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ABSTRACT 

  

  

The use of haploids in breeding programs has many benefits and has been a useful 

tool in plant breeding programs for decades. Since the initial discovery of haploids in the 

1920’s, haploid technology has allowed for an increased rate of genetic gain in crops such as 

maize by allowing efficient integration of desirable agronomic, phenotypic, and genomic 

traits into elite germplasm quickly and efficiently. The objectives of this creative component 

were to review the use of doubled haploid (DH) breeding technology in established plant 

breeding programs such as maize (Zea mays L.) and the genes currently known to be 

involved in DH induction. The second objective was to discuss the requirements necessary to 

establish a viable DH breeding program in soybean [Glycine max (L.) Merr].    

 

Due to the highly successful use of doubled haploid (DH) technology in maize DHs 

have been researched and developed for use in several crops with varying rates of success. 

Wheat has been among the more successful recent adoptions of commercial use of DHs. Rice 

(Oryza sativa L.) and soybean have been met with limited results. However, there has been 

promising research conducted recently that may help make this technology more 

commercially viable for these crops.
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 Introduction                       

The use of haploids in breeding programs has many benefits and has been a useful tool in 

plant breeding programs for decades (Liu et al. 2016). Doubled haploid technology has allowed 

for an increased rate of genetic gain in crops such as maize (Zea mays L.) by allowing efficient 

integration of desirable agronomic traits into elite germplasm. Haploids in maize were first 

discovered in the 1920’s (Randolph and Fischer 1939). Haploid kernels occur naturally at very 

low rates, approximately 1 in 100,000, in native populations (Chase 1949). Early research was 

conducted on using haploids for breeding purposes (Chase 1949), but due to low naturally 

occurring haploid induction rates, unreliable kernel identification methods, and inefficient 

genome doubling capabilities, DH technology was not widely used in maize breeding until the 

1990s. A major breakthrough was the discovery of the Stock 6 haploid inducer (Coe 1959).  

The Stock 6 inducer line reported in 1959 (Coe 1959) had a haploid induction rate of 3%, 

which was significantly higher than naturally occurring induction rates (Liu et al. 2016). This 

higher induction rate along with more efficient methods of genome doubling enabled DH 

breeding methods to be used more extensively, and initiated development of more efficient 

inducer lines (Liu et al. 2016). The increase in efficiency allowed DH breeding to be used 

reliably on a commercial scale (Liu et al. 2016). 

The use of DH breeding systems allows breeders to produce homozygous inbred lines in 

two generations rather than six to eight generations (Liu et al. 2016). This method is very popular 

in current inbred line development programs due to the increase in efficiency in producing elite 

inbred lines that are homozygous for a desired trait (Liu et al. 2016). Inbred lines are developed 

and commercialized to be used as varieties (in case of line breeding such as for barley (Hordeum 

vulgare L.) and wheat (Triticum aestivum L.), or as parents of hybrid varieties (such as in maize).    
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The first widely planted commercial hybrid developed from a DH program was Dekalb 

640 developed in the 1950’s from a double cross of three DH and one conventional inbred parent 

lines (Liu et al. 2016). Dekalb 640 was very popular in the eastern U.S. and in Europe. Its 

tremendous success helped pave the way for widespread use of DHs for inbred line development. 

The main reason for using haploid technology is to reduce the time it takes to produce inbred 

lines, saving costs associated with plot numbers, number of generations grown, pollination 

numbers, laboratory analyses, and time needed for registration by allowing the regulatory 

process to be started much sooner (Liu et al. 2016). The faster regulatory approval process 

allows a new variety to be approved for market use faster, thus generating a revenue stream in a 

much shorter time frame.    

    The objectives of this creative component were to review literature on doubled haploid 

seed production in maize and other important agronomic crops, including a survey of genes 

currently known to be involved in doubled haploid seed production. The 2nd main objective was 

to evaluate the feasibility of developing a doubled haploid breeding system for soybeans 

[Glycine max (L.) Merr.].  

                                                                Chapter 1 

In vivo haploid induction 

In vivo haploid induction uses interspecific or intraspecific haploid inducers. Interspecific 

induction is when a crop species such as wheat is pollinated with a different species such as 

maize to induce haploids (Wu et al. 2017). In this case, wheat plants are pollinated with maize 

pollen (Wu et al. 2017). Upon successful pollination the maize genome is then eliminated 

through a process called centromere mediated chromosome elimination (Wu et al. 2017). The 
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removal of the chromosomes allows for successful development of haploid wheat plants. 

Doubled haploid wheat lines produced in this way will only contain the wheat genome (Wu et al. 

2017). Interspecific induction with maize is also used in rice, oats (Avena sativa L.) and rye 

(Secale cereale L.) (Wu et al. 2017).     

         Table 1.1 Interspecific Induction and Inducers. 

Crop species Induction type Crop used as Inducer 

Wheat Interspecific Maize 

Rice Interspecific Maize 

Rye Interspecific Maize 

Oats Interspecific Maize 
 

 

      Table 1.2 Intraspecific induction and Paternal vs. Maternal genes. 

Crop  Induction type Inducer method Genes Involved 

Maize Intraspecific Paternal Ig1, CENH3 

Maize Intraspecific Maternal MATL, ZmDMP, MTL genes 

Rice Intraspecific Maternal OsMATL, MATL 

 

Intraspecies induction is used in maize breeding programs due to its successful track 

record and relatively high percentage of successfully induced haploid kernels. This method 

involves using an inducer line from the same crop species to produce haploid seed (Liu et al. 

2016). The inducer line can be either a male line (maternal haploid induction) or a female line 

(paternal haploid induction) that have a genetic trait that allows it to induce the development of 

haploid kernels in the donor line at a much higher rate than would occur spontaneously. This 

method has also been used in rice and attempted soybeans.   

Haploids are produced in maize mainly by in vivo haploid induction. In vivo induction 

occurs either maternally or paternally (Liu et al. 2016). The parent plant with desired agronomic 

traits is the donor (Liu et al. 2016). The inducer line is a specific line either male or female that 
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promotes a high rate of haploid induction. Most modern inducer lines can be traced back to 

Stock 6 (Liu et al. 2016). Stock 6 is an inducer line developed in the 1950’s and has helped make 

modern DH programs in maize possible (Liu et al. 2016). It has a haploid induction rate of 3% in 

maternal lines (Zhong et al. 2019). In paternal haploid induction the donor is the male and the 

inducer line is the female. The resulting DHs inherit the cytoplasm of the inducer line and the 

chromosomes are from the male donor (Liu et al. 2016).   

Maternal Induction 

In maternal haploid induction the donor is the female and the inducer is the male (Liu et 

al. 2016). The resulting DH lines inherit both the cytoplasm and chromosomes from the female 

donor (Liu et al. 2016). Maternal induction is the most common form of haploid induction used 

in maize breeding programs (Liu et al. 2016). Maternal haploid induction is the preferred method 

in DH breeding programs today due to the higher haploid induction frequency (10%) of 

maternally derived DH lines.       

The seed resulting from haploid induction crosses must be screened for haploids, as the 

majority of the seed will be regular diploid seed and only a fraction of the seed is haploid. 

Screening can be accomplished by several methods such as using color marker genes, phenotypic 

sorting, analyzing oil content, or seed weight. The most commonly used method for identifying 

haploid seeds is the R1-nj gene (Liu et al. 2016). R1-nj gene is a dominant color marker gene 

that can be incorporated into an inducer line. If the resulting kernel has been successfully 

induced and is haploid, the kernel crown will appear red/purple, while the embryo will be 

uncolored (Liu et al. 2016). Diploid kernels will have a purple kernel crown and embryo 

coloration, because they received the genome from the inducer carrying the dominant R1-nj 
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gene, in contrast to haploid kernels. Kernels that are either outcrosses or contaminated with 

pollen not originating from the inducer will not be colored (Geiger et al. 2009).       

There are several genes of interest that have been identified in different species as being 

important to in vivo induction systems. In maize the R1-nj gene is used as a color marker to 

assist with identifying haploid kernels more efficiently and accurately (Liu et al. 2016). The 

haploid kernels will have a purple hue to the embryo and the non-haploid embryos will not. The 

RI-nj color marker makes it possible to utilize automated color sorting for selection of haploid 

kernels. Automated color sorting allows large amounts of kernels to be sorted by machine. The 

machine is calibrated to sort through large amounts of kernels using infrared light. The infrared 

light detects all kernels with a specific color and will discard all other kernels. This technology 

allows for larger population sizes to be sorted more efficiently and accurately than by traditional 

visual and manual selection.        

 The selected haploid seed then undergoes a process to induce doubling of the genome. 

Since haploid plants are normally sterile, genome doubling is required to produce a plant that is 

capable of being self-pollinated to produce viable offspring (Liu et al. 2016), producing a DH 

plant with two complete sets of chromosomes. Haploid genome doubling in maize programs is 

mostly done by treating the seed with colchicine. Colchicine is a chemical that is commonly used 

to double the genome in an embryo or seedlings. Due to its high toxicity to humans and other 

animals, and mutagenic properties several alternative methods have been studied such as N2O 

applications, herbicide applications, and APM (amiprophos methyl) (Liu et al. 2016). Currently 

colchicine applications are the most inexpensive and successful methods used to double haploid 

genomes in maize programs.  
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Colchicine-treated seedlings (D0 plants) are then planted in the field or greenhouse.  

Plants can be tissue sampled and tested using marker technology to ensure that the desired traits 

are present and the genotype is homozygous as expected. The plant is then self-pollinated and the 

resulting seed is genetically homozygous and homogeneous (D1 generation; DH line). After 

genomic testing confirms the zygosity of the trait in the seed the planted kernels are grown in 

plots and either self-pollinated or for hybrid performance testing (Liu et al. 2016). The specific 

process and use of DH lines will vary depending on the needs of the specific breeding program.                    

Maternal haploid induction genes 

MATL. Matrilineal (MATL) is an important gene in maize as it codes for a pollen 

specific phospholipase and influences the number of successful haploid inductions (Yao et al. 

2018).  MATL is expressed in the cytoplasm of pollen cells (Wu et al. 2017). The MATL gene is 

believed to affect the haploid induction rate of maternal inducer lines (Wu et al. 2017). The 

discovery of this gene has helped to increase the efficiency of modern high efficiency inducer 

lines and can potentially be of use in other crop species such as rice to increase haploid induction 

frequencies (Wu et al. 2017). MATL is also known by several different names describing the 

same gene, such as MTL, ZmPLA1, and NLD and are the consequence of three different studies 

published in the same year (Gilles et al. 2017; Kellihner et al. 2017; Liu et al. 2017).  

The three studies used very similar methods to identify the MATL gene. The studies first 

identified QTL in inducer lines derived from Stock6 such as RWK, CAU5, CAUHOI by 

mapping studies. Fine mapping was used to ultimately identify a 4 bp insertion in a region on 

chromosome 1, shown to affect haploid induction rates. CRISPR-Cas9 was used to confirm the 

function of MATL by inserting the gene into a non-inducer inbred line [a 4 bp insertion leads to 

a frameshift mutation. Is MATL an active gene or is it the result of a knock-out mutation (loss of 
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function) This is important, when trying to use MATL in other species]. Increased haploid 

induction rates were observed in these lines proving the function of the gene in haploid induction 

(Gilles et al. 2017; Kellihner et al. 2017; Liu et al. 2017).  

Two major quantitative trait loci (QTL) have been discovered to affect maternal haploid 

induction rates in maize. These QTL were named qhir1 and qhir8 (Giles et al. 2017). MATL is 

located in the qhir1 region on chromosome 1 and increases the haploid induction rate many times 

compared to rates in wild type plants (Zhong et al. 2019). The MATL gene has the largest effect 

on the haploid induction rate of a genome (Giles et al. 2017). Other genes affecting haploid 

induction rates (HIRs) on chromosome 9 have been observed to further increase the haploid 

induction rates when present in addition to MATL (Giles et al. 2017; Zhong et al. 2019). One 

such gene is ZmDMP. ZmDMP has a lesser effect on haploid induction rates compared to 

MATL and increases the haploid induction minimally over wildtype when present in addition to 

the MATL gene (Giles, et al. 2017; Zhong et al. 2019). CRISPR (clustered regularly interspaced 

short palindromic repeats) are used to determine the effect of the MATL gene by knocking the 

gene out of the inducer line and inserting the gene into a non-inducer line to observe the effect on 

the haploid induction rate (Giles et al. 2017; Kelliner et al. 2017; Liu et al. 2017). CRISPR may 

also be used to increase the haploid induction rate efficiency of modern induction lines (Zhong et 

al. 2019) by allowing a more precise way to alter the expression of specific genes that are known 

to influence haploid induction rates in inducer lines.  

The MATL gene has also been identified and used successfully for haploid induction in 

rice using a rice orthologue of the maize MATL gene to induce an increase in haploid seed 

production of 2-6% haploid kernels in rice (Yao et al. 2018). The orthologous gene found in rice 

is known as OsMATL (Yao et al. 2018).  CRISPR technology was used in an experiment 
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conducted to create the mutations necessary to induce haploid seed set (Yao et al. 2018). In the 

experiment two constructs 23843 and 23845 were transformed into cultivar IR58025B, to 

conduct CRISPR Cas9 gene editing (Yao et al. 2018). Each construct had a specific region in the 

genome that it was designed to target.  

Construct 23843 targeted the amino terminal region in exon 1 (Yao et al. 2018). 23845 

targeted exon 4 with the restriction site 4 bp away from the native maize inducer allele frameshift 

site (Yao et al. 2018).  Haploid induction was observed with a rate of 6% on average, which is 

below the industry standard (Yao et al. 2018). As haploid induction rates may be female 

germplasm dependent, further experiments on different donors are conducted to ascertain which 

genes are involved (Yao et al. 2018).                    

Paternal haploid induction     

In paternal haploid induction the donor is used as male and the inducer is the female line 

(Liu et al. 2016). The resulting DH lines inherit the cytoplasm from the inducer line and the 

chromosomes from the donor (Liu et al. 2016). Paternal induction is used in maize breeding 

programs, though not as frequently as maternal haploid induction due to lower haploid induction 

rates. CMS (cytoplasmic male sterility) is used in breeding programs to increase the efficiency in 

producing hybrid maize seed (Havey 1982). CMS in maize is cytoplasmatically inherited. A 

paternal inducer carrying the CMS cytoplasm results in plants sterile tassels.  

Converting a male fertile line into a CMS line is accomplished by using a paternal 

inducer line with CMS. CMS plants can be easily pollinated by a male fertile line (Havey 1982), 

without need to remove tassels. CMS technology allows hybrid seed to be efficiently produced in 
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a production field by using a male sterile line as the female line and a male fertile line as the 

pollinator (Havey 1982).  

The increased use of CMS technology in commercial seed production has proven 

extremely valuable in modern commercial breeding programs by reducing the time and resources 

involved in detasseling and scouting female rows for shedding pollen. It also reduces the 

likelihood of a female plant self-pollinating, which could potentially result in the loss of the 

entire field if genetic purity is compromised.   

As useful as CMS technology has been for the maize seed production industry the 

technology has not been without challenges. CMS technology has been used on a large scale in 

the past. In the 1950s the Texas cytoplasm, T-cytoplasm was discovered (Levings 1993). The T-

cytoplasm carried the cytoplasmic male sterile (CMS) trait. This germplasm became so widely 

used that it comprised over 85 percent of the hybrid corn grown in the United States by 1970 

(Levings 1993). Around this time in 1969 an outbreak of Southern corn leaf blight caused by 

Bipolaris maydis, t-race was beginning (Levings 1993).             

By 1970 the Southern corn leaf blight pathogen had infected a large portion of the hybrid 

corn in the United States. It was determined that the T-cytoplasm responsible for the CMS gene 

was also conferring susceptibility to the Southern corn leaf blight pathogen compared to native 

Maize with no T-cytoplasm (Levings 1993). This susceptibility caused the T-cytoplasm to be 

discontinued and detasseling to be used more widely in the industry (Levings 1993).  

 Table 1.3: Induction types with donor and inducer   

Induction type Donor Inducer 

Maternal Female Male 
Paternal Male Female 
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Paternal haploid induction genes 

Ig1 (Indeterminate gametophyte) is an important gene as it influences paternal induction 

by increasing the number of haploids occurring after pollination (Kermicle 1969). The Ig1 gene 

was isolated and identified by sequencing a mutant Ig1 gene (Ig1-O) (Evans 2007). The Ig1-O 

mutant has a phenotype with higher amounts of aborted kernels compared to a wild type line 

indicating a sterility gene. The Ig1-O mutant was then backcrossed into several inbred lines. The 

inbred lines showed varying degrees of paternal haploid induction based on the genotype of the 

inbred line. A second mutation was discovered: Ig1-mum. Fine mapping was used to sequence 

the gene and identify the location (Evans 2007).  

Centromere mediated chromosome elimination is believed to be influenced by the CenH3 

gene (Wu et al. 2017). This gene is believed to affect haploid induction rates and is a paternal 

gene. CenH3 was first identified and isolated in Arabidopsis and barley by Ravi and Chan 

(2010). The key finding of this study was identification of a GFP-tail swap mutant. The mutant 

was crossed with a wildtype parent. The offspring were sequenced and found to be haploid only 

containing the wildtype genome (Ravi and Chan, 2010). The haploid plants were also sterile and 

less vigorous than the diploid plants. When self-pollinated the GFP-tail swap mutant did not 

produce haploids (Ravi and Chan, 2010).                             

The CenH3 gene was also isolated in barley in 2011 by (Sanei et al. 2011). Some key 

findings of this study were haploids that were created by crossing barley with H. bulbosum. 

Sequencing was conducted on the resulting offspring and it was found that only the barley 
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genome remained and the H. bulbosum genome had been eliminated (Sanei et al. 2011). A low 

temperature of 18 C promoted chromosome elimination.                 

A test was conducted with antibodies to determine the centromere activity of the cells 

undergoing chromosome elimination (Sanei et al. 2011). It was found that the CenH3 protein 

activity was reduced in the eliminated chromosomes compared to the barley chromosomes 

(Sanei et al. 2011). The study concluded that the loss of CenH3 activity plays a role in 

chromosome elimination and subsequent elimination of the H. bulbosum genome from the barley 

haploid (Sanei et al. 2011).                           

A CenH3 study in maize was conducted by Kelliher et al. (2016). In this study, several 

CenH3 RNAi lines, tail swap or CenH3 transgenes were used. These resulting crosses were then 

compared to testcrosses with wildtype plants (Kelliher et al. 2016). The RNAi lines were found 

to not produce haploid plants. Some other CenH3 transgene lines that were used did produce 

haploids, but at low rates (Kelliher et al. 2016). The hemizygous CenH3-tail swap lines showed a 

significant increase in the haploid induction rates when backcrossed to wildtype plants as males. 

CenH3-tail swap was shown to have an influence on the haploid induction rates in maternal 

haploid induction (Kelliher et al. 2016).            

   In vitro haploid production          

Haploid plants can be obtained in vitro when immature pollen (androgenesis) or ovules 

(oviculture) from a donor plant are used to develop haploid plants by tissue culture methods (Liu 

et al. 2016). Oviculture is when immature ovules are selected from a donor plant and placed on a 

media to form plant calli (Atanassov et al. 1995), but it is not nearly as widely used as 

androgenesis due to the inconsistency of reliably producing haploid callus tissue.  
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Androgenesis is most commonly used for heterozygous donor plants producing a 

segregating population. The best performing lines from the segregating population may then be 

selected for advancement in the breeding program. Usually immature anthers are selected from a 

donor plant with desirable agronomic traits. Immature pollen within those immature anthers 

represent gametophytic tissue, which is not fully developed and thus capable of differentiating 

into callus tissue (Liu et al. 2016). The anthers are then grown on media to produce plant calli 

resulting in haploid plants (Atanasov et al. 1995). 

Haploid plant calli are exposed to a doubling agent such as Colchicine to double their 

genome creating a “doubled haploid” diploid plant (Liu et al. 2016). The DH plant is then 

transplanted and self-pollinated. The genome in the haploid plant must be doubled to create a 

fertile diploid plant, which is capable of being successfully self-pollinated to produce viable 

seed. Haploid plants are generally sterile, and not capable of producing offspring. This method 

has been used very successfully in wheat breeding programs. In vitro haploid induction has also 

been used in maize breeding programs, but not as successfully due to difficulty in finding a 

method that overcomes genotype specificity for response to anther-culture (Liu et al. 2016).                      

In vitro haploid production can be useful for crops such as soybean that may not have 

inducer lines available. However, this method tends to be very tedious, time consuming, and can 

be costly compared to in vivo induction. In vivo haploid induction is useful because it can be 

used as a way to induce haploid development in the field by the use of an inducer line. This 

method eliminates the need to culture callus tissue in the laboratory. However, in vivo haploid 

induction does require the use of reliable inducer lines, which may be difficult to obtain for some 

crops.       
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Current DH maize breeding programs have become increasingly efficient in recent years 

due to the development of highly efficient inducer lines. High efficiency inducer lines were 

developed by Iowa State University to overcome the shortcomings of earlier high frequency 

inducer lines that were well adapted to Europe, but not well adapted to the climate in the 

Midwest (Liu et al. 2016). Lines such as BHI 201 were developed (Liu et al. 2016). BHI 201 is a 

B73 based inducer line developed by Iowa State University in 2016 (Liu et al. 2016). It has an 

induction rate of 12-14% (Liu et al. 2016) and was developed from a genetic background that is 

well suited to the climate in the Midwest.  

BHI 301 was also developed by Iowa State University in 2016 and has a similar 

induction rate to BHI 201 (Liu et al. 2016). These and other high efficiency induction lines have 

haploid induction rates of at least 10% (Liu et al. 2016), depending on environmental conditions 

and the inbred line being induced. Higher haploid induction rates increase efficiency by 

increasing the percentage of haploid kernels produced by each plant. The higher number of 

haploids produced allows a larger percentage of doubling to occur which then decreases the 

population size required and allows for more successful and efficient selection for inbred line 

development.    

                                                                        Chapter 2 

In vivo haploid induction in soybeans                     

To date there are no efficient methods to produce DH soybeans on a commercial scale. 

Development of an efficient DH breeding program in soybeans would prove to be extremely 

valuable to modern agriculture. DH systems have been used in maize breeding programs for 

decades and have greatly increased the genetic gain of the crop. DH breeding programs have also 
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allowed new agronomic and phenotypic traits to be integrated into the maize genome much faster 

than traditional methods.  

Haploid induction is not commonly used in soybean breeding programs as of recently, 

due to the inefficiency and low success rate of creating successful haploid plants. There have 

been few successful in vitro anther culture experiments conducted in soybean that have led to 

haploid induction (Lulsdorf et al. 2011). However, these anther-culture experiments have yielded 

mixed results and the haploid induction rates were quite low compared to commonly used 

commercial methods of haploid induction in other species. Formation of callus tissue was not 

consistent and would not be practical on a commercial scale. There has been some research done 

on in vivo haploid induction in the Fabaceae family of plants and other legume species such as 

lentils, chickpea, pigeon pea, and common bean utilizing interspecific crossing and centromere- 

mediated chromosome reduction (Wu et al. 2017). But this research is in its infancy and has not 

been reliably adapted for use in soybeans.   

                                                   

 

Table 2.1: Success factors for in vivo DH production 

Crop Flower type Number of 
kernels/pollination 

Availability 
of CMS  

Success 
rate of 
hand 
pollinations 

Seed per 
plant 

High 
Frequency 
Inducers  

Maize Allogamous 300-500 Yes 90% + 300-500 Yes 
Soybean Autogamous 2-3 Yes 50% 50-100 No 
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Studies were conducted by Lewis et al. (1996), Ortiz-Perez et al. (2006), and Havey 

(1982) comparing different methods used to create hybrid soybean varieties on a commercial 

scale. Soybeans are autogamous and thus self-pollinating species (Lewis et al. 1996). The 

flowers are usually self-pollinated before they fully open by the anthers contained within the 

floral structure (Lewis et al. 1996). Natural soybean hybridization does occasionally occur, but it 

usually involves an insect vector or a neighboring plant that is in very close proximity to the 

cross-pollinated plant (Lewis et al. 1996). The rate is very low and would require an infeasibly 

large population size to produce a large enough quantity of seed for commercial production.                     

Commercial hybridization of soybeans is not very widely used by industry as it is very 

inefficient. Due to the autogamous nature of soybeans, hybridization requires cross-pollination 

by hand, which is very tedious. Hand pollination requires highly trained staff, who will open the 

flower of the female plant with a pair of forceps and extract anthers before they begin to shed 

pollen. The anthers from the male plant will then be extracted and deposited on the pistil of the 

female plant. If all goes well, hybrid seed will be formed.  

This method is very time consuming, requires extensive training, and has a low success 

rate averaging approximately 50% seed set (Ortiz- Perez et al. 2006). Successful soybean hand 

pollinations are influenced by many factors such as temperature, humidity, available water to the 

plant, sunlight, and mechanical damage done by the researcher to the flowering structure. An 

average soybean pod also has a relatively low average seed number of two seeds per pod 

compared to other crops such as maize that are commonly hand pollinated (Ortiz- Perez et al. 

2006).                        

Another method that has been explored is the use of insect vectors to cross pollinate 

soybeans (Lewis et al. 1996). This method requires plots to be planted in close proximity to each 
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other which allows insect vectors such as bees to easily fly between rows of plants (Lewis et al. 

1996). In order for an insect vector mediated cross pollination to occur successfully, male 

sterility genes must be used (Ortiz-Perez et al. 2006). Male sterility genes create flowers that do 

not have fertile pollen and are thus incapable of self-pollinating. This allows the pistil of the 

flower to be fully exposed to be pollinated from a flower from the desired plot without 

contamination from its own anthers (Ortiz-Perez et al. 2006).  

Male sterility genes are often combined with phenotypic marker traits that allow one to 

distinguish the truly male sterile plants from non-male sterile plants (Lewis et al. 1996; Ortiz-

Perez et al. 2006). These phenotypic traits can be color markers such as purple hypocotyl and 

purple flowers and are linked to genic ms genes (Lewis et al. 1996; Ortiz-Perez et al. 2006). 

Genic male sterile plants differ from true CMS male sterile plants as restorer lines are not 

required to produce fertile offspring (Jin, 1999). The genic male sterile plants will also have a 

segregation rate of 50% male sterile and 50% fertile plants. The male sterile plants in the row 

will be kept and other non-male sterile plants in the row will be rogued to reduce the amount of 

contamination and self-pollination within the row (Lewis et al. 1996; Ortiz- Perez et al. 2006).   

There are several genic male sterility genes (ms) that have been used to create successful 

cross pollinations (Ortiz-Perez et al. 2006) such as ms6. Ms6 is a male sterility gene that has 

been used in hybridization experiments (Ortiz-Perez et al. 2006). Insects are used to carry pollen 

from the male row and deposit it onto the male sterile female row creating a hybrid seed (Ortiz-

Perez et al. 2006).                          

If a DH soybean breeding program were to be initiated, it can be developed using a 

combination of methods described previously. Based on the information presented, a paternal 

haploid system would most likely be the best choice for a soybean DH program. Paternal haploid 
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induction systems would be preferable in soybeans because self-pollination can be greatly 

reduced, if not eliminated entirely. This would save significant time and resources (Table 2). In 

comparison to maize, castration of flowers would be a major cost factor for seed production. As 

male sterility is available, a system combining ms and paternal haploid induction appears to be 

most economically feasible.   

Table 2.2 Maternal vs. Paternal Induction System in Soybean 

System Maternal Paternal 

Induction Frequency 10% 10% 
Doubling Frequency 10% 10% 
Number of Crosses 10 10 
Number of DH seed/cross 100 100 
Inducer Maternal Inducer Male Sterile 
Number of castrations/cross 10,000 0 
Number of successful 
pollinations needed 

5,000 5,000 

Total number of castrations 100,000 0 
Total number of successful 
pollinations 

50,000 50,000 

 

The haploid embryo would inherit the cytoplasm from the inducer and chromosomes of 

the donor (Liu et al. 2016). The non-male sterile line would be used as a donor line and would be 

grown in rows on opposite sides of the female inducer with a buffer of two rows of male sterile 

control materials on either side and between different plots. The buffer would prevent 

contamination from pollen of a different background or trait. Insects such as honeybees would be 

brought into the field during pollination to increase the efficiency of the pollinations.  

The resulting seed can be tested for successful induction by utilizing a color marker 

similar to R-nj in maize or by seed chipping to determine, if the seed is haploid or diploid. After 

screening and genome doubling, the haploid plants can be grown in a greenhouse or growth 



24 
 

 

chamber and allowed to self-pollinate. Greenhouses or growth chambers would be preferable 

because the DH plants may be too fragile for field conditions. Greenhouses or growth chambers 

would also make it easier to track individual plants in pots and rogue any segregating material 

before flowering to prevent contamination from occurring. The resulting seeds may then be 

tested to ensure homozygosity for the given trait. The F2 plants can also be tissue sampled at an 

early growth stage in the greenhouse to ensure the plant is indeed homozygous for the desired 

trait and is not segregating.                       

For a soybean DH breeding program a CMS sterility system would be preferable over a 

genic sterility system because genic systems can only be successfully maintained through 

backcrossing. The system would also be very labor intensive due to the large amount of rouging 

that would be required. The CMS system can be successfully used if a female line with a fertility 

restorer gene is used. The resulting DH off-spring would then be fertile (Jin, 1999).  

Once a stable line is obtained the seed can then go to field testing in short rows to test for 

agronomic, and phenotypic traits. The desired plants can then be selected for seed increase. The 

seed increases can occur in a normal field layout for soybeans. Since the desired traits will be 

homozygous in the DH line there is no need for cross pollination. The stable line can now 

eventually be commercialized as a new hybrid line.                

Some key genes that have been shown to affect paternal haploid induction in other crops 

such as Ig1 and CenH3 may be beneficial for soy as well. Mutations for these genes may be 

discovered by the use of sequencing and backcrossing mutant lines to wildtype soy lines to 

confirm the mutation and the effect on paternal induction rates. Such as described by Evans 

(2007) in discovering Ig1 mutations in Maize. It may also be possible to introduce a CenH3- tail 
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swap gene using CRISPR or a transformation method such as described by Kelliher et al. (2016) 

to increase paternal haploid induction frequencies.  

Summary and Conclusion                     

DH programs have been extremely beneficial to modern agriculture by allowing a 

homozygous inbred line to be developed much faster and more efficiently than traditional 

breeding methods. DH technology saves time and field resources by allowing for smaller 

population sizes to produce a homozygous (fixed) trait. This increase in efficiency in inbred line 

production has led to a substantial increase in genetic gain for maize over the past several 

decades. In vitro induction has been successfully used to produce haploid plants in several crop 

species such as rice, and soybeans. This system utilizes processes like androgenesis to produce 

plant calli from gametophytic tissue.  

In vivo haploid induction is used to produce haploid plants in many commercial maize 

and wheat breeding programs. This method involves either interspecies or intraspecies induction. 

Interspecies induction methods are used in wheat DH programs and involve using a similar crop 

such as maize as a pollen donor and wheat as donor. The genome from the inducer is removed by 

centromere mediated elimination resulting in only the wheat genome remaining. Intraspecies 

haploid induction is used in crops such as maize on a commercial scale. This process involves 

either maternal or paternal induction.                   

Maternal induction is the most commonly used and preferred method in modern maize 

breeding programs due to its greater efficiency and more reliable source of stable inducer lines 

than paternal induction. High frequency inducer lines are also predominately maternal inducers. 

Genes controlling haploid induction have been identified in maize and other species, such as 
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MATL, ig1, CENH3, and ZmDMP. These genes are either affecting maternal (MATL, ZmDMP) 

or paternal haploid induction (ig1, CENH3).  

Research has been conducted in soybean to develop efficient haploid induction programs. 

There have been promising results, but no breakthroughs to date. If a program would be 

developed towards development of soybean DH lines using in vivo haploid induction, paternal 

induction would be the preferred method due to the possibility use of male sterile lines. Use of a 

color marker would be required to discern which plants in the row are indeed male sterile and 

can be used as inducer plants. Pollination would be insect mediated by the use of honeybees to 

pollinate inducer plants with donor pollen.               

Development of an efficient method to produce soybean DHs on a commercial scale 

would be extremely beneficial to modern agriculture as soybeans are a major agronomic crop 

worldwide. Increasing yield potential and allowing improved genetic traits to be quickly 

integrated into elite germplasm will help improve the yield potential of modern soybeans and 

will also allow new agronomic and output traits such as disease resistance, high oil and high 

protein lines to be developed and deployed more efficiently.                            
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