A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi- Atomic Orbitals. II. Strongly Correlated MCSCF Wave Functions

Thumbnail Image
Supplemental Files
Date
2015-09-01
Authors
West, Aaron
Schmidt, Michael
Gordon, Mark
Ruedenberg, Klaus
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

A methodology is developed for the quantitative identification of the quasi-atomic orbitals that are embedded in a strongly correlated molecular wave function. The wave function is presumed to be generated from configurations in an internal orbital space whose dimension is equal to (or slightly larger) than that of the molecular minimal basis set. The quasi-atomic orbitals are found to have large overlaps with corresponding orbitals on the free atoms. They separate into bonding and nonbonding orbitals. From the bonding quasi-atomic orbitals, localized bonding and antibonding molecular orbitals are formed. The resolution of molecular density matrices in terms of these orbitals furnishes a basis for analyzing the interatomic bonding patterns in molecules and the changes in these bonding patterns along reaction paths. A new bond strength measure, the kinetic bond order, is introduced.

Comments

Reprinted (adapted) with permission from Journal of Physical Chemistry A 119 (2015): 10360, doi:10.1021/acs.jpca.5b03399. Copyright 2015 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections