaches for estimating \(K_u \) for soils at various \(\rho_b \) values

So far, we have introduced two van Genuchten WRC functions (i.e., Eqs. (7) + (6A) and Eqs. (7) + (6B), designated as Function A and Function B, respectively) that relate model parameters to \(\rho_b \) and two \(K_s \) models (i.e., Eqs. (9) and (11), designated as Model 1 and Model 2, respectively) that include \(\rho_b \) as a variable. Tian et al. (2018c) indicated that Function A gave more accurate WRC estimates than did Function B, while Function B had the advantage of simplicity over Function A. Model 1 was developed based on the Kozeny–Carman equation, while Model 2
included WRC model functions as variables. By combining these WRC functions and K_s models with Eq. (2), we obtained the following four approaches that can be used to estimate K_u for soils at various ρ_b values: Approaches A1 (Eq. 2+Function A and Model 1), A2 (Eq. 2+Function A and Model 2), B1 (Eq. 2+Function B and Model 1), and B2 (Eq. 2+Function B and Model 2).

Water retention curve parameters and K_{s0} value at the reference ρ_{b0} of 1.0 Mg m$^{-3}$ are required for the proposed approaches, but they can be obtained using measurements made on samples with any known ρ_b. For example, parameters θ_{s0} and θ_{r0} at ρ_{b0} of 1.0 Mg m$^{-3}$ can be calculated from θ_s and θ_r measurements on soil samples with a known ρ_b by solving Eqs. (3) and (4). Note, considering that θ_r is the water content at which soil K_u approaches zero, we set θ_r as the θ determined at -1500 kPa following Tian et al. (2018c). When θ measurements at -1500 kPa are not available, the best-fit values are used.

For Function A, three unknown parameters α_0, a and b are obtained by fitting Eqs. (6A) + (7) to WRC measurements simultaneously with the least-squares method. For a specific soil, both a and b rely on ρ_b, thus at least two WRC curves at two markedly different ρ_b values are required to derive the best-fit a and b values (Tian et al., 2018c). For Function B, n depends on ρ_b and soil texture (f_{silt}/f_{clay}). Thus, unknown parameters α_0 and n_0 can be obtained by fitting Eqs. (6B) + (7) to one WRC measurement at a known ρ_b value (Tian et al., 2018c). In this case, ρ_b can be any specific value.

The K_s at the required ρ_b condition can be directly calculated with Eq. (8) or Eq. (10) from a K_s measurement with a known ρ_b or it can be obtained by using the normalized K_s model (Eq. 9 or 11). The K_{s0} in Eq. (9) is estimated from the K_s measurement at a known ρ_b by solving Eq. (9). Likewise, the K_{s0} in Eq. (11) can be estimated from θ_{s0} and θ_{r0} estimates and a K_s measurement made on soil with a known ρ_b by solving the equation.
2.3 Experimental validation

To evaluate the performance of the four approaches for estimating soil K_u with variable ρ_b, the measurements of K_s, K_u, and WRC made on five soils with different textures and ρ_b values were used as validation datasets. Table 1 presents the basic physical properties of the soils. The datasets of soils 1-3 were from Laliberte et al. (1966) who measured the main drying WRCs of the soils at three or four ρ_b values, and the K_s and $K_u(\psi)$ values were determined at another five ρ_b conditions (Table 1). The different ρ_b conditions were achieved by packing soil columns with a vibrating device.

For soils 4 and 5, we measured the WRC, K_s and $K_u(\psi)$ values at various ρ_b values (Table 1). The soil samples were air-dried, passed through a 2-mm screen, mixed with predetermined amounts of water, and then packed uniformly into stainless-steel containers at different ρ_b values. The WRCs of soils 4 and 5 were determined at a range of ψ values (-0.5, -1, -2, -4, -6, -8, and -10 kPa) with a tension table (Eijkelkamp, Giesbeek, the Netherlands), and at -30, -50, -100, -500, and -1500 kPa with a pressure plate apparatus (Soilmoisture Equipment Corp., Santa Barbara, CA). These WRCs have been reported in Tian et al. (2018c). The K_s of soil samples at different ρ_b were determined by using the constant head method (Klute and Dirksen, 1986). Three replicated WRC and K_s measurements were made for each soil and each ρ_b. The $K_u(\psi)$ curves of soils 4 and 5 were determined with a HYPROP device (UMS GmbH, Munich, Germany) following the simplified evaporation method (Schindler, 1980; Peters et al., 2005).

The WRCs at the lowest and highest ρ_b values (Table 1) were applied to calculate the θ_{s0} and θ_{r0}, and to obtain the best-fit a_0, a, and b values in Approaches A1 and A2. The a_0 and n_0 values in Approaches B1 and B2 were obtained by fitting Eqs. (6b) + (7) to the WRC measurements at the lowest ρ_b. Then, WRC parameters at the ρ_b for determining K_u were estimated using the
proposed functions. The K_{s0} values in Eqs. (9) and (11) were determined by using a K_s measurement at a known ρ_b. Substantial variation usually occurred in K_s measurements on the same soil (van Genuchten et al., 1991). In consideration of this variability, all K_s measurements at different ρ_b were applied for the calculation of K_{s0}, and the average values were used to estimate K_u. The $K_u(\psi)$ values for each soil at different ρ_b were then estimated accordingly and compared with the measured data. The root mean square error (RMSE) and bias between the estimated and measured K_u values were used to evaluate the performance of the approaches.

$$\text{RMSE} = \sqrt{\frac{\sum (\log_{10} K_u(\text{estimated}) - \log_{10} K_u(\text{measured}))^2}{N}}$$ (12)

$$\text{Bias} = \frac{\sum (\log_{10} K_u(\text{estimated}) - \log_{10} K_u(\text{measured}))}{N}$$ (13)

where N is the number of data points. Logarithmic values of K_u were used in Eqs. (12) and (13) to avoid deviations toward high conductivities in the wet range. The RMSE and bias are presented as dimensionless numbers because logarithmic conductivity values were used.

We also calculated the best-fit K_s values to evaluate the performance of Models 1 and 2 for estimating K_s. The best-fit K_s was obtained by fitting Eq. (2), in which the parameters S and n were estimated using Function A, to measured $K_u(\psi)$ values using the least squares method. The goodness of fit was quantified with the RMSE between estimated and measured K_u values. The best-fit K_s represents the most suitable value for the matching point at saturation, i.e. K' in Eq. (2).

3. Results and Discussion

3.1 Soil WRC estimates at various ρ_b values
Fig. 1 presents the WRC estimates of the five soils using Function A and Function B. Instead of the conventional θ-ψ relationship, the WRCs presented here show ψ as a function of S because the $K_s(\psi)$ estimations are needed in this study, and thus only the $S(\psi)$ term in Eq. (7) is necessary. The ρ_b variation had a significant effect on the shape of the WRC estimates. In general S of soils at relatively low ρ_b values changed over ψ more considerably, compared to those of soils at relatively high ρ_b values, in the near-saturation ψ range. However, the changes of the $S(\psi)$ curve shape showed opposite trends in mid-range ψ (Fig. 1). In terms of WRCs from different estimation functions, Function B gave slightly higher S than did Function A in the wetter range of the WRCs, but the opposite trend was observed in the drier range of the WRCs. For soils 1-3, most of the water was drained at relatively large $\psi (> -30 \text{ kPa})$, and the two functions produced quite similar WRCs except on samples with the lowest ρ_b values. For soils 4 and 5, the full-range (0 to -1500 kPa) WRCs were measured, the WRCs estimated with Function A differed considerably from that of Function B when S decreased rapidly with the reduction of ψ. Tian et al. (2018c) showed that Function A produced more accurate WRC estimates than did Function B in most cases, which was caused by the fact that Function A used reference measurements on samples at two different ρ_b values, whereas Function B used only one WRC measurement. Conversely, Function B has the advantage of being less time consuming for data collection as compared to Function A, and it is preferred when limited WRC measurements are available.

3.2 Soil K_s estimates at various ρ_b values

Fig. 2 shows the measured, best-fit, and estimated (using Models 1 and 2) K_s values as a function of ρ_b for the five soils. The ρ_b variation had a significant effect on K_s measurements. Generally, K_s decreased with increasing ρ_b, and K_s of soils at the highest and lowest ρ_b values differed by up to one order of magnitude (Fig. 2). The ρ_b also affected the accuracy of the best-fit
K_s values. For samples with relatively high ρ_b, the best-fit K_s values were close to measured K_s; for samples with relatively low ρ_b, however, the best-fit K_s values were greater than measured ones (Fig. 2). Some studies reported that the measured K_s might not be the optimal K' for estimating K_u with the original Mualem-van Genuchten model (Schaap et al., 2001; Schaap and van Genuchten, 2006). Other studies pointed out that the measured K_s should be fixed at a small negative value of the pressure head because Eq. (2) failed to capture the macro-pore flow (Luckner et al., 1989; Vogel and Cislerova, 1988), and the $K_u(\psi)$ curve estimated with the original Mualem-van Genuchten model could exhibit an abrupt drop at water contents just below saturation when the change of the WRC shape near saturation was significant (Vogel et al., 2000). In other words, the best-fit K_s at saturation could be substantially greater than the measured K_s when the shape of the WRC changed considerably at matric potentials near saturation. This was evident in Fig. 1: in the near saturation range of the WRCs, the degree of saturation S declined quickly with ψ for soil samples with relatively low ρ_b, while the S changes were relatively small for soil samples with relatively high ρ_b. Consequently, the curve fitting procedure overestimated K_s at low ρ_b values due to significant changes in the WRC shape near saturation.

Fig. 2 also shows that Models 1 and 2 give quite different K_s estimates, especially in the small ρ_b value range. The Model 1-estimated K_s curves (black solid lines) were in good agreement with K_s measurements for the five soils (on average, RMSE = 0.08). This was also confirmed by Assouline (2006a) in which Model 1 gave the most accurate K_s estimates compared to measured K_s values among eight different models. The Model 2-estimated K_s curves (red solid lines) were close to measured K_s at large ρ_b values, but they deviated from measurements at small ρ_b values.
(RMSE = 0.20). Thus, Model 1 estimated K_s values were closer to K_s measurements than were Model 2 estimates.

When comparing with best-fit K_s values, alternately, Model 2 produced more accurate estimates (RMSE = 0.29) than did Model 1 (RMSE = 0.37). Model 2 better accounted for the shape effect of WRCs near saturation at low ρ_b values than did Model 1. This is reasonable because Model 2 is developed based on the WRC model function (see Eq. 10), and the shape effect is included by substitution of Eq. (1) into Eq. (10).

It should be noted that the reference K_{s0} is a key factor in determining K_s as a function of ρ_b using Model 2. The dashed lines in Fig. 2 are the estimated K_s curves using K_{s0} derived from each single K_s measurement at different ρ_b values. When a K_s measurement was close to the best-fit K_s at the same or similar ρ_b, the K_s curves based on this K_s measurement approached the other best-fit K_s values at different ρ_b values. The optimal K_s measurements for calculating K_{s0} using Model 2 were those made on samples with relatively high ρ_b values. The ρ_b value should be greater than 1.5 Mg m$^{-3}$ for coarse-texture soils (e.g., soils 1 and 4), and greater than 1.3 Mg m$^{-3}$ for fine-texture soils (e.g., soils 2, 3, and 5). In consideration of the large variability of K_s measurements, multiple measurements over a wide range of ρ_b are preferred for calculating K_{s0} in Model 2. In our study, the K_s curves derived from the average K_{s0} values (the solid red lines in Fig. 2) were used in the estimation of K_u, although they might not be the optimal values for all soils. This was similar to the approach of Model 1, where average K_{s0} values were used.

3.3 Soil K_u estimates at various ρ_b values

Four approaches, which combine two WRC functions and two K_s models, were used to estimate K_u of the five soils at various ρ_b values. Fig. 3 compares the estimated K_u versus measured K_u values using Approach A1. The RMSE and bias values between estimated and
measured K_u values at a specific ρ_b are listed in Table 2. On the whole, Approach A1 gave accurate K_u estimation for soils 1-4, with average RMSE ranged from 0.17 to 0.34, and average bias ranged from -0.23 to 0.09. On soil 5, however, Approach A1 generally underestimated K_u under all three ρ_b conditions, with an average RMSE of 0.89 and an average bias of -0.71. The underestimation was especially clear in the low K_u range. The results in Fig. 3 and Table 2 also indicate that compared to measurements, Approach A1 tends to give lower K_u values under the relatively low ρ_b range, but no consistent trends are observed in the relatively high ρ_b range. This happened because Approach A1 used Model 1 for estimating K_s, and the estimations were generally lower than the best-fit K_s values under relatively low ρ_b conditions (Fig. 2).

Although the Mualem-van Genuchten (1980) hydraulic conductivity model has been used extensively, it has several limitations when the default K' and $L = 0.5$ are used in Eq. (2). In the present study, L was taken as 0.5, an optimal value obtained from a data set of 45 disturbed and undisturbed samples (Mualem, 1976). Several studies have indicated that L varied over a wide range, and it could be negative (Yates et al., 1992; Schuh and Cline, 1990; Leij et al., 1997; Schaap and Leij, 2000). Schaap and Leij (2000) showed that using $L = -1$ produced more accurate K_u estimates for a data set of 235 soil samples than did $L = 0.5$. Fig. 4 evaluates the effects of parameter L on the original Mualem-van Genuchten (1980) model, in which measured K_s at ρ_b of 1.09 Mg m$^{-3}$ and WRC parameters at ρ_b of 1.10 Mg m$^{-3}$ (Table 1) were used to estimate K_u of soil 5 at ρ_b of 1.13 Mg m$^{-3}$. For the original Mualem-van Genuchten (1980) model, it was observed that $L = -1$ is a more suitable model parameter than $L = 0.5$ for soil 5 (Fig. 4). Similarly, setting $L = -1$ (instead of $L = 0.5$) in the ρ_b-related model (Approach A1) improved the accuracy of estimates for soil 5 (Fig. 3). The average RMSE was decreased from 0.89 to 0.35 and the average bias changed from -0.71 to -0.02 (Table 2). Thus, for soil 5, using an L value of -
Approach A1 produced more accurate K_u estimates than did using $L = 0.5$. It is difficult to determine which L is optimal for a specific soil because L is affected by soil texture and several other physical properties (Schaap and Leij, 2000). Despite this, our results showed that using the same L in the ρ_b-related model produced accurate K_u estimates when the L value was suitable for the original Mualem-van Genuchten (1980) model (i.e., the model not accounting for ρ_b effects).

A comparison between measured and estimated K_u values using Approach A2 for the five soils is presented in Fig. 5. Except for soil 5, the estimated K_u values agreed well with the K_u measurements. Similar to that of Approach A1, taking $L = -1$ (instead of the default $L = 0.5$) improved the accuracy of Approach A2 significantly on soil 5: the average RMSE decreased from 0.78 to 0.25, and the average bias changed from -0.65 to -0.01. Further analysis showed that Approach A2 produced better K_u estimates as indicated by the lower (on soils 1, 2, 4, and 5) or the same (on soil 3) average RMSEs compared to those of Approach A1 (Table 2). This is because Approach A2 accounted for the shape effect of WRCs near saturation under relatively low ρ_b conditions for most soils. Across the five soils, Approach A2 gave K_u estimates with an average RMSE and an average bias of 0.25 and -0.03, respectively.

The measured K_u data versus estimated K_u values using Approaches B1 and B2 are presented in Figs. 6 and 7, respectively. In both cases, the WRC parameters were obtained by using Function B in which soil texture data and one WRC measurement were used. Tian et al. (2018c) indicated that Function B gave less accurate WRC estimates than did Function A. Consequently, the K_u values from Approaches B1 and B2 had larger average RMSE values (0.35 for both approaches) on all five soils than did those from Approaches A1 and A2 (average RMSE values of 0.28 and 0.25, respectively; Table 2). No consistent difference was observed between Approaches B1 and B2. On soils 1, 2, and 5, approach B2 gave more accurate K_u estimates than
did Approach B1, especially under relatively low ρ_b conditions. On soils 3 and 4, however, Approach B1 produced K_u data with lower average RMSE than did those from Approach B2.

In summary, among the four approaches, Approach A2 performed the best, followed by Approach A1, and both gave more accurate results than did Approaches B1 and B2. On the other hand, Approaches B1 and B2 required fewer WRC measurements for estimation of model parameters, which might be an advantage in some situations where the cost or availability of data collection is an important issue. For all four approaches, the accuracy of WRC estimates was a key factor that determined the accuracy of K_u estimates, especially in the lower K_u range. Besides, we observed that parameter L played a critical role in estimating K_u with the Mualem-van Genuchten model. The default L of 0.5 was reasonable for soils 1-4, while an L of -1 was better for soil 5. Thus, future studies are required to further improve the model accuracy by introducing soil-specific L values or texture-dependent L models.

4. Conclusion

Changes in ρ_b affect the accuracy of the Mualem-van Genuchten (1980) K_u-estimation model. In this study, we applied two functions for relating WRC parameters to ρ_b and two models for correlating K_s with ρ_b. By assembling the functions and models, four approaches were developed to estimate K_u of soils at various ρ_b values. Evaluation using K_u measurements on five soils showed that among the four approaches, Approach A2 gave the most accurate K_u estimates for all soils. Approach A1 produced less accurate K_u estimates compared to Approach A2, but performed better than did Approaches B1 and B2. Approach A2 performed better than did Approach A1 because the K_s-estimation model used in Approach A2 accounted for the shape effect of WRC near saturation under relatively low ρ_b. Approaches A1 and A2 gave more accurate K_u estimates than did Approaches B1 and B2 because more accurate WRC estimates
were used. On the whole, all four approaches gave reasonable K_u estimates with average RMSEs lower than 0.35. Thus, the approaches developed herein have potential for improving simulation of transient and variable soil water, solute, and gas transport processes that depend on ρ_b.
Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities of China, the US Army Research Laboratory (W911NF-16-1-0287), the US National Science Foundation (1623806), and the USDA-NIFA multi-State Project 3188. The views and conclusions contained in this paper are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsors.
Appendix

Inverse solution of Eq. (1) gives,

$$|\psi|^{-1} = \alpha \left(S^{-1/m} - 1 \right)^{-1/n} \quad (A1)$$

Substitution of $S = x^m$ into the integrals of Eq. (10) leads to

$$\int_0^1 |\psi|^{-1} dS(\psi) = \alpha \int_0^1 mx^{m-1}(x^{-1} - 1)^{-1/n} \, dx \quad (A2)$$

Since $m = 1 - 1/n$, so,

$$\int_0^1 |\psi|^{-1} dS(\psi) = \alpha \int_0^1 m(1 - x)^{m-1} \, dx \quad (A3)$$

Substitution of $x = 1 - y$ into Eq. (A3) leads to

$$\int_0^1 |\psi|^{-1} dS(\psi) = \alpha \int_0^1 -my^{m-1} \, dy = \alpha \quad (A4)$$

Thus, the ratio of the two integrals in Eq. (10) is

$$\frac{\int_0^1 |\psi|^{-1} dS(\psi)}{\int_0^1 |\psi|^{-1} dS_0(\psi)} = \frac{\alpha}{\alpha_0} = \left(\frac{\rho_b}{\rho_{bo}} \right)^{-3.97} \quad (A5)$$
References

Table 1. Texture, particle-size distribution, particle density (ρ_s), bulk density (ρ_b), and saturated hydraulic conductivity (K_s) of the soils used for predicting unsaturated hydraulic conductivity (K_u).

<table>
<thead>
<tr>
<th>ID</th>
<th>Texture</th>
<th>Particle-size distribution</th>
<th>ρ_s</th>
<th>ρ_b (for WRC)</th>
<th>ρ_b (for K_s)</th>
<th>Measured K_s</th>
<th>ρ_b (for K_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sand</td>
<td>90 6 4</td>
<td>2.71</td>
<td>1.50 1.52 1.53 1.56</td>
<td>1.46 1.48 1.51 1.53</td>
<td>2270 2420 2210 2100</td>
<td>1.46 1.48 1.51 1.53</td>
</tr>
<tr>
<td>2</td>
<td>Sandy loam</td>
<td>54 35 11</td>
<td>2.66</td>
<td>1.22 1.28 1.34 1.44</td>
<td>1.18 1.26 1.37 1.41</td>
<td>48 31 16 12</td>
<td>1.18 1.26 1.37 1.41</td>
</tr>
<tr>
<td>3</td>
<td>Silt loam</td>
<td>32 53 15</td>
<td>2.60</td>
<td>1.32 1.40 1.48 1.47</td>
<td>1.29 1.36 1.43 1.47</td>
<td>14 11 6 8</td>
<td>1.29 1.36 1.43 1.47</td>
</tr>
<tr>
<td>4</td>
<td>Loamy sand</td>
<td>85 9 6</td>
<td>2.65</td>
<td>1.44 1.50 1.57 1.70</td>
<td>1.53 1.64 1.57 1.77</td>
<td>53 67 4 26</td>
<td>1.48 1.56 1.67 1.77</td>
</tr>
<tr>
<td>5</td>
<td>Silt loam</td>
<td>17 57 26</td>
<td>2.65</td>
<td>1.09 1.19 1.29 1.38</td>
<td>1.10 1.21 1.30 1.41</td>
<td>151 125 44 33</td>
<td>1.13 1.24 1.41 1.41</td>
</tr>
</tbody>
</table>
Table 2. The root mean square error (RMSE) and bias between Approaches A1, A2, B1, and B2 estimated and measured unsaturated hydraulic conductivity values of the five soils used in this study.

<table>
<thead>
<tr>
<th>ID</th>
<th>Texture</th>
<th>(\rho_b) (Mg m(^{-3}))</th>
<th>Approach A1</th>
<th>Approach A2</th>
<th>Approach B1</th>
<th>Approach B2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSE</td>
<td>bias</td>
<td>RMSE</td>
<td>bias</td>
<td>RMSE</td>
</tr>
<tr>
<td>1</td>
<td>Sand</td>
<td>1.46</td>
<td>0.40</td>
<td>-0.33</td>
<td>0.33</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.48</td>
<td>0.52</td>
<td>-0.43</td>
<td>0.48</td>
<td>-0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.51</td>
<td>0.28</td>
<td>-0.07</td>
<td>0.28</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.53</td>
<td>0.35</td>
<td>-0.25</td>
<td>0.37</td>
<td>-0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.58</td>
<td>0.16</td>
<td>-0.06</td>
<td>0.21</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.34</td>
<td>-0.23</td>
<td>0.33</td>
<td>-0.22</td>
<td>0.41</td>
</tr>
<tr>
<td>2</td>
<td>Sandy loam</td>
<td>1.18</td>
<td>0.51</td>
<td>-0.40</td>
<td>0.31</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.26</td>
<td>0.24</td>
<td>-0.18</td>
<td>0.15</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.37</td>
<td>0.15</td>
<td>0.01</td>
<td>0.15</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.41</td>
<td>0.17</td>
<td>0.01</td>
<td>0.21</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.47</td>
<td>0.24</td>
<td>0.10</td>
<td>0.29</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.26</td>
<td>-0.09</td>
<td>0.22</td>
<td>-0.07</td>
<td>0.30</td>
</tr>
<tr>
<td>3</td>
<td>Silt loam</td>
<td>1.29</td>
<td>0.21</td>
<td>-0.15</td>
<td>0.23</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.36</td>
<td>0.18</td>
<td>-0.06</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.43</td>
<td>0.11</td>
<td>0.07</td>
<td>0.14</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.50</td>
<td>0.15</td>
<td>0.09</td>
<td>0.12</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.57</td>
<td>0.22</td>
<td>0.16</td>
<td>0.17</td>
<td>-0.09</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.17</td>
<td>0.02</td>
<td>0.17</td>
<td>0.07</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>Loamy sand</td>
<td>1.48</td>
<td>0.35</td>
<td>-0.25</td>
<td>0.25</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.56</td>
<td>0.23</td>
<td>-0.04</td>
<td>0.26</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.67</td>
<td>0.25</td>
<td>0.07</td>
<td>0.26</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.28</td>
<td>-0.07</td>
<td>0.25</td>
<td>0.08</td>
<td>0.41</td>
</tr>
<tr>
<td>5</td>
<td>Silt loam</td>
<td>1.13</td>
<td>1.37</td>
<td>-1.31</td>
<td>0.98</td>
<td>-0.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.24</td>
<td>0.67</td>
<td>-0.63</td>
<td>0.55</td>
<td>-0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.41</td>
<td>0.64</td>
<td>-0.20</td>
<td>0.82</td>
<td>-0.55</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.89</td>
<td>-0.71</td>
<td>0.78</td>
<td>-0.65</td>
<td>0.98</td>
</tr>
<tr>
<td>5</td>
<td>Silt loam</td>
<td>1.13</td>
<td>0.44</td>
<td>-0.39</td>
<td>0.26</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>((L = -1))</td>
<td>1.24</td>
<td>0.12</td>
<td>-0.02</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.41</td>
<td>0.49</td>
<td>0.36</td>
<td>0.36</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.35</td>
<td>-0.02</td>
<td>0.25</td>
<td>-0.01</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>Average*</td>
<td>0.28</td>
<td>-0.08</td>
<td>0.25</td>
<td>-0.03</td>
<td>0.35</td>
</tr>
</tbody>
</table>

* Average of all five soils (for soil 5, \(L = -1\)) as a whole.
Fig. 1. Estimated relationships between degree of saturation (S) and water matric potential (ψ) for five soils at various bulk densities (values listed in legend) based on Functions A and B.
Fig. 2. Estimated saturated hydraulic conductivity (K_s) for five soils as a function of soil bulk density (ρ_b) using Model 1 and 2 (average K_{s0} values were used). Measured and best-fit K_s values were also included in the figure. Dashed lines were Model 2 estimates using K_{s0} from each K_s measurement at various ρ_b values.
Fig. 3. Approach A1 estimated unsaturated hydraulic conductivity (K_u) for five soils at various bulk densities (values listed in legend) compared with corresponding measured data. For soil 5, parameter $L = -1$ was also tested.
Fig. 4. Comparison of measured unsaturated hydraulic conductivity (K_u) of soil 5 at bulk density of 1.13 Mg m$^{-3}$ to original Mualem-van Genuchten model estimated K_u with both $L = 0.5$ and -1.
Fig. 5. Approach A2 estimated unsaturated hydraulic conductivity (K_u) for five soils at various bulk densities (values listed in legend) compared with corresponding measured data. For soil 5, parameter $L = -1$ was also tested.
Fig. 6. Approach B1 estimated unsaturated hydraulic conductivity (K_u) for five soils at various bulk densities (values listed in legend) compared with corresponding measured data. For soil 5, parameter $L = -1$ was also tested.
Fig. 7. Approach B2 estimated unsaturated hydraulic conductivity (K_u) for five soils at various bulk densities (values listed in legend) compared with corresponding measured data. For soil 5, parameter $L = -1$ was also tested.
Highlights:

- Soil bulk density variations significantly affect hydraulic conductivity (K_u).
- Parameters in the Mualem-van Genuchten soil K_u model are related to bulk density.
- Four approaches are developed to estimate K_u of soils over a range of bulk densities.